Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Science ; 382(6673): 958-963, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995223

RESUMO

Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.


Assuntos
Interneurônios , Ventrículos Laterais , Comportamento Materno , Neurogênese , Plasticidade Neuronal , Bulbo Olfatório , Gravidez , Olfato , Animais , Feminino , Camundongos , Gravidez/fisiologia , Células-Tronco Adultas/fisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Transcriptoma , Comportamento Materno/fisiologia
2.
Neural Dev ; 18(1): 1, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631891

RESUMO

BACKGROUND: We previously identified Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) as a marker of long-term neurogenic stem cells in the lateral wall of the adult mouse brain. The morphology of the stem cells thus identified differed from the canonical B1 type stem cells, raising a question about their cellular origin. Thus, we investigated the development of these stem cells in the postnatal and juvenile brain. Furthermore, because Lrig1 is a known regulator of quiescence, we also investigated the effect(s) of its deletion on the cellular proliferation in the lateral wall. METHODS: To observe the development of the Lrig1-lineage stem cells, genetic inducible fate mapping studies in combination with thymidine analog administration were conducted using a previously published Lrig1T2A-iCreERT2 mouse line. To identify the long-term consequence(s) of Lrig1 germline deletion, old Lrig1 knock-out mice were generated using two different Lrig1 null alleles in the C57BL/6J background. The lateral walls from these mice were analyzed using an optimized whole mount immunofluorescence protocol and confocal microscopy. RESULTS: We observed the Lrig1-lineage labeled cells with morphologies consistent with neurogenic stem cell identity in postnatal, juvenile, and adult mouse brains. Interestingly, when induced at postnatal or juvenile ages, morphologically distinct cells were revealed, including cells with the canonical B1 type stem cell morphology. Almost all of the presumptive stem cells labeled were non-proliferative at these ages. In the old Lrig1 germline knock-out mice, increased proliferation was observed compared to wildtype littermates without concomitant increase in apoptosis. CONCLUSIONS: Once set aside during embryogenesis, the Lrig1-lineage stem cells remain largely quiescent during postnatal and juvenile development until activation in adult age. The absence of premature proliferative exhaustion in the Lrig1 knock-out stem cell niche during aging is likely due to a complex cascade of effects on the adult stem cell pool. Thus, we suggest that the adult stem cell pool size may be genetically constrained via Lrig1.


Assuntos
Células-Tronco Adultas , Ventrículos Laterais , Animais , Camundongos , Células-Tronco Adultas/metabolismo , Proliferação de Células , Ventrículos Laterais/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132995

RESUMO

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Assuntos
Interneurônios/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Animais , Ciclo Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Ventrículos Laterais/embriologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética , Bulbo Olfatório/embriologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Transdução de Sinais/genética , Transcriptoma/genética
4.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831271

RESUMO

Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.


Assuntos
Galectina 3/metabolismo , Doenças do Sistema Nervoso/patologia , Neurogênese , Animais , Encéfalo/metabolismo , Encéfalo/patologia , COVID-19/metabolismo , COVID-19/patologia , Movimento Celular , Galectina 3/química , Galectina 3/genética , Humanos , Inflamação , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/patologia , Doenças do Sistema Nervoso/metabolismo , Células-Tronco Neurais/citologia , Transdução de Sinais
5.
Differentiation ; 119: 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848959

RESUMO

Taxol (paclitaxel), a chemotherapeutic agent for several cancers, can adversely affect the peripheral nervous system. Recently, its negative impact on cognitive function in cancer patients has become evident. In rodents, taxol impaired learning and memory, with other possible negative effects on the brain. In this study, we investigated the effects of taxol on cultured neural stem cells (NSCs) from the mouse neurogenic region, the subventricular zone (SVZ). Taxol significantly decreased both proliferation and neuronal differentiation of NSCs. Transient treatment with taxol for one day during a 4-day differentiation greatly decreased neurogenesis along with an abnormal cell cycle progression. Yet, taxol did not kill differentiated Tuj1+ neurons and those neurons had longer neurites than neurons under control conditions. For glial differentiation, taxol significantly reduced oligodendrogenesis as observed by immunostaining for Olig2 and O4. However, differentiation of astrocytes was not affected by taxol. In contrast, differentiated oligodendrocytes were extremely sensitive to taxol. Almost no Olig2-positive cells were observed after three days of treatment with taxol. Taxol has distinct effects on neurons and glial cells during their production through differentiation from NSCs as well as post-differentiation. Thus, we suggest that taxol might interfere with neurogenesis of NSCs possibly through a disturbance in the cell cycle and may eliminate differentiated oligodendrocytes.


Assuntos
Diferenciação Celular/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Tubulina (Proteína)/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/metabolismo , Paclitaxel/farmacologia
6.
Development ; 148(3)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33462112

RESUMO

Microtubules (MTs) regulate numerous cellular processes, but their roles in brain morphogenesis are not well known. Here, we show that CAMSAP3, a non-centrosomal microtubule regulator, is important for shaping the lateral ventricles. In differentiating ependymal cells, CAMSAP3 became concentrated at the apical domains, serving to generate MT networks at these sites. Camsap3-mutated mice showed abnormally narrow lateral ventricles, in which excessive stenosis or fusion was induced, leading to a decrease of neural stem cells at the ventricular and subventricular zones. This defect was ascribed at least in part to a failure of neocortical ependymal cells to broaden their apical domain, a process necessary for expanding the ventricular cavities. mTORC1 was required for ependymal cell growth but its activity was downregulated in mutant cells. Lysosomes, which mediate mTORC1 activation, tended to be reduced at the apical regions of the mutant cells, along with disorganized apical MT networks at the corresponding sites. These findings suggest that CAMSAP3 supports mTORC1 signaling required for ependymal cell growth via MT network regulation, and, in turn, shaping of the lateral ventricles.


Assuntos
Encéfalo/metabolismo , Ciclo Celular , Epêndima/crescimento & desenvolvimento , Ventrículos Laterais/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Epêndima/metabolismo , Células Epiteliais/citologia , Feminino , Lisossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Neuroglia/metabolismo
7.
Semin Cell Dev Biol ; 112: 61-68, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32771376

RESUMO

Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.


Assuntos
Envelhecimento/genética , Epêndima/metabolismo , Lipídeos/genética , Células-Tronco Neurais/metabolismo , Envelhecimento/patologia , Animais , Proliferação de Células/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Epêndima/crescimento & desenvolvimento , Epêndima/patologia , Humanos , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurônios/metabolismo , Neurônios/patologia , Telencéfalo/metabolismo , Telencéfalo/patologia
8.
J Clin Neurosci ; 78: 333-338, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32360163

RESUMO

Automatic estimations of brain ventricles are needed to assess disease progression in neurodegenerative disorders such as Alzheimer Disease (AD). The objectives of this study are to evaluate the diagnostic performances of an automated volumetric assessment tool in estimating lateral ventricle volumes in AD and to compare this with Cavalieri's principle, which is accepted as the gold standard method. This is across-sectional volumetric study including 25 Alzheimer patients and 25 healthy subjects undergoing magnetic resonance images (MRI) with a 3D turbo spin echo sequence at 1.5 Tesla. The Atlas-based method incorporated MRIStudio software to automatically measure he volumes of brain ventricles. To compare the corresponding measurements, we used manual point-counting and semi-automatic planimetry methods based on Cavalieri's principle. Bland-Altman test results indicated an excellent agreement between Cavalieri's principle and the Atlas-based method in all volumetric measurements (p < 0.05). We obtained a 64% sensitivity and 92% specificity for lateral ventricular volumes according to the Atlas-based method. AD subjects had significantly larger left and right lateral ventricle volume (LVV) when compared to control subjects in respect to three volumetric methods (p < 0.01). Lateral ventricle-to-brain ratio (VBR) statistically increased 49.23% in measurements done with the point-counting method, 45.12% with the planimetry method, and 45.49% with the Atlas-based method in AD patients (p < 0.01). As a result, the Atlas-based method may be used instead of manual volumetry to estimate brain volumes. Additionally, this method provides rapid and accurate estimations of brain ventricular volumes in-vivo examination of MRI.


Assuntos
Doença de Alzheimer/patologia , Ventrículos Cerebrais/patologia , Imageamento por Ressonância Magnética/métodos , Tamanho do Órgão , Doença de Alzheimer/diagnóstico , Automação , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/patologia , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Software
9.
Development ; 147(10)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32253238

RESUMO

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.


Assuntos
Ventrículos Laterais/embriologia , Ventrículos Laterais/crescimento & desenvolvimento , Neurogênese/genética , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Técnicas de Inativação de Genes , Interneurônios/metabolismo , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/metabolismo , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/imunologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
10.
Cereb Cortex ; 30(7): 4092-4109, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108222

RESUMO

Even after birth, neuronal production continues in the ventricular-subventricular zone (V-SVZ) and hippocampus in many mammals. The immature new neurons ("neuroblasts") migrate and then mature at their final destination. In humans, neuroblast production and migration toward the neocortex and the olfactory bulb (OB) occur actively only for a few months after birth and then sharply decline with age. However, the precise spatiotemporal profiles and fates of postnatally born neurons remain unclear due to methodological limitations. We previously found that common marmosets, small nonhuman primates, share many features of V-SVZ organization with humans. Here, using marmosets injected with thymidine analogue(s) during various postnatal periods, we demonstrated spatiotemporal changes in neurogenesis during development. V-SVZ progenitor proliferation and neuroblast migration toward the OB and neocortex sharply decreased by 4 months, most strikingly in a V-SVZ subregion from which neuroblasts migrated toward the neocortex. Postnatally born neurons matured within a few months in the OB and hippocampus but remained immature until 6 months in the neocortex. While neurogenic activity was sustained for a month after birth, the distribution and/or differentiation diversity was more restricted in 1-month-born cells than in the neonatal-born population. These findings shed light on distinctive features of postnatal neurogenesis in primates.


Assuntos
Proliferação de Células , Hipocampo/crescimento & desenvolvimento , Ventrículos Laterais/crescimento & desenvolvimento , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Neurogênese , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Callithrix , Movimento Celular , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Hipocampo/citologia , Ventrículos Laterais/citologia , Neocórtex/citologia , Bulbo Olfatório/citologia , Análise Espaço-Temporal
11.
Curr Opin Pharmacol ; 50: 67-73, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901615

RESUMO

Neurogenesis in the human postnatal brain occurs in two regions, the subventricular zone of the later ventricle and the dentate gyrus of the hippocampus. While it is well accepted that SVZ and hippocampal neurogenesis are active during juvenile stages in human, their contribution during adulthood and ageing as well as pathological states is recently animating the neural stem cell research field. In this review we will discuss recent evidence about the organization of SVZ and hippocampal neurogenic niches, and will report on how human adult neurogenesis may contribute to disease and appears to respond to neurodegeneration. In light of these novel findings, we will discuss how we can target human adult neurogenesis in order to influence brain disease trajectories.


Assuntos
Encefalopatias , Neurogênese , Envelhecimento , Animais , Hipocampo/crescimento & desenvolvimento , Humanos , Ventrículos Laterais/crescimento & desenvolvimento
12.
Cereb Cortex ; 30(3): 1382-1392, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504276

RESUMO

Brahma-related gene 1 (Brg1) is one of the two mutually exclusive catalytic subunits of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. Several roles of Brg1 have been described including acting as a tumor suppressor but also functioning in neural stem cell (NSC) maintenance, neural crest development, or differentiation of oligodendrocytes and Schwann cells. Here, we generated human glial fibrillary acidic protein (hGFAP)-cre::Brg1fl/fl mice to analyze the function of Brg1 in multipotential NSCs during late stages of neural development. hGFAP-cre::Brg1fl/fl mice died approximately 2 weeks after birth. Macroscopic examination revealed a severe hydrocephalus and a decreased brain weight caused by the loss of Brg1. The cerebellum of hGFAP-cre::Brg1fl/fl mice displayed disorganized cortical layers as well as a massive hypoplasia due to a dramatically reduced number of granule neurons. The cerebrum presented with less proliferative and more apoptotic precursor cells in the subventricular zone (SVZ). Furthermore, the cerebral cortex stood out with significantly thinned upper layers and with impressive dendrite pathology. Finally, the hippocampus was severely underdeveloped with only a sparse number of detectable neurons. We conclude that NSCs depend on Brg1 to give rise to major essential brain structures including the cerebellum, the cerebral cortex, and the hippocampus.


Assuntos
Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , DNA Helicases/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Cerebelo/patologia , Córtex Cerebral/patologia , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Humanos , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/patologia , Masculino , Camundongos Transgênicos , Células-Tronco Neurais/patologia , Neurônios/patologia , Neurônios/fisiologia
13.
Cereb Cortex ; 30(3): 1318-1329, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31402374

RESUMO

The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.


Assuntos
Caderinas/fisiologia , Movimento Celular , Interneurônios/fisiologia , Células-Tronco Neurais/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Animais , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Mitose
14.
Ann Thorac Surg ; 109(4): 1274-1281, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31563487

RESUMO

BACKGROUND: Neurodevelopmental impairment is an important challenge for survivors after neonatal surgery with cardiopulmonary bypass (CPB). The subventricular zone, where most neural stem/progenitors originate, plays a critical role in cortical maturation of the frontal lobe. Promoting neurogenesis in the subventricular zone is therefore a potential therapeutic target for preserving cortical growth. Mesenchymal stromal cells (MSCs) promote endogenous regeneration in the rodent brain. We investigated the impact of MSC delivery through CPB on neural stem/progenitor cells and neuroblasts (ie, young neurons) in the piglet subventricular zone. METHODS: Two-week-old piglets (n = 12) were randomly assigned to one of three groups: (1) control, (2) deep hypothermic circulatory arrest, and (3) circulatory arrest, followed by MSC administration. MSCs (10 × 106 per kg) were delivered through CPB during the rewarming period. Neural stem/progenitors, proliferating cells, and neuroblasts were identified with immunohistochemistry at 3 hours after CPB. RESULTS: CPB-induced insults caused an increased proliferation of neural stem/progenitors (P < .05). MSC delivery reduced the acute proliferation. MSC treatment increased the number of neuroblasts in the outer region of the subventricular zone (P < .05) where they form migrating chains toward the frontal lobe. Conversely, the thickness of the neuroblast-dense band along the lateral ventricle was reduced after treatment (P < .05). These findings suggest that MSC treatment changes neuroblast distribution within the subventricular zone. CONCLUSIONS: MSC delivery through CPB has the potential to mitigate effects of CPB on neural stem/progenitor cells and to promote migration of neuroblasts. Further investigation is necessary to determine the long-term effect of MSC treatment during CPB on postnatal neurogenesis.


Assuntos
Ponte Cardiopulmonar/métodos , Cardiopatias Congênitas/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Transtornos do Neurodesenvolvimento/prevenção & controle , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Modelos Animais de Doenças , Cardiopatias Congênitas/complicações , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/patologia , Transtornos do Neurodesenvolvimento/etiologia , Neurônios/fisiologia , Suínos
15.
Nat Cell Biol ; 22(1): 26-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871317

RESUMO

Neural stem cells, called radial glia, maintain epithelial structure during the early neocortical development. The prevailing view claims that when radial glia first proliferate, their symmetric divisions require strict spindle orientation; its perturbation causes precocious neurogenesis and apoptosis. Here, we show that despite this conventional view, radial glia at the proliferative stage undergo normal symmetric divisions by regenerating an apical endfoot even if it is lost by oblique divisions. We found that the Notch-R-Ras-integrin ß1 pathway promotes the regeneration of endfeet, whose leading edge bears ectopic adherens junctions and the Par-polarity complex. However, this regeneration ability gradually declines during the subsequent neurogenic stage and hence oblique divisions induce basal translocation of radial glia to form the outer subventricular zone, a hallmark of the development of the convoluted brain. Our study reveals that endfoot regeneration is a temporally changing cryptic property, which controls the radial glial state and its shift is essential for mammalian brain size expansion.


Assuntos
Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neuroglia/citologia , Junções Aderentes/metabolismo , Animais , Divisão Celular/fisiologia , Ventrículos Laterais/crescimento & desenvolvimento , Mamíferos/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Neurônios/citologia , Regeneração/fisiologia
16.
Sci Rep ; 9(1): 18038, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792338

RESUMO

Understanding the sequence of events from undifferentiated stem cells to neuron is not only important for the basic knowledge of stem cell biology, but also for therapeutic applications. In this study we examined the sequence of biological events during neural differentiation of human periodontal ligament stem cells (hPDLSCs). Here, we show that hPDLSCs-derived neural-like cells display a sequence of morphologic development highly similar to those reported before in primary neuronal cultures derived from rodent brains. We observed that cell proliferation is not present through neurogenesis from hPDLSCs. Futhermore, we may have discovered micronuclei movement and transient cell nuclei lobulation coincident to in vitro neurogenesis. Morphological analysis also reveals that neurogenic niches in the adult mouse brain contain cells with nuclear shapes highly similar to those observed during in vitro neurogenesis from hPDLSCs. Our results provide additional evidence that it is possible to differentiate hPDLSCs to neuron-like cells and suggest the possibility that the sequence of events from stem cell to neuron does not necessarily requires cell division from stem cell.


Assuntos
Diferenciação Celular , Neurogênese , Neurônios/fisiologia , Ligamento Periodontal/citologia , Células-Tronco/fisiologia , Animais , Núcleo Celular/ultraestrutura , Proliferação de Células , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Humanos , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Microscopia Eletrônica de Transmissão , Neurônios/citologia , Cultura Primária de Células , Esferoides Celulares/fisiologia , Nicho de Células-Tronco , Células-Tronco/citologia
17.
Sci Rep ; 9(1): 19689, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873158

RESUMO

Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases.


Assuntos
Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Pré-Albumina/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Feminino , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Neurogênese , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Pré-Albumina/deficiência , Pré-Albumina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Sexuais , Hormônios Tireóideos/metabolismo
18.
Nat Commun ; 10(1): 3983, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484925

RESUMO

Hypoxic ischemia (HI) is an acute brain threat across all age groups. Therapeutic hypothermia ameliorates resulting injury in neonates but its side effects prevent routine use in adults. Hypothermia up-regulates a small protein subset that includes RNA-binding motif protein 3 (RBM3), which is neuroprotective under stressful conditions. Here we show how RBM3 stimulates neuronal differentiation and inhibits HI-induced apoptosis in the two areas of persistent adult neurogenesis, the subventricular zone (SVZ) and the subgranular zone (SGZ), while promoting neural stem/progenitor cell (NSPC) proliferation after HI injury only in the SGZ. RBM3 interacts with IGF2 mRNA binding protein 2 (IMP2), elevates its expression and thereby stimulates IGF2 release in SGZ but not SVZ-NSPCs. In summary, we describe niche-dependent regulation of neurogenesis after adult HI injury via the novel RBM3-IMP2-IGF2 signaling pathway.


Assuntos
Lesões Encefálicas/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Recém-Nascidos , Lesões Encefálicas/genética , Células Cultivadas , Células HEK293 , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Hipóxia-Isquemia Encefálica/genética , Fator de Crescimento Insulin-Like II/genética , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Nicho de Células-Tronco
19.
Proc Natl Acad Sci U S A ; 116(14): 7089-7094, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894491

RESUMO

The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness. However, as the oSVZ grows in size, its output changes to production of astrocytes and oligodendrocytes, which in primates outnumber cerebral neurons by a factor of three. After the completion of neurogenesis around embryonic day (E) 90, when the cerebrum is still lissencephalic, the oSVZ enlarges and contains Pax6+/Hopx+ outer (basal) radial glial cells producing astrocytes and oligodendrocytes until after E125. Our data indicate that oSVZ gliogenesis, rather than neurogenesis, correlates with rapid enlargement of the cerebrum and development of convolutions, which occur concomitantly with the formation of cortical connections via the underlying white matter, in addition to neuronal growth, elaboration of dendrites, and amplification of neuropil in the cortex, which are primary factors in the formation of cerebral convolutions in primates.


Assuntos
Cérebro/crescimento & desenvolvimento , Cérebro/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Astrócitos/metabolismo , Cérebro/citologia , Cérebro/embriologia , Embrião de Mamíferos , Proteínas de Homeodomínio/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Macaca , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fator de Transcrição PAX6/metabolismo , Primatas , Proteínas Supressoras de Tumor/metabolismo
20.
Stem Cell Reports ; 12(1): 6-13, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30595545

RESUMO

The vascular compartment of the adult brain ventricular-subventricular zone (V-SVZ) is a critical regulator of neural stem cell and progenitor function. Blood enters the V-SVZ via arteries and arterioles to capillaries that then connect with venules and veins to return blood to the heart. We found that stromal cell-derived factor 1 (SDF1) is expressed by a subpopulation of V-SVZ vessels, the capillaries, and that actively proliferating neural stem cells (NSCs) and progenitors are preferentially associated with these SDF1-positive vessels. In contrast, slowly dividing or quiescent NSCs are most prevalent near SDF1-negative vessels. By conditional knockout, we found that loss of SDF1 signaling in NSCs stimulates lineage progression and NSC displacement from the vessel niche. With aging, SDF1/CXCR4 signaling is dysregulated, coincident with reduced proliferation and increased displacement of dividing cells from the vasculature. Our findings demonstrate SDF1-based vascular heterogeneity in the niche and suggest that reduced SDF1 signaling contributes to age-related declines in adult neurogenesis.


Assuntos
Capilares/metabolismo , Quimiocina CXCL12/genética , Ventrículos Laterais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Nicho de Células-Tronco , Animais , Capilares/citologia , Proliferação de Células , Quimiocina CXCL12/metabolismo , Ventrículos Laterais/irrigação sanguínea , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...