Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 54(1): 95-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37167555

RESUMO

Three phase partitioning (TPP) method was effectively utilized for the extraction and purification of milk clotting protease (actinidin) from the kiwifruit pulp. The different purification parameters of TPP such as ammonium sulfate saturation, ratio of the crude kiwifruit extract to tert-butanol, and the pH value of extract were optimized. The 40% (w/v) salt saturation having 1.0:0.75 (v/v) ratio of crude kiwifruit extract to tert-butanol at 6.0 pH value exhibited 3.14 purification fold along with 142.27% recovery, and the protease was concentrated exclusively at intermediate phase (IP). This fraction showed milk-clotting activity (MCA), but there was no such activity in lower aqueous phase (AP). The enzyme molecular weight was found to be 24 kDa from Tricine SDS-PAGE analysis. Recovered protease demonstrated greater stability at pH 7.0 and temperature 50 °C. The Vmax and Km values were 121.9 U/ml and 3.2 mg/ml respectively. Its cysteine nature was demonstrated by inhibition studies. This study highlighted that the TPP is an economic and effective method for extraction and purification of actinidin from kiwifruit, and it could be used as a vegetable coagulant for cheesemaking.


Assuntos
Actinidia , Actinidia/química , terc-Butil Álcool/química , Cisteína Endopeptidases , Peptídeo Hidrolases , Extratos Vegetais
2.
Int J Pharm ; 645: 123404, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714312

RESUMO

Amino acids-based co-amorphous system (CAM) has shown to be a promising approach to overcome the dissolution challenge of biopharmaceutics classification system class II drugs. To date, most CAM formulations are based on salt formation at a 1:1 M ratio and are prepared by mechanical activation. However, its use in medicinal products is still limited due to the lack of in-depth understanding of non-ionic based molecular interactions. There are also limited studies on the effect of drug-to-co-former ratio, the development of more scalable, less aggressive, manufacturing processes such as freeze drying and its dissolution benefits. This work aims to investigate the effect of the ratio of tryptophan (a model non-ionic amino acid) to indomethacin (a model drug) on a non-salt-based CAM prepared via freeze-drying with the tert-butyl alcohol-water cosolvent system. The CAM material was systemically characterized at various stages of the freeze-drying process using DSC, UV-Vis, FT-IR, NMR, TGA and XRPD. Dissolution performance and physical stability upon storage were also investigated. Freeze-drying using the cosolvent system has been successfully shown to produce CAMs. The molecular interactions involving H-bonding, H/π and π-π between compounds have been confirmed by FT-IR and NMR. The drug release rate for formulations with a 1.5:1 drug: amino acid molar ratio (or 1:0.42 wt ratio) or below is found to be significantly improved compared to the pure crystalline drug. Furthermore, formulation with a 2.3:1 drug:amino acid molar ratio (or 1:0.25 wt ratio) or below have shown to be physically stable for at least 9 months when stored at dry condition (5% relative humidity, 25 °C) compared to the pure amorphous indomethacin. We have demonstrated the potential of freeze-drying using tert-butyl alcohol-water cosolvent system to produce an optimal non-salt-based class II drug-amino acid CAM.


Assuntos
Aminoácidos , terc-Butil Álcool , Espectroscopia de Infravermelho com Transformada de Fourier , terc-Butil Álcool/química , Aminoácidos/química , Liofilização , Água/química , Indometacina/química , Estabilidade de Medicamentos , Solubilidade , Varredura Diferencial de Calorimetria
3.
Mol Pharm ; 20(8): 3975-3986, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37435823

RESUMO

The use of tert-butyl alcohol for the lyophilization of pharmaceuticals has seen an uptick over the past years. Its advantages include increased solubility of hydrophobic drugs, enhanced product stability, shorter reconstitution time, and decreased processing time. While the mechanisms of protein stabilization exerted by cryo- and lyo-protectants are well known when water is the solvent of choice, little is known for organic solvents. This work investigates the interactions between two model proteins, namely, lactate dehydrogenase and myoglobin, and various excipients (mannitol, sucrose, 2-hydroxypropyl-ß-cyclodextrin and Tween 80) in the presence of tert-butyl alcohol. We thermally characterized mixtures of these components by differential scanning calorimetry and freeze-drying microscopy. We also spectroscopically evaluated the protein recovery after freezing and freeze-drying. We additionally performed molecular dynamics simulations to elucidate the interactions in ternary mixtures of the herein-investigated excipients, tert-butyl alcohol and the proteins. Both experiments and simulations revealed that tert-butyl alcohol had a detrimental impact on the recovery of the two investigated proteins, and no combination of excipients yielded a satisfactory recovery when the organic solvent was present within the formulation. Simulations suggested that the denaturing effect of tert-butyl alcohol was related to its propensity to accumulate in the proximity of the peptide surface, especially near positively charged residues.


Assuntos
Produtos Biológicos , terc-Butil Álcool , terc-Butil Álcool/química , Excipientes/química , Simulação de Dinâmica Molecular , Solventes/química , Proteínas , Liofilização , Varredura Diferencial de Calorimetria
4.
Sci Rep ; 12(1): 19417, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371592

RESUMO

Although small organic molecules in cells have been considered important to control the functions of proteins, their electronic fluctuation and the intermolecular interaction, which is physicochemical origin of the molecular functions, under physiological conditions, i.e., dilute aqueous solutions (0.18 mol L-1), has never been clarified due to the lack of observation methods with both accuracy and efficiency. Herein, the time evolutions of the interactions in dilute aqueous trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) solutions were analyzed via ab initio molecular dynamics simulations accelerated with the fragment molecular theory. It has been known that TMAO and TBA have similar structures, but opposite physiological functions to stabilize and destabilize proteins. It was clarified that TMAO induced stable polarization and charge-transfer interactions with water molecules near the hydrophilic group, and water molecules were caught even near the CH3- group. Those should affect protein stabilization. Understanding the solution dynamics will contribute to artificial chaperone design in next generation medicine.


Assuntos
Água , terc-Butil Álcool , terc-Butil Álcool/química , Água/química , Metilaminas/química , Simulação de Dinâmica Molecular , Proteínas/metabolismo , Eletrônica
5.
Amino Acids ; 53(9): 1455-1466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34410506

RESUMO

Solid-phase synthesis of cyclic, branched or side-chain-modified peptides typically involves introduction of a residue carrying a temporary side-chain protecting group that undergoes selective on-resin removal. In particular, Nα-Fmoc-Nε-(4-methyltriphenylmethyl) (Mtt)-protected lysine and its shorter analogues are commercially available and extensively used in this context. Nevertheless, rapid reliable methods for on-resin removal of Mtt groups in the presence of tert-butyloxycarbonyl (Boc) groups are needed. Current commonly used conditions involve low concentrations (1-3%) of trifluoroacetic acid (TFA) in dichloromethane, albeit adjustment to each specific application is required to avoid premature removal of Boc groups or cleavage from the linker. Hence, a head-to-head comparison of several deprotection conditions was performed. The selected acids represent a wide range of acidity from TFA to trifluoroethanol. Also, on-resin removal of the N-(4-methoxytriphenylmethyl) (Mmt) and O-trityl groups (on serine) was investigated under similar conditions. The mildest conditions identified for Mtt deprotection involve successive treatments with 30% hexafluoroisopropanol (HFIP) or 30% perfluoro-tert-butanol [(CF3)3COH] in dichloromethane (3 × 5 or 3 × 15 min, respectively), while 30% HFIP, 30% (CF3)3COH, or 10% AcOH-20% trifluoroethanol (TFE) in CH2Cl2 (3 × 5 min) as well as 5% trichloroacetic acid in CH2Cl2 (3 × 2 min) enabled Mmt removal. Treatment with 1% TFA with/without 2% triisopropylsilane added (3 × 5 min), but also prolonged treatment with 30% (CF3)3COH (5 × 15 min), led to selective deprotection of an O-Trt group on a serine residue. In all cases, the sequences also contained N-Boc or O-tBu protecting groups, which were not affected by 30% HFIP or 30% (CF3)3COH even after a prolonged reaction time of 4 h. Finally, the optimized conditions involving HFIP or (CF3)3COH proved applicable also for selective deprotection of a longer resin-bound peptide [i.e., Ac-Gly-Leu-Leu-Lys(Mtt)-Arg(Pbf)-Ile-Lys(Boc)-Ser(tBu)-Leu-Leu-RAM-PS] as well as allowed for an almost complete deprotection of a Dab(Mtt) residue.


Assuntos
Peptídeos/síntese química , Resinas Sintéticas/química , Técnicas de Síntese em Fase Sólida/métodos , Ácido Trifluoracético/química , Compostos de Tritil/química , terc-Butil Álcool/química , Estrutura Molecular
6.
Chem Commun (Camb) ; 57(63): 7743-7757, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34286714

RESUMO

As a versatile quantification and tracking technology, 19F magnetic resonance imaging (19F MRI) provides quantitative "hot-spot" images without ionizing radiation, tissue depth limit, and background interference. However, the lack of suitable imaging agents severely hampers its clinical application. First, because the 19F signals are solely originated from imaging agents, the relatively low sensitivity of MRI technology requires high local 19F concentrations to generate images, which are often beyond the reach of many 19F MRI agents. Second, the peculiar physicochemical properties of many fluorinated compounds usually lead to low 19F signal intensity, tedious formulation, severe organ retention, etc. Therefore, the development of 19F MRI agents with high sensitivity and with suitable physicochemical and biological properties is of great importance. To this end, perfluoro-tert-butanol (PFTB), containing nine equivalent 19F and a modifiable hydroxyl group, has outperformed most perfluorocarbons as a valuable building block for high performance 19F MRI agents. Herein, we summarize the development and application of PFTB-based 19F MRI agents and analyze the strategies to improve their sensitivity and physicochemical and biological properties. In the context of PFC-based 19F MRI agents, we also discuss the challenges and prospects of PFTB-based 19F MRI agents.


Assuntos
Meios de Contraste/química , Imagem por Ressonância Magnética de Flúor-19 , Fluorocarbonos/química , terc-Butil Álcool/química
7.
J Am Soc Mass Spectrom ; 32(2): 497-508, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476148

RESUMO

Improving the mobile phase of electrospray oligonucleotides has been a major focus in the field of oligonucleotides. These improved mobile phases should reduce the charge state envelope of oligonucleotides coupled with electrospray ionization, which is key to reducing spectral complexity and increasing sensitivity. Traditional mobile phase compositions with fluorinated alcohol and alkylamine, like hexafluoroisopropanol (HFIP) and triethylamine (TEA), have a large amount of cationic adduction and many charge states. Utilizing different fluorinated alcohol and alkylamine combinations, like nonafluoro-tert-butyl alcohol (NFTB) and octylamine (OA), can selectively reduce the charge states analyzed. Other classes of biomolecules have been analyzed with anionic salts to stabilize complexes, increase the molecular peak detection, and even provide unique structural information about these molecules; however, there have been no studies using anionic salts with oligonucleotides. Our experiments systematically study the stability and binding of ammonium anionic salt. We show that anions selectively bind low charge states of these oligonucleotides. Ion-mobility measurements are made to determine the collision cross section (CCS) of these oligonucleotides with anion adduction. We utilize both a nucleic acid exact hard sphere simulation (EHSS) calibration and a protein calibration. We are able to show that NFTB/OA is a good choice for the study of oligonucleotides with reduced charge states for the binding of anionic salts and the determination of CCS using ion mobility.


Assuntos
Ânions/química , Oligonucleotídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminas/química , Aptâmeros de Nucleotídeos/química , Gases/química , Oligonucleotídeos Fosforotioatos/química , Solventes/química , Sulfatos/química , terc-Butil Álcool/química
8.
Int J Biol Macromol ; 170: 490-502, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383081

RESUMO

Candida antarctica lipase B (CALB) and Thermomyces lanuginose lipase (TLL) were co-immobilized on epoxy functionalized silica gel via an isocyanide-based multicomponent reaction. The immobilization process was carried out in water (pH 7) at 25 °C, rapidly (3 h) resulting in high immobilization yields (100%) with a loading of 10 mg enzyme/g support. The immobilized preparations were used to produce biodiesel by transesterification of palm oil. In an optimization study, response surface methodology (RSM) and central composite rotatable design (CCRD) methods were used to study the effect of five independent factors including temperature, methanol to oil ratio, t-butanol concentration and CALB:TLL ratio on the yield of biodiesel production. The optimum combinations for the reaction were CALB:TLL ratio (2.1:1), t-butanol (45 wt%), temperature (47 °C), methanol: oil ratio (2.3). This resulted in a FAME yield of 94%, very close to the predicted value of 98%.


Assuntos
Proteínas Fúngicas/química , Lipase/química , Óleo de Palmeira/química , Biocombustíveis , Enzimas Imobilizadas/química , Esterificação/efeitos dos fármacos , Metanol/química , Temperatura , terc-Butil Álcool/química
9.
Biophys Chem ; 267: 106480, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32987324

RESUMO

Imidazolium based IL's has gained vast interest in developing biological applications. Oligomerization and fibrillization of amyloid ß (1-42) peptide are mainly responsible for the extra-neuronal deposition of amyloid fibrils in neurodegenerative disorders like Alzheimer's disease (AD). Here, we report an effect of tert-BuOH-functional imidazolium ILs on oligomerization and fibrillization of amyloid ß (1-42) Peptide in vitro. In this study, a series of these [alkyl-tOHim][OMs] ILs with methyl sulphonate counter anion by varying alkyl chains were used. Among the seven protic ILs, four showed strong binding and inhibition activity for the formation of amyloid ß (1-42) aggregation by using Thioflavin T fluorescence binding assay. The secondary structural analysis of the peptide, pre-incubated with active ILs shows the loss of ordered ß-sheet amyloid structure. The longer alkyl chain ILs showed that an increased in amyloid binding and hence an inhibition effect on amyloid aggregation was enhanced. Thus, we propose that ILs could be presented as potential candidates for therapeutic intervention against Alzheimer's disease (AD).


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Imidazóis/farmacologia , Líquidos Iônicos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , terc-Butil Álcool/farmacologia , Peptídeos beta-Amiloides/biossíntese , Imidazóis/síntese química , Imidazóis/química , Líquidos Iônicos/síntese química , Líquidos Iônicos/química , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/biossíntese , Sais/síntese química , Sais/química , Sais/farmacologia , terc-Butil Álcool/química
10.
J Oleo Sci ; 69(10): 1281-1285, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32908100

RESUMO

In this study two different strategy were followed to obtain a D-fructose-oleic acid ester. One of the strategies has been well established enzymatic synthesis of an ester bond. The other strategy excluded the biocatalyst and only used a mixture of two organic solvents as the reaction media, 2-methyl-2-butanol / dimethyl sulfoxide or tert-butanol / dimethyl sulfoxide for the production of D-fructose-oleic acid ester. Ester products obtained were characterised by using FT-IR, NMR, by MS. Product yield was also assessed by HPLC. Results of structural analyses and yield measurement indicated that two approaches produced almost identical ester products.


Assuntos
Dimetil Sulfóxido/química , Ésteres/síntese química , Frutose/síntese química , Ácido Oleico/síntese química , Pentanóis/química , terc-Butil Álcool/química , Animais , Biocatálise , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Esterificação , Ésteres/química , Ésteres/toxicidade , Frutose/química , Frutose/toxicidade , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ácido Oleico/química , Ácido Oleico/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Oleo Sci ; 69(7): 737-742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612023

RESUMO

Esterification of D-glucose with oleic- and palmitic acids were carried out in the absence and presence of a biocatalyst, Candida antarctica lipase. The reaction medium was a mixture of dimethyl sulphoxide and tert-butanol (1:4, v/v). The reaction products were analysed by FTIR, 1H-NMR and 13C-NMR, HSQC, and by ESI-MS. Results indicated that the ester products formed were 6-O-glucose oleate and 6-O-glucose palmitate both in the absence and in the presence of the biocatalyst, with yields above 90%.


Assuntos
Biocatálise , Ésteres/síntese química , Glucose/química , Ácido Oleico/síntese química , Ácidos Oleicos/química , Palmitatos/síntese química , Ácidos Palmíticos/química , terc-Butil Álcool/química , Dimetil Sulfóxido/química , Esterificação , Proteínas Fúngicas/química , Lipase/química
12.
Mol Pharm ; 17(8): 3075-3086, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32633520

RESUMO

The effect of tertiary butyl alcohol (TBA) as a cosolvent on the phase behavior of mannitol in frozen and freeze-dried systems was characterized using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD; laboratory and synchrotron sources). Solutions of mannitol (2 and 5% w/w) in TBA-water systems of different compositions (5 to 30% w/w TBA) were characterized, both during cooling and warming using DSC and XRD. At and below the TBA-water eutectic composition (22.5% w/w TBA), mannitol crystallization was completely inhibited in the frozen state, while it crystallized as anhydrous δ-mannitol in the final lyophile. The presence of mannitol did not affect the phase behavior of TBA. The ability of mannitol to serve as a cryoprotectant in frozen solutions, and as a bulking agent in final lyophile was evaluated using human serum albumin (HSA) as a model protein. When HSA in a TBA (5% w/w)-water solution containing mannitol (2% w/w) was freeze-thawed or freeze-dried, there was no evidence of HSA aggregation. Thus, when TBA was used as a cosolvent, mannitol exhibited dual functionality, serving as a cryoprotectant in frozen solutions and as a bulking agent in the final lyophile.


Assuntos
Manitol/química , Albumina Sérica Humana/química , terc-Butil Álcool/química , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Liofilização/métodos , Congelamento , Humanos , Síncrotrons , Água/química , Difração de Raios X/métodos
13.
J Oleo Sci ; 69(8): 907-912, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32641616

RESUMO

D-ribose-oleic acid esters were produced with or without a biocatalyst, using in the same organic media, dimethyl sulfoxide (DMSO): tert-butanol (TBU) or 2-methyl-2-butanol (2M2B). The yield of the ester product was above 90% in both of the reactions. The biocatalyst used was lipase B of Candida antarctica. Molecular characterization was performed by using all the analytical methods available: IR, 1H-NMR and 13C-NMR, HSQC, and ESI-MS.


Assuntos
Biocatálise , Ésteres/síntese química , Proteínas Fúngicas/química , Lipase/química , Ácidos Oleicos/síntese química , Ribose/síntese química , Dimetil Sulfóxido/química , Esterificação , Ésteres/química , Ácidos Oleicos/química , Pentanóis/química , Ribose/química , terc-Butil Álcool/química
14.
Phys Chem Chem Phys ; 22(3): 1583-1590, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894786

RESUMO

While water is the solvent of choice for the lyophilization of pharmaceuticals, tert-butyl alcohol (TBA) along with water can confer several advantages including increased solubility of hydrophobic drugs, decreased drying time, improved product stability and reconstitution characteristics. The goal of this work was to generate the phase diagram and determine the eutectic temperature and composition in the "water rich" region (0.0 to 25.0% w/w TBA) of TBA-water mixtures. Solutions of different compositions were frozen and characterized by low temperature differential scanning calorimetry and powder X-ray diffractometry (XRD). The thermal events observed during warming, and their characterization by XRD, enabled the generation of phase boundaries as well as the eutectic temperature and composition. While TBA crystallized as a dihydrate in frozen solutions, on heating, the dihydrate transformed to a heptahydrate. TBA heptahydrate and ice (22.5% w/w TBA) formed a eutectic at ∼-8 °C.


Assuntos
Química Farmacêutica/métodos , Liofilização , Preparações Farmacêuticas/química , Água/química , terc-Butil Álcool/química
15.
Int J Biol Macromol ; 146: 798-810, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726142

RESUMO

Three Phase Partitioning (TPP) system as an elegant non-chromatographic and bulk separation method was successfully applied for the extraction and recovery of papain from the latex of Carica papaya. The optimized parameters of TPP allowed achieving a purification fold of 11.45 and activity recovery of 134% with 40% (NH4)2SO4, 1.0:0.75 ratio of crude extract: t-BuOH at pH and temperature of 6.0 and 25 °C, respectively. The recovered papain had a molecular weight of 23.2 kDa and revealed maximum activity at pH 6.0 and temperature of 50 °C. The maximum values of Km and Vmax parameters were 10.83 mg mL-1 and 33.33 U mL-1, respectively. The protease with 4 isoforms was stable at 40-80 °C and a pH range of 6.0-7.5 against numerous metal ions and none of them inactivated the recovered protease. Moreover, 10 mM Ca2+ improved 2-folds the activity and half-life of the protease at temperatures from 30 to 50 °C. The milk-clotting activity tests revealed high stability of latex papain at storage, namely at -20 °C compared to 4 °C and 25 °C for up than 5 weeks. As a meat tenderizing agent, it showed promising role under different treatments by improving the texture of tough meat. The findings indicated that one-step TPP system is a simple, quick, economical and very attractive process for fast recovery of latex papain compared to other proposed protocols.


Assuntos
Carica/enzimologia , Látex/química , Leite/química , Papaína/metabolismo , Sódio na Dieta/metabolismo , Sulfato de Amônio/química , Animais , Misturas Complexas/química , Indústria de Laticínios , Combinação de Medicamentos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Papaína/química , Proteólise , Temperatura , terc-Butil Álcool/química
16.
Chemosphere ; 237: 124419, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31356998

RESUMO

Nowadays, because the quality and quantity of mixed industrial wastewater keep fluctuating in recent times, the treatment of mixed industrial wastewater has gained more attention. The main target of this study is to degrade the wastewater through a combination of electrochemical advanced oxidation processes (EAOPs) and biological treatment. To enhance the biodegradability of the wastewater, Electro-Fenton process, along with external persulphate addition, was applied before the biological treatment. The effect of voltage, catalyst concentration and persulphate dosage was studied. The optimized conditions selected for the experiments were pH-3, effective area-25 cm2, electrode spacing-1 cm while voltage-10 V, persulphate dosage-200 mg L-1, and catalyst dosage-10 mg L-1 were optimized during the experiments leading towards 60% of COD removal efficiency in course of 1 h of electrolysis. Addition of tert-butyl alcohol and ethanol revealed the existence of sulphate and hydroxyl radicals as the major oxidants that help in pollutant degradation by combining EAOPs and biological treatment. Overall 94% COD removal efficiency was achieved. Therefore, for the organic pollutant degradation, combined process serves to be an efficient and effective treatment option.


Assuntos
Biotecnologia/métodos , Técnicas Eletroquímicas/métodos , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Catálise , Cor , Técnicas Eletroquímicas/instrumentação , Eletrodos , Eletrólise , Etanol/química , Radical Hidroxila , Resíduos Industriais , Oxirredução , Microbiologia do Solo , Sulfatos , Águas Residuárias/química , Poluentes Químicos da Água/química , terc-Butil Álcool/química
17.
J Am Chem Soc ; 141(27): 10569-10580, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31117647

RESUMO

Hydration-shell vibrational spectroscopy provides an experimental window into solute-induced water structure changes that mediate aqueous folding, binding, and self-assembly. Decomposition of measured Raman and infrared (IR) spectra of aqueous solutions using multivariate curve resolution (MCR) and related methods may be used to obtain solute-correlated spectra revealing solute-induced perturbations of water structure, such as changes in water hydrogen-bond strength, tetrahedral order, and the presence of dangling (non-hydrogen-bonded) OH groups. More generally, vibrational-MCR may be applied to both aqueous and nonaqueous solutions, including multicomponent mixtures, to quantify solvent-mediated interactions between oily, polar, and ionic solutes, in both dilute and crowded fluids. Combining vibrational-MCR with emerging theoretical modeling strategies promises synergetic advances in the predictive understanding of multiscale self-assembly processes of both biological and technological interest.


Assuntos
Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Água/química , Dióxido de Carbono/química , Etanol/análogos & derivados , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Metano/química , Metanol/química , Modelos Moleculares , Soluções/química , terc-Butil Álcool/química
18.
J Phys Chem B ; 123(21): 4512-4526, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038968

RESUMO

Successfully immobilizing functional proteins on inorganic surfaces has long been a challenge to the biophysics and bioengineering communities. This is due, in part, to a lack of understanding of the effect of nonaqueous environments on protein structure from both experimental and computational perspectives. Because most experimental information about protein structure comes from the Protein Data Bank and is collected from an aqueous solvent environment, modern force fields for molecular dynamics (MD) simulations are parameterized against these data. The applicability of such force fields to biomolecules in different environments, including when in contact with surfaces and substrates, must be validated. Here, we present MD folding simulations of a highly charged peptide solvated in water, solvated in a solution of 2:1 t-BuOH/H2O and bound to the surface of a methyl-terminated self-assembled monolayer (SAM), and compare the structures predicted by these simulations to previously reported circular dichroism spectra. We show quantitative agreement between experiments and simulations of solvent- and surface-induced conformational changes of a positively charged peptide in these three environments. We show further that the surface-bound peptide must fold before chemically reacting with the surface. Finally, we demonstrate that a well-ordered SAM is critical to the folding process. These results will guide further simulations of peptides and proteins in diverse and complex environments.


Assuntos
Proteínas Imobilizadas/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Membranas Artificiais , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Compostos de Sulfidrila/química , Termodinâmica , Água/química , terc-Butil Álcool/química
19.
Chem Commun (Camb) ; 55(29): 4262-4265, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30906942

RESUMO

The tert-butanol (TBA)-water system is studied in relation to increasing the efficiency of obtaining pharmaceutical powders by freeze-drying. Trehalose was used as a model target product. We report the X-ray diffraction and thermal analysis data which add surprising new information to the phase diagram of this previously repeatedly studied system. The freezing protocol has a strong impact on the specific surface area of the trehalose freeze-dried cakes and on the primary drying time. This is related to a discrepancy between the kinetic and thermodynamic stabilities of several TBA hydrates: di-hydrate (H1), heptahydrate (H2), and decahydrate (H3).


Assuntos
Liofilização , terc-Butil Álcool/química , Estabilidade de Medicamentos , Cinética , Pós , Termodinâmica
20.
PDA J Pharm Sci Technol ; 73(3): 247-259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30651336

RESUMO

In the production of several anticancer drugs, tert-butyl alcohol (TBA) is present as a co-solvent in the aqueous drug solution. In order to ascertain if TBA should be removed beforehand or if it could be retained to facilitate the freeze-drying of the drug solution, it is important to acquire both qualitative and quantitative knowledge of the variations occurring with respect to time in heat and mass transfer during the freeze-drying process. In this work, a thermodynamic model employing the UNIFAC (Dortmund) method was developed to determine the values of the currently experimentally unavailable partial vapor pressures of the binary gas mixture of water and TBA in equilibrium with their frozen solid mixtures. The results agree satisfactorily with relevant experimental measurements and indicate that TBA vapor has constantly higher pressures than water vapor and also promotes the vapor pressure of water during sublimation. The responses of the partial pressures of water and TBA vapors are found, through the analysis of their partial and total differentials, to be increasingly more sensitive to temperature change at elevated temperatures and to compositional change when the mole fraction of water in a frozen binary mixture approaches zero. The increased vapor pressures due to TBA lead to higher total pressures at the moving interface separating the dried and frozen layers, resulting in larger total pressure gradients and convective mass transfer rates in the dried layer during primary drying. But the higher total pressures reduce the magnitude of the bulk diffusivity of the gas mixture, and combined with the smaller Knudsen diffusivity of TBA, the pressures could significantly affect the competing mass transfer mechanisms during freeze-drying. The approach presented in this work could provide a general thermodynamic modeling approach for predicting the vapor pressures of multicomponent vapor mixtures in equilibrium with their multicomponent solid frozen mixtures.LAY ABSTRACT: tert-Butyl alcohol (TBA) is present as a cosolvent in a number of anticancer drug solutions. Its presence is known to affect the freeze-drying process of the drug solutions. In order to determine a better operational policy with respect to the freeze-drying process, a thermodynamic approach was developed in this work to provide the needed data of water and TBA vapors that are currently experimentally unavailable. The results agree satisfactorily with experimental measurements. They indicate that TBA vapor has constantly higher pressures than water vapor, promoting faster sublimation and generating higher total pressures at the moving interface to enhance convective mass transfer during primary drying. However, the higher total pressures also reduce the magnitude of the bulk diffusivity of the gas mixture, and combined with the smaller Knudsen diffusivity of TBA, these pressures could significantly affect the competing mass transfer mechanisms during freeze-drying. The thermodynamic method and analysis developed in this work are useful in their own physicochemical importance and also provide a necessary component for a new class of freeze-drying mathematical models. Moreover, they could provide a general modeling approach for predicting the vapor pressures of multicomponent vapor mixtures in equilibrium with their frozen solid mixtures.


Assuntos
Liofilização/métodos , Modelos Teóricos , Soluções Farmacêuticas/química , Solventes/química , Tecnologia Farmacêutica/métodos , Água/química , terc-Butil Álcool/química , Liofilização/normas , Tecnologia Farmacêutica/normas , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...