Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12649, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825611

RESUMO

Economic losses from insect herbivory in agroecosystems has driven the development of integrated pest management strategies that reduce pest incidence and damage; however, traditional chemicals-based control is either being complemented or substituted with sustainable and integrated methods. Major sustainable pest management strategies revolve around improving host plant resistance, and one of these traits of interest is Brown midrib (BMR). Originally developed to increase nutritional value and ease of digestion for animal agriculture, BMR is a recessive plant gene usually found in annual grasses, including sorghum and sorghum-sudangrass hybrids. In sorghum-sudangrass, BMR expressed plants have lower amounts of lignin, which produces a less fibrous, more digestible crop, with possible implications for plant defense against herbivores- an area currently unexplored. Fall Armyworm (FAW; Spodoptera frugiperda) is a ruinous pest posing immense threat for sorghum producers by severely defoliating crops and being present in every plant stage. Using FAW, we tested the effect of seed treatment, BMR, and plant age on FAW growth, development, and plant defense responses in sorghum-sudangrass. Our results show that seed treatment did not affect growth or development, or herbivory. However, presence of BMR significantly reduced pupal mass relative to its non-BMR counterpart, alongside a significant reduction in adult mass. We also found that plant age was a major factor as FAW gained significantly less mass, had longer pupation times, and had lower pupal mass on the oldest plant stage explored, 60-days, compared to younger plants. These findings collectively show that pest management strategies should consider plant age, and that the effects of BMR on plant defenses should also be studied.


Assuntos
Herbivoria , Sorghum , Spodoptera , Animais , Spodoptera/fisiologia , Spodoptera/crescimento & desenvolvimento , Sorghum/parasitologia , Sorghum/crescimento & desenvolvimento , Larva
2.
Sci Rep ; 14(1): 14053, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890375

RESUMO

Sorghum aphid, Melanaphis sorghi (Theobald) have become a major economic pest in sorghum causing 70% yield loss without timely insecticide applications. The overarching goal is to develop a monitoring system for sorghum aphids using remote sensing technologies to detect changes in plant-aphid density interactions, thereby reducing scouting time. We studied the effect of aphid density on sorghum spectral responses near the feeding site and on distal leaves from infestation and quantified potential systemic effects to determine if aphid feeding can be detected. A leaf spectrometer at 400-1000 nm range was used to measure reflectance changes by varying levels of sorghum aphid density on lower leaves and those distant to the caged infestation. Our study results demonstrate that sorghum aphid infestation can be determined by changes in reflected light, especially between the green-red range (550-650 nm), and sorghum plants respond systemically. This study serves as an essential first step in developing more effective pest monitoring systems for sorghum aphids, as leaf reflection sensors can be used to identify aphid feeding regardless of infestation location on the plant. Future research should address whether such reflectance signatures can be detected autonomously using small unmanned aircraft systems or sUAS equipped with comparable sensor technologies.


Assuntos
Afídeos , Folhas de Planta , Sorghum , Afídeos/fisiologia , Sorghum/parasitologia , Animais , Folhas de Planta/parasitologia , Tecnologia de Sensoriamento Remoto/métodos , Análise Espectral/métodos
3.
BMC Plant Biol ; 24(1): 529, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862926

RESUMO

BACKGROUND: The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS: In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS: In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.


Assuntos
Afídeos , Metaboloma , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/parasitologia , Sorghum/metabolismo , Afídeos/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/genética
4.
J Invertebr Pathol ; 204: 108107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614292

RESUMO

The sugarcane aphid, Melanaphis sacchari, is a widely distributed insect that attacks grasses in different genera including Miscanthus, Saccharum, and Sorghum. The invasive aphid superclone was first discovered in the U.S. attacking grain sorghum in Texas in 2013. Since then, it has been found in at least 25 states including Georgia. We conducted a survey of naturally occurring fungal pathogens of sugarcane aphids on five farms in Georgia, and identified a hypocrealean fungus, Akanthomyces dipterigenus, and two entomophthoralean fungi, Neoconidiobolus spp. From 2018 to 2020, fungal activity differed across farms but at one farm both major fungal species, A. dipterigenus and N. thromboides, were found each of the 3 years infecting sugarcane aphids, attacking adults, both alatae and apterae, and nymphs.


Assuntos
Afídeos , Sorghum , Animais , Afídeos/microbiologia , Sorghum/microbiologia , Sorghum/parasitologia , Georgia , Entomophthorales/fisiologia , Hypocreales/fisiologia
5.
J Chem Ecol ; 50(5-6): 262-275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647585

RESUMO

The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald). Volatiles were collected using dynamic headspace sampling techniques and identified and quantified using GC-MS. The total amounts of volatiles induced by the aphids did not differ among the 10 cultivars, but overall blends of volatiles differed significantly in composition. Most notably, aphid herbivory induced higher levels of methyl salicylate (MeSA) emission in two cultivars, whereas in four cultivars, the volatile emissions did not change in response to aphid infestation. Dual-choice olfactometer assays were used to determine preference of the aphid parasitoid, Aphelinus nigritus, and predator, Chrysoperla rufilabris, between plants of the same cultivar that were un-infested or infested with aphids. Two aphid-infested cultivars were preferred by natural enemies, while four other cultivars were more attractive to natural enemies when they were free of aphids. The remaining four cultivars elicited no response from parasitoids. Our work suggests that genetic variation in HIPV emissions greatly affects parasitoid and predator attraction to aphid-infested sorghum and that screening crop cultivars for specific predator and parasitoid attractants has the potential to improve the efficacy of biological control.


Assuntos
Afídeos , Herbivoria , Sorghum , Compostos Orgânicos Voláteis , Afídeos/fisiologia , Animais , Sorghum/metabolismo , Sorghum/química , Sorghum/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Salicilatos/metabolismo , Salicilatos/farmacologia , Vespas/fisiologia
6.
Plant Genome ; 17(2): e20452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654377

RESUMO

Durable host plant resistance (HPR) to insect pests is critical for sustainable agriculture. Natural variation exists for aphid HPR in sorghum (Sorghum bicolor), but the genetic architecture and phenotype have not been clarified and characterized for most sources. In order to assess the current threat of a sorghum aphid (Melanaphis sorghi) biotype shift, we characterized the phenotype of Resistance to Melanaphis sorghi 1 (RMES1) and additional HPR architecture in globally admixed populations selected under severe sorghum aphid infestation in Haiti. We found RMES1 reduces sorghum aphid fecundity but not bird cherry-oat aphid (Rhopalosiphum padi) fecundity, suggesting a discriminant HPR response typical of gene-for-gene interaction. A second resistant gene, Resistance to Melanaphis sorghi 2 (RMES2), was more frequent than RMES1 resistant alleles in landraces and historic breeding lines. RMES2 contributes early and mid-season aphid resistance in a segregating F2 population; however, RMES1 was only significant with mid-season fitness. In a fixed population with high sorghum aphid resistance, RMES1 and RMES2 were selected for demonstrating a lack of severe antagonistic pleiotropy. Associations with resistance colocated with cyanogenic glucoside biosynthesis genes support additional HPR sources. Globally, therefore, an HPR source vulnerable to biotype shift via selection pressure (RMES1) is bolstered by a second common source of resistance in breeding programs (RMES2), which may be staving off a biotype shift and is critical for sustainable sorghum production.


Assuntos
Afídeos , Sorghum , Afídeos/fisiologia , Afídeos/genética , Sorghum/genética , Sorghum/parasitologia , Animais , Genes de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
7.
Ann Bot ; 134(1): 59-70, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38428944

RESUMO

BACKGROUND AND AIMS: Infection by the hemi-parasitic plant Striga hermonthica causes severe host plant damage and seed production losses. Increased availability of essential plant nutrients reduces infection. Whether, how and to what extent it also reduces striga-induced host plant damage has not been well studied. METHODS: The effects of improved macro- and micronutrient supply on host plant performance under striga-free and infected conditions were investigated in glasshouse pot assays. One striga-sensitive and two striga-tolerant genotypes were compared. Plants growing in impoverished soils were supplied with (1) 25 % of optimal macro- and micronutrient quantities, (2) 25 % macro- and 100 % micronutrients, (3) 100 % macro- and 25 % micronutrients, or (4) 100 % macro- and micronutrients. KEY RESULTS: Photosynthesis rates of striga-infected plants of the sensitive genotype increased with improved nutrition (from 12.2 to 22.1 µmol m-2 s-1) but remained below striga-free levels (34.9-38.8 µmol m-2 s-1). For the tolerant genotypes, increased macronutrient supply offset striga-induced photosynthesis losses. Striga-induced relative grain losses of 100 % for the sensitive genotype were reduced to 74 % by increased macronutrients. Grain losses of 80 % in the tolerant Ochuti genotype, incurred at low nutrient supply, were reduced to 5 % by improved nutrient supply. CONCLUSIONS: Increasing macronutrient supply reduces the impact of striga on host plants but can only restore losses when applied to genotypes with a tolerant background.


Assuntos
Genótipo , Nutrientes , Fotossíntese , Sorghum , Striga , Striga/fisiologia , Sorghum/genética , Sorghum/parasitologia , Sorghum/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Solo/química
8.
Arq. Inst. Biol. (Online) ; 89: e00222021, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1416773

RESUMO

The objective of this research was to evaluate weed control in a successional soybean-sorghum system by using preemergent herbicides. Two trials were conducted in soybean and two in sorghum, in different soil types (sandy in Rio Verde city and clayey in Montividiu city). All trials were established in a completely randomized block design with five preemergent herbicides in soybean (rates in): diclosulam 35.3 g a.i.·ha­1, chlorimuron 20 g a.i.·ha­1, sulfentrazone 200 g a.i.·ha­1, flumioxazin 50 g a.i.·ha­1, S-metolachlor 1728 g a.i.·ha­1, and two controls (hand weeded and untreated). Treatments in sorghum trials were the same to the soybean plus atrazine 1250 g a.i.·ha­1 and atrazine 1250 g a.i.·ha­1 + S-metolachlor 1728 g a.i.·ha­1. All treatments had four replicates. Weed control was assessed at 7, 14, 21 and 28 days after planting (DAP) in both crops. In addition, yield was measured when grains reached physiological maturity. All preemergent herbicide treatments successfully controlled weeds, specially Commelina benghalensis, Cenchrus echinatus and Eleusine indica, in both soybean trials until 28 DAP. In some weeds of sorghum, sulfentrazone, diclosulam and chlorimuron sprayed at soybean preemergence performed better than atrazine sprayed at sorghum preemergence. All preemergent herbicides sprayed at soybean preemergence did not affect soybean and sorghum yield, showing similarity with the hand weeded treatment. The results of this research provide evidence that the mix of crop succession and preemergent herbicide applications can be a strong strategy for integrated weed management.


Assuntos
Glycine max/parasitologia , 24444 , Sorghum/parasitologia , Controle de Plantas Daninhas/métodos , Herbicidas/análise
9.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281180

RESUMO

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.


Assuntos
Afídeos/fisiologia , Defesa das Plantas contra Herbivoria/genética , Sorghum/genética , Animais , Suscetibilidade a Doenças , Grão Comestível/genética , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genótipo , Controle Biológico de Vetores/métodos , Melhoramento Vegetal/métodos , Sorghum/parasitologia , Transcriptoma
11.
Plant Physiol ; 186(3): 1632-1644, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856485

RESUMO

Witchweeds (Striga spp.) and broomrapes (Orobanchaceae and Phelipanche spp.) are root parasitic plants that infest many crops in warm and temperate zones, causing enormous yield losses and endangering global food security. Seeds of these obligate parasites require rhizospheric, host-released stimulants to germinate, which opens up possibilities for controlling them by applying specific germination inhibitors or synthetic stimulants that induce lethal germination in the host's absence. To determine their effect on germination, root exudates or synthetic stimulants/inhibitors are usually applied to parasitic seeds in in vitro bioassays, followed by assessment of germination ratios. Although these protocols are very sensitive, the germination recording process is laborious, representing a challenge for researchers and impeding high-throughput screens. Here, we developed an automatic seed census tool to count and discriminate germinated seeds (GS) from non-GS. We combined deep learning, a powerful data-driven framework that can accelerate the procedure and increase its accuracy, for object detection with computer vision latest development based on the Faster Region-based Convolutional Neural Network algorithm. Our method showed an accuracy of 94% in counting seeds of Striga hermonthica and reduced the required time from approximately 5 min to 5 s per image. Our proposed software, SeedQuant, will be of great help for seed germination bioassays and enable high-throughput screening for germination stimulants/inhibitors. SeedQuant is an open-source software that can be further trained to count different types of seeds for research purposes.


Assuntos
Germinação/efeitos dos fármacos , Orobanchaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Plantas Daninhas/crescimento & desenvolvimento , Software , Sorghum/parasitologia , Striga/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Tomada de Decisões Assistida por Computador , Aprendizado Profundo
12.
Sci Rep ; 11(1): 5735, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707703

RESUMO

Because of variation in incidence and severity of damage by Chilo partellus (Swinhoe) in different geographical regions, it is difficult to identify stable sources of resistance against this pest. Therefore, the present studies were undertaken on biological attributes (damage in resistant and susceptible genotypes, survival and development) and biochemical profiles (amino acids and lipophilic compound) of C. partellus populations from eight geographical regions to understand it's population structure in India. There was a significant variation in biological attributes and biochemical profiles of C. partellus populations from different geographical regions. Based on virulence and biological attributes, similarity index placed the C. partellus populations in five groups. Likewise, lipophilic and amino acid profiling also placed the C. partellus populations in five groups. However, the different clusters based on biological and biochemical attributes did not include populations from the same regions. Similarity index based on virulence, biological attributes, and amino acids and lipophilic profiles placed the C. partellus populations in six groups. The C. partellus populations from Hisar, Hyderabad, Parbhani and Coimbatore were distinct from each other, indicating that there are four biotypes of C. partellus in India. The results suggested that sorghum and maize genotypes need to be tested against these four populations to identify stable sources of resistance. However, there is a need for further studies to establish the restriction in gene flow through molecular approaches across geographical regions to establish the distinctiveness of different biotypes of C. partellus in India.


Assuntos
Biodiversidade , Mariposas/fisiologia , Caules de Planta/parasitologia , Aminoácidos/análise , Animais , Genótipo , Geografia , Índia , Larva/fisiologia , Lipídeos/análise , Dinâmica Populacional , Análise de Componente Principal , Sorghum/genética , Sorghum/parasitologia , Zea mays/genética , Zea mays/parasitologia
13.
Plant Mol Biol ; 105(4-5): 527-541, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387173

RESUMO

KEY MESSAGE: This report shows detailed characterization of LOX gene family in sorghum and provides new insight of sorghum LOX genes in genetic structure and their roles in plant response to infestation by sugarcane aphids. Lipoxygenases (LOXs) are monomeric, nonheme iron-containing dioxygenases that initiate the fatty acid oxidation pathway creating oxylipins and plant hormone jasmonate both have a key role in plant development and defense. To date, a comprehensive and systematic analysis of sorghum LOXs is still deficient. Thus, we performed a genome-wide analysis of the sorghum LOXs genome and identified nine LOXs genes. Detailed examination of protein sequences and phylogenetic analysis categorized the sorghum LOXs into two subclasses, 9-LOXs (SbLOX1, SbLOX3, SbLOX4, SbLOXm, and SbLOXo), 13-LOXs (SbLOX9, SbLOX5, and SbLOX2), and the unclassified SbLOX8. This classification was further supported by sequence similarity/identity matrix and subcellular localization analysis. The lipoxygenase domains, motifs, and vital amino acids were highly conserved in all sorghum LOX genes. In silico analysis of the promoter region of SbLOXs identified different hormones responsive cis-elements. Furthermore, to explore the roles of sorghum LOXs during sugarcane aphid feeding and exogenous MeJA application, expression analysis was conducted for all the eight LOXs in resistant (Tx2783) and susceptible (Tx7000) sorghum lines, respectively. As detailed in this report, the data generated from both genome-wide identification and expression analysis of lipoxygenase genes suggest the putative functions of two 13-LOXs (SbLOX9 and SbLOX5) and three 9-LOXs (SbLOX1, SbLOX3, and SbLOXo) in biosynthesis of jasmonic acid, green leaf volatiles and death acids, and all of them are involved in defense-related functions in plants. Furthermore, this report represents the first genome-wide analysis of the LOX gene family in sorghum, which will facilitate future studies to characterize the roles of each individual LOXs gene in aphid resistance and defense responses to other stresses.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Lipoxigenase/genética , Família Multigênica , Proteínas de Plantas/genética , Sorghum/genética , Sequência de Aminoácidos , Animais , Afídeos/fisiologia , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Parasita , Lipoxigenase/classificação , Lipoxigenase/metabolismo , Oxilipinas/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Sorghum/enzimologia , Sorghum/parasitologia
14.
Plant Signal Behav ; 16(2): 1849523, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270502

RESUMO

Sugarcane aphid (Melanaphis sacchari) is a phloem-feeding insect that severely affects the growth and productivity of sorghum and other related crops. While a growing body of knowledge is accumulating regarding plant, and insect interactions, the role of reactive oxygen species (ROS) against aphid infestation in sorghum has not been established yet. Here, the involvement of H2O2 and ROS detoxification enzymes in host plant resistance to sugarcane aphid in sorghum was demonstrated. The H2O2 accumulation and expression patterns of selected ROS scavenging enzymes including ascorbate peroxidase (APX), glutathione S transferase (GST), superoxide dismutase (SOD), and catalase (CAT) in response to sugarcane aphid infestation at 3, 6, 9, and 12 days post infestation (dpi) in resistant (Tx2783) and susceptible (Tx7000) sorghum genotypes were assessed, respectively. A significant increase in H2O2 accumulation was observed in resistant genotypes at all time points studied as compared to susceptible plants. Furthermore, gene expression analysis revealed that in responding to attack by sugarcane aphid, antioxidant genes were induced in both genotypes, but much stronger in the resistant line. Furthermore, aphid survival and fecundity were significantly inhibited in resistant plants compared to susceptible plants. Taken together, our results suggest that the elevated accumulation of H2O2 and the strong upregulation of the antioxidant genes in sorghum may have contributed to host plant resistance in Tx2783 against sugarcane aphid but the weak expression of those antioxidant genes in Tx7000 resulted in the failure of attempting defense against sugarcane aphid. This report also provides the experimental evidence for the role of ROS involvement in the early defensive response to an attack by sugarcane aphid in sorghum.


Assuntos
Afídeos/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Sorghum/metabolismo , Sorghum/parasitologia , Animais , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Glutationa Transferase/metabolismo , Superóxido Dismutase/metabolismo
15.
Planta ; 252(4): 62, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32965567

RESUMO

MAIN CONCLUSION: Linolenic acid produced by the ω-3 fatty acid desaturase MSD3 in sorghum is used for insect-induced jasmonic acid production and is important for resistance against Spodoptera frugiperda. Jasmonic acid (JA) is a phytohormone that regulates both plant development and stress responses. In sorghum (Sorghum bicolor), the ω-3 fatty acid desaturase Multiseeded3 (MSD3) and the 13-lipoxygenase Multiseeded2 (MSD2) are important for producing JA to regulate panicle development and spikelet fertility, but their function in plant defense remains unknown. In this study, we examined whether these genes are important for the production of JA in response to herbivory by the insect pest Spodoptera frugiperda. Compared to wild-type controls, the msd3 mutant accumulated less JA in leaves of both infested and uninfested plants, revealing that MSD3 is involved in stress-induced JA production. In contrast, herbivore-induced JA production in the msd2 mutant was indistinguishable from wild type, indicating that MSD2 does not function in herbivore-induced JA production. An increase of S. frugiperda growth was observed on both the msd3 and msd2 mutants, hinting at roles for both JA and additional oxylipins in sorghum's defense responses.


Assuntos
Ácidos Graxos Dessaturases , Lipoxigenase , Defesa das Plantas contra Herbivoria , Sorghum , Spodoptera , Animais , Ácidos Graxos Dessaturases/metabolismo , Herbivoria , Lipoxigenase/genética , Lipoxigenase/metabolismo , Mutação , Oxilipinas/metabolismo , Defesa das Plantas contra Herbivoria/genética , Sorghum/enzimologia , Sorghum/genética , Sorghum/parasitologia , Spodoptera/fisiologia
16.
J Sci Food Agric ; 100(3): 1132-1141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31680255

RESUMO

BACKGROUND: Production and marketing of cereal grains are some of the main activities in developing countries to ensure food security. However, the food gap is complicated further by high postharvest loss of grains during storage. This study aimed to compare low-cost modified-atmosphere hermetic storage structures with traditional practice to minimize quantitative and qualitative losses of grains during storage. The study was conducted in two phases: in the first phase, seven hermetic storage structures with or without smoke infusion were compared, and one selected structure was further validated at scaled-up capacity in the second phase. RESULTS: Grains stored in PVC bag-supported structures (with or without smoke infusion) resulted in low live weevil population, low percentage of damaged grains and reduced weight loss with better retention of crude protein and fat contents. Results from validation study also demonstrated that maize and sorghum stored in improved storage structures experienced, respectively, 9.8% and 10.4% weevil damage as compared with 47.3% and 42.3% when stored in traditional storage structures. The same was true in terms of crude protein and fat contents. CONCLUSIONS: The study demonstrated that storage structures supported with PVC bags are efficient and low-cost structures for reducing storage-related losses and supporting food security efforts as compared to traditional methods. Furthermore, the bags can be made locally and with various storage capacities to store either shelled or unshelled products. © 2019 Society of Chemical Industry.


Assuntos
Armazenamento de Alimentos/métodos , Sorghum/química , Zea mays/química , Animais , Atmosfera , Armazenamento de Alimentos/economia , Armazenamento de Alimentos/instrumentação , Sorghum/parasitologia , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/fisiologia , Zea mays/parasitologia , Cimento de Óxido de Zinco e Eugenol/análise
18.
Nat Plants ; 5(12): 1229-1236, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792396

RESUMO

Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes (Tannin1 and Tannin2) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and Quelea quelea supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals.


Assuntos
Feromônios/metabolismo , Sorghum/metabolismo , Taninos/metabolismo , África , Alcadienos , Animais , Comportamento Alimentar , Humanos , Feromônios/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Seleção Genética , Sorghum/química , Sorghum/genética , Sorghum/parasitologia , Pardais/fisiologia , Taninos/análise , Paladar
19.
In Vitro Cell Dev Biol Anim ; 55(9): 686-693, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410641

RESUMO

The fall armyworm, Spodoptera frugiperda (Sf), is a polyphagous lepidopteran herbivore that consumes more than 80 plant species, including many economically important crops, such as corn, soybeans, and sorghum. While already a serious pest in the Americas, it was recently introduced into Africa, India, and China. Because of its high economic costs in the New World and the continent-wide damage potentials in Africa, research to develop advanced pest management technologies is necessary. We are supporting this need by developing novel, next-generation insect cell lines from targeted tissues. Cell lines, such as these, will boost insecticide discovery programs and lead to innovative pest management solutions. Here, we report on the establishment of 16 new cell lines from larval S. frugiperda tissues: nine from the central nervous system, three from the aorta, and four from the testes. We confirmed the identities of the cell lines by DNA amplification fingerprinting polymerase chain reaction, determined their doubling times from growth curves, and described cell types via microscopy. We also developed 16 sublines from three neuronal cell lines.


Assuntos
Linhagem Celular/citologia , Spodoptera/citologia , Animais , China , Índia , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Sorghum/parasitologia , Glycine max/parasitologia , Spodoptera/crescimento & desenvolvimento , Spodoptera/patogenicidade , Zea mays/parasitologia
20.
J Chem Ecol ; 45(5-6): 502-514, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30911880

RESUMO

In this study we examined the role of sorghum flavonoids in providing resistance against corn leaf aphid (CLA) Rhopalosiphum maidis. In sorghum, accumulation of these flavonoids is regulated by a MYB transcription factor, yellow seed1 (y1). Functional y1 alleles accumulate 3-deoxyflavonoids (3-DFs) and 3-deoxyanthocyanidins (3-DAs) whereas null y1 alleles fail to accumulate these compounds. We found that significantly higher numbers of alate CLA adults colonized null y1 plants as compared to functional y1 plants. Controlled cage experiments and pairwise choice assays demonstrated that apterous aphids preferred to feed and reproduce on null y1 plants. These near-isogenic sorghum lines do not differ in their epicuticular wax content and were also devoid of any leaf trichomes. Significantly higher mortality of CLA was observed on artificial aphid diet supplemented with flavonoids obtained from functional y1 plants as compared to null y1 plants or the relevant controls. Our results demonstrate that the proximate mechanism underlying the deleterious effects on aphids is y1-regulated flavonoids which are important defense compounds against CLA.


Assuntos
Afídeos/fisiologia , Flavonoides/química , Sorghum/química , Animais , Antocianinas/química , Afídeos/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacologia , Genótipo , Herbivoria , Interações Hospedeiro-Parasita/efeitos dos fármacos , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/deficiência , Proteínas Proto-Oncogênicas c-myb/genética , Sorghum/metabolismo , Sorghum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...