Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.134
Filtrar
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1828-1831, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018355

RESUMO

We propose a new framework for super-resolution structured illumination microscopy (SR-SIM) based on compressed sensing (CS). Our framework addresses several key problems in SIM, including long readout time and photobleaching. CS has the potential to eliminate these problems because it allows the reduction of the number of measurements, can record an image faster, and excites fluorochromes with less excitation light. Key contribution of our proposed method is that sampling and down-modulation of an object scene are simultaneously performed. The impact of our contribution is demonstrated by simulation-based experiments involving computer-generated super-resolution microscopy images, considering reductions in both data quality and quantity.


Assuntos
Processamento de Imagem Assistida por Computador , Iluminação , Corantes Fluorescentes , Microscopia de Fluorescência
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1899-1902, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018372

RESUMO

The in-vivo optical imaging of the cortical surface provides the ability to record different types of biophysiological signals, e.g., structural information, intrinsic signals, like blood oxygenation coupled reflection changes as well as extrinsic properties of voltage sensitive probes, like fluorescent voltage-sensitive dyes. The recorded data sets have very high temporal and spatial resolutions on a meso- to macroscopic scale, which surpass conventional multi-electrode recordings. Both, intrinsic and functional data sets, each provide unique information about temporal and spatial dynamics of cortical functioning, yet have individual drawbacks. To optimize the informational value it would thus be opportune to combine different types of optical imaging in a near simultaneous recording.Due to the low signal-to-noise ratio of voltage-sensitive dyes it is necessary to reduce stray light pollution below the level of the camera's dark noise. It is thus impossible to record full-spectrum optical data sets. We address this problem by a time-multiplexed illumination, bespoke to the utilized voltage sensitive dye, to record an alternating series of intrinsic and extrinsic frames by a high-frequency CMOS sensor. These near simultaneous data series can be used to compare the mutual influence of intrinsic and extrinsic dynamics (with regards to extracorporeal functional imaging) as well as for motion compensation and thus for minimizing frame averaging, which in turn results in increased spatial precision of functional data and in a reduction of necessary experimental data sets (3R principle).


Assuntos
Iluminação , Imagem Óptica , Corantes Fluorescentes , Estimulação Luminosa , Razão Sinal-Ruído
3.
PLoS One ; 15(8): e0237748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866195

RESUMO

Soil microbiota are considered a source of undiscovered bioactive compounds, yet cultivation of most bacteria within a sample remains generally unsuccessful. Two main reasons behind the unculturability of bacteria are the presence of cells in a viable but not culturable state (such as dormant cells) and the failure to provide the necessary growth requirements in vitro (leading to the classification of some bacterial taxa as yet-to-be-cultured). The present work focuses on the development of a single procedure that helps distinguish between both phenomena of unculturability based on viability staining coupled with flow cytometry and fluorescence-activated cell sorting. In the selected soil sample, the success rate of cultured bacteria was doubled by selecting viable and metabolically active bacteria. It was determined that most of the uncultured fraction was not dormant or dead but likely required different growth conditions. It was also determined that the staining process introduced changes in the taxonomic composition of the outgrown bacterial biomass, which should be considered for further developments. This research shows the potential of flow cytometry and fluorescence-activated cell sorting applied to soil samples to improve the success rate of bacterial cultivation by estimating the proportion of dormant and yet-to-be-cultured bacteria and by directly excluding dormant cells from being inoculated into growth media.


Assuntos
Bactérias/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos , Microbiota/fisiologia , Microbiologia do Solo , Bactérias/química , Bactérias/genética , Biomassa , Separação Celular/métodos , Meios de Cultura , DNA Bacteriano/isolamento & purificação , Estudos de Viabilidade , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Coloração e Rotulagem/métodos
4.
Nat Commun ; 11(1): 4482, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901011

RESUMO

Intracellular trafficking governs receptor signaling, pathogenesis, immune responses and fate of nanomedicines. These processes are typically tracked by observing colocalization of fluorescent markers using confocal microscopy. However, this method is low throughput, limited by the resolution of microscopy, and can miss fleeting interactions. To address this, we developed a localization sensor composed of a quenched SNAP-tag substrate (SNAPSwitch) that can be conjugated to biomolecules using click chemistry. SNAPSwitch enables quantitative detection of trafficking to locations of interest within live cells using flow cytometry. Using SNAPSwitch, we followed the trafficking of DNA complexes from endosomes into the cytosol and nucleus. We show that antibodies against the transferrin or hyaluronan receptor are initially sorted into different compartments following endocytosis. In addition, we can resolve which side of the cellular membrane material was located. These results demonstrate SNAPSwitch is a high-throughput and broadly applicable tool to quantitatively track localization of materials in cells.


Assuntos
DNA/metabolismo , Sondas Moleculares/química , Nanopartículas/metabolismo , Proteínas/metabolismo , Animais , Transporte Biológico Ativo , Técnicas Biossensoriais/métodos , Química Click , Citometria de Fluxo , Corantes Fluorescentes , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Técnicas de Sonda Molecular , Sondas Moleculares/metabolismo , Células NIH 3T3
5.
Anal Chem ; 92(19): 13396-13404, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32867467

RESUMO

Rapid, accurate, reliable, and risk-free tracking of pathogenic microorganisms at the single-cell level is critical to achieve efficient source control and prevent outbreaks of microbial infectious diseases. For the first time, we report a promising approach for integrating the concepts of a remarkably large Stokes shift and dual-recognition into a single matrix to develop a pathogenic microorganism stimuli-responsive ratiometric fluorescent nanoprobe with speed, cost efficiency, stability, ultrahigh specificity, and sensitivity. As a proof-of-concept, we selected the Gram-positive bacterium Staphylococcus aureus (S. aureus) as the target analyte model, which easily bound to its recognition aptamer and the broad-spectrum glycopeptide antibiotic vancomycin (Van). To improve the specificity and short sample-to-answer time, we employed classic noncovalent π-π stacking interactions as a driving force to trigger the binding of Van and aptamer dual-functionalized near-infrared (NIR) fluorescent Apt-Van-QDs to the surface of an unreported blue fluorescent π-rich electronic carbon nanoparticles (CNPs), achieving S. aureus stimuli-responsive ratiometric nanoprobe Apt-Van-QDs@CNPs. In the assembly of Apt-Van-QDs@CNPs, the blue CNPs (energy donor) and NIR Apt-Van-QDs (energy acceptor) became close to allow the fluorescence resonance energy transfer (FRET) process, leading to a remarkable blue fluorescence quenching for the CNPs at ∼465 nm and a clear NIR fluorescence enhancement for Apt-Van-QDs at ∼725 nm. In the presence of S. aureus, the FRET process from CNPs to Apt-Van-QDs was disrupted, causing the nanoprobe Apt-Van-QDs@CNPs to display a ratiometric fluorescent response to S. aureus, which exhibited a large Stokes shift of ∼260 nm and rapid sample-to-answer detection time (∼30.0 min). As expected, the nanoprobe Apt-Van-QDs@CNPs showed an ultrahigh specificity for ratiometric fluorescence detection of S. aureus with a good detection limit of 1.0 CFU/mL, allowing the assay at single-cell level. Moreover, we also carried out the precise analysis of S. aureus in actual samples with acceptable results. We believe that this work offers new insight into the rational design of efficient ratiometric nanoprobes for rapid on-site accurate screening of pathogenic microorganisms at the single-cell level in the early stages, especially during the worldwide spread of COVID-19 today.


Assuntos
Bactérias/química , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/síntese química , Nanotecnologia/métodos , Antibacterianos/farmacologia , Aptâmeros de Nucleotídeos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/microbiologia , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Microbiologia de Alimentos/métodos , Humanos , Nanopartículas , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/microbiologia , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Vancomicina/farmacologia
6.
Nat Commun ; 11(1): 4271, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848153

RESUMO

Performing multi-color nanoscopy for extended times is challenging due to the rapid photobleaching rate of most fluorophores. Here we describe a new fluorophore (Yale-595) and a bio-orthogonal labeling strategy that enables two-color super-resolution (STED) and 3D confocal imaging of two organelles simultaneously for extended times using high-density environmentally sensitive (HIDE) probes. Because HIDE probes are small, cell-permeant molecules, they can visualize dual organelle dynamics in hard-to-transfect cell lines by super-resolution for over an order of magnitude longer than with tagged proteins. The extended time domain possible using these tools reveals dynamic nanoscale targeting between different organelles.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Organelas/metabolismo , Linhagem Celular , Corantes Fluorescentes/química , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Imageamento Tridimensional , Microscopia Confocal , Fotodegradação , Imagem com Lapso de Tempo
7.
Nat Commun ; 11(1): 4268, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848159

RESUMO

Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton's Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acrilamidas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Linhagem Celular , Sobrevivência Celular , Corantes Fluorescentes , Meia-Vida , Humanos , Espaço Intracelular/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutação , Fenômenos de Química Orgânica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise
8.
Biosens Bioelectron ; 167: 112494, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791468

RESUMO

G-quadruplex is a non-canonical nucleic acid structure formed by the folding of guanine rich DNA or RNA. The conformation and function of G-quadruplex are determined by a number of factors, including the number and polarity of nucleotide strands, the type of cations and the binding targets. Recent studies led to the discovery of additional advantageous attributes of G-quadruplex with the potential to be used in novel biosensors, such as improved ligand binding and unique folding properties. G-quadruplex based biosensor can detect various substances, such as metal ions, organic macromolecules, proteins and nucleic acids with improved affinity and specificity compared to standard biosensors. The recently developed G-quadruplex based biosensors include electrochemical and optical biosensors. A novel G-quadruplex based biosensors also show better performance and broader applications in the detection of a wide spectrum of pathogens, including SARS-CoV-2, the causative agent of COVID-19 disease. This review highlights the latest developments in the field of G-quadruplex based biosensors, with particular focus on the G-quadruplex sequences and recent applications and the potential of G-quadruplex based biosensors in SARS-CoV-2 detection.


Assuntos
Betacoronavirus , Técnicas Biossensoriais/métodos , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Quadruplex G , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/tendências , Técnicas de Laboratório Clínico/tendências , Colorimetria , Técnicas Eletroquímicas , Corantes Fluorescentes , Humanos , Pandemias
9.
Proc Natl Acad Sci U S A ; 117(33): 20254-20264, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747543

RESUMO

Correlated activation of cortical neurons often occurs in the brain and repetitive correlated neuronal firing could cause long-term modifications of synaptic efficacy and intrinsic excitability. We found that repetitive optogenetic activation of neuronal populations in the mouse cortex caused enhancement of optogenetically evoked firing of local coactivated neurons as well as distant cortical neurons in both ipsilateral and contralateral hemispheres. This global enhancement of evoked responses required coactivation of a sufficiently large population of neurons either within one cortical area or distributed in several areas. Enhancement of neuronal firing was saturable after repeated episodes of coactivation, diminished by inhibition of N-methyl-d-aspartic acid receptors, and accompanied by elevated excitatory postsynaptic potentials, all consistent with activity-induced synaptic potentiation. Chemogenetic inhibition of neuronal activity of the thalamus decreased the enhancement effect, suggesting thalamic involvement. Thus, correlated excitation of large neuronal populations leads to global enhancement of neuronal excitability.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Excitabilidade Cortical , Corantes Fluorescentes , Masculino , Camundongos , Rede Nervosa , Transmissão Sináptica/fisiologia
10.
Proc Natl Acad Sci U S A ; 117(33): 20171-20179, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747561

RESUMO

Extracellular electron transfer (EET) allows microorganisms to gain energy by linking intracellular reactions to external surfaces ranging from natural minerals to the electrodes of bioelectrochemical renewable energy technologies. In the past two decades, electrochemical techniques have been used to investigate EET in a wide range of microbes, with emphasis on dissimilatory metal-reducing bacteria, such as Shewanella oneidensis MR-1, as model organisms. However, due to the typically bulk nature of these techniques, they are unable to reveal the subpopulation variation in EET or link the observed electrochemical currents to energy gain by individual cells, thus overlooking the potentially complex spatial patterns of activity in bioelectrochemical systems. Here, to address these limitations, we use the cell membrane potential as a bioenergetic indicator of EET by S. oneidensis MR-1 cells. Using a fluorescent membrane potential indicator during in vivo single-cell-level fluorescence microscopy in a bioelectrochemical reactor, we demonstrate that membrane potential strongly correlates with EET. Increasing electrode potential and associated EET current leads to more negative membrane potential. This EET-induced membrane hyperpolarization is spatially limited to cells in contact with the electrode and within a near-electrode zone (<30 µm) where the hyperpolarization decays with increasing cell-electrode distance. The high spatial and temporal resolution of the reported technique can be used to study the single-cell-level dynamics of EET not only on electrode surfaces, but also during respiration of other solid-phase electron acceptors.


Assuntos
Membrana Externa Bacteriana/fisiologia , Transporte de Elétrons/fisiologia , Potenciais da Membrana/fisiologia , Shewanella/fisiologia , Benzotiazóis/metabolismo , Fenômenos Eletrofisiológicos , Corantes Fluorescentes , Análise de Célula Única/métodos , Gravação em Vídeo
11.
Nat Protoc ; 15(9): 2773-2784, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32737465

RESUMO

Spherical aberration (SA) occurs when light rays entering at different points of a spherical lens are not focused to the same point of the optical axis. SA that occurs inside the lens elements of a fluorescence microscope is well understood and corrected for. However, SA is also induced when light passes through an interface of refractive index (RI)-mismatched substances (i.e., a discrepancy between the RI of the immersion medium and the RI of the sample). SA due to RI mismatches has many deleterious effects on imaging. Perhaps most important for 3D imaging is that the distance the image plane moves in a sample is not equivalent to the distance traveled by an objective (or stage) during z-stack acquisition. This non-uniform translation along the z axis gives rise to artifactually elongated images (if the objective is immersed in a medium with a higher RI than that of the sample) or compressed images (if the objective is immersed in a medium with a lower RI than that of the sample) and alters the optimal axial sampling rate. In this tutorial, we describe why this distortion occurs, how it impacts quantitative measurements and axial resolution, and what can be done to avoid SA and thereby prevent distorted images. In addition, this tutorial aims to better inform researchers of how to correct RI mismatch-induced axial distortions and provides a practical ImageJ/Fiji-based tool to reduce the prevalence of volumetric measurement errors and lost axial resolution.


Assuntos
Artefatos , Imageamento Tridimensional , Microscopia de Fluorescência , Espalhamento de Radiação , Corantes Fluorescentes/química , Microesferas
12.
Nat Commun ; 11(1): 4285, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855390

RESUMO

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citocininas/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brefeldina A/farmacologia , Citocininas/química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Meristema/citologia , Meristema/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Nat Commun ; 11(1): 3847, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737299

RESUMO

Reporter systems are routinely used in plant genetic engineering and functional genomics research. Most such plant reporter systems cause accumulation of foreign proteins. Here, we demonstrate a protein-independent reporter system, 3WJ-4 × Bro, based on a fluorescent RNA aptamer. Via transient expression assays in both Escherichia coli and Nicotiana benthamiana, we show that 3WJ-4 × Bro is suitable for transgene identification and as an mRNA reporter for expression pattern analysis. Following stable transformation in Arabidopsis thaliana, 3WJ-4 × Bro co-segregates and co-expresses with target transcripts and is stably inherited through multiple generations. Further, 3WJ-4 × Bro can be used to visualize virus-mediated RNA delivery in plants. This study demonstrates a protein-independent reporter system that can be used for transgene identification and in vivo dynamic analysis of mRNA.


Assuntos
Aptâmeros de Nucleotídeos/genética , Arabidopsis/genética , Brassica/genética , Engenharia Genética/métodos , RNA Mensageiro/genética , Tabaco/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Arabidopsis/metabolismo , Compostos de Benzil/química , Brassica/metabolismo , Fluorescência , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Genes Reporter , Imidazolinas/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/metabolismo , Tabaco/metabolismo , Transformação Genética
15.
Nat Commun ; 11(1): 3850, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737322

RESUMO

Resolving the distribution of specific proteins at the nanoscale in the ultrastructural context of the cell is a major challenge in fluorescence microscopy. We report the discovery of a new principle for an optical contrast equivalent to electron microscopy (EM) which reveals the ultrastructural context of the cells with a conventional confocal microscope. By decrowding the intracellular space through 13 to 21-fold physical expansion while simultaneously retaining the proteins, bulk (pan) labeling of the proteome resolves local protein densities and reveals the cellular nanoarchitecture by standard light microscopy.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Proteoma/análise , Coloração e Rotulagem/métodos , Acrilamidas/química , Reagentes para Ligações Cruzadas/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Hidrogéis/química , Espaço Intracelular/química , Succinimidas/química , Inclusão do Tecido/métodos
16.
Braz J Microbiol ; 51(3): 1117-1123, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767275

RESUMO

In March 2020, WHO declared a pandemic state due to SARS-CoV-2 having spread. TaqMan-based real-time RT-qPCR is currently the gold standard for COVID-19 diagnosis. However, it is a high-cost assay, inaccessible for the majority of laboratories around the world, making it difficult to diagnose on a large scale. The objective of this study was to standardize lower cost molecular methods for SARS-CoV-2 identification. E gene primers previously determined for TaqMan assays by Colman et al. (2020) were adapted in SYBR Green assay and RT-PCR conventional. The cross-reactivity test was performed with 17 positive samples for other respiratory viruses, and the sensibility test was performed with 8 dilutions (10 based) of SARS-CoV-2 isolated and 63 SARS-CoV-2-positive samples. The SYBR Green assays and conventional RT-PCR have not shown amplification of the 17 respiratory samples positives for other viruses. The SYBR Green-based assay was able to detect all 8 dilutions of the isolate. The conventional PCR detected until 107 dilution, both assays detected the majority of the 63 samples, 98.42% of positivity in SYBR Green, and 93% in conventional PCR. The average Ct variation between SYBR Green and TaqMan was 1.92 and the highest Ct detected by conventional PCR was 35.98. Both of the proposed assays are less sensitive than the current gold standard; however, our data shows a low sensibility variation, suggesting that these methods could be used by laboratories as a lower cost molecular method for SARS-CoV-2 diagnosis.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Corantes Fluorescentes/economia , Compostos Orgânicos/economia , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/economia , Adolescente , Adulto , Animais , Betacoronavirus/genética , Criança , Chlorocebus aethiops , Infecções por Coronavirus/economia , Reações Cruzadas , Humanos , Pessoa de Meia-Idade , Nasofaringe/virologia , Orofaringe/virologia , Pandemias/economia , Pneumonia Viral/economia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Células Vero , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 117(29): 17260-17268, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632007

RESUMO

Understanding how a network of interconnected neurons receives, stores, and processes information in the human brain is one of the outstanding scientific challenges of our time. The ability to reliably detect neuroelectric activities is essential to addressing this challenge. Optical recording using voltage-sensitive fluorescent probes has provided unprecedented flexibility for choosing regions of interest in recording neuronal activities. However, when recording at a high frame rate such as 500 to 1,000 Hz, fluorescence-based voltage sensors often suffer from photobleaching and phototoxicity, which limit the recording duration. Here, we report an approach called electrochromic optical recording (ECORE) that achieves label-free optical recording of spontaneous neuroelectrical activities. ECORE utilizes the electrochromism of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films, whose optical absorption can be modulated by an applied voltage. Being based on optical reflection instead of fluorescence, ECORE offers the flexibility of an optical probe without suffering from photobleaching or phototoxicity. Using ECORE, we optically recorded spontaneous action potentials in cardiomyocytes, cultured hippocampal and dorsal root ganglion neurons, and brain slices. With minimal perturbation to cells, ECORE allows long-term optical recording over multiple days.


Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Poliestirenos , Tiofenos , Potenciais de Ação/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Técnicas Eletroquímicas/métodos , Fenômenos Eletrofisiológicos , Corantes Fluorescentes , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Humanos , Imagem Óptica , Óptica e Fotônica/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-32728873

RESUMO

Daphnia has been widely used as an indicator species in aquatic biomonitoring for decades. Traditional toxicity assays based on lethality take a long time to assess, and the effect mode of contaminants is not clear. Because of the translucency of the Daphnia body and the application of fluorescent probes in cell staining, different intoxicated parts can be visualized. In this study, a double-staining method using two fluorescent dyes, Calcein AM (cell-permeant dye) and Propidium Iodide (cell-impermeant dye), was carried out on Daphnia magna exposed to six pathogens: Salmonella spp. (four strains) and Shigella spp. (two strains). The results showed that those bacteria caused different infections on daphnia depending on the age of this organism and bacterial concentrations. In detail, S. dublin and S. sonnei are the most harmful to Daphnia when they cause damage at smaller concentrations at the younger stage (3 weeks old). Interestingly, older Daphnia can give responses to nearly 10 CFU/ml to less than 100 CFU/ml of some bacteria strains. In another experiment, S. sonnei disturbed Daphnia after just 10 min of exposure, and Daphnia adapted to S. choleraesuis, S. typhi, and S. flexneri at the early stage (3 weeks old) after 1 h of exposure. Moreover, the damaged areas of the daphnia body were directly observed via a microscope, contributing to the understanding and the prediction of toxicity mechanisms.


Assuntos
Daphnia/microbiologia , Salmonella/química , Shigella/química , Testes de Toxicidade/métodos , Animais , Corantes Fluorescentes/análise , Coloração e Rotulagem
19.
Nat Commun ; 11(1): 3388, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636396

RESUMO

Expansion microscopy (ExM) enables super-resolution fluorescence imaging of physically expanded biological samples with conventional microscopes. By combining ExM with single-molecule localization microscopy (SMLM) it is potentially possible to approach the resolution of electron microscopy. However, current attempts to combine both methods remained challenging because of protein and fluorophore loss during digestion or denaturation, gelation, and the incompatibility of expanded polyelectrolyte hydrogels with photoswitching buffers. Here we show that re-embedding of expanded hydrogels enables dSTORM imaging of expanded samples and demonstrate that post-labeling ExM resolves the current limitations of super-resolution microscopy. Using microtubules as a reference structure and centrioles, we demonstrate that post-labeling Ex-SMLM preserves ultrastructural details, improves the labeling efficiency and reduces the positional error arising from linking fluorophores into the gel thus paving the way for super-resolution imaging of immunolabeled endogenous proteins with true molecular resolution.


Assuntos
Corantes Fluorescentes/química , Hidrogéis/química , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Tampões (Química) , Células COS , Centríolos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlorocebus aethiops , Simulação por Computador , Eletrólitos , Epitopos , Imageamento Tridimensional , Microtúbulos/metabolismo , Distribuição Normal , Fotoquímica
20.
PLoS One ; 15(7): e0234069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649674

RESUMO

Recent discoveries of at least two heart fields and dynamic nature of cardiac development as well as controversies regarding the participation of heart fields in development of different heart structures led us to investigate the dynamics of incorporation of the first and second heart fields and prospective fate of the straight heart tube by labeling chicken embryos in vivo with the fluorescent lipophilic dye DiI. The cephalic and caudal limits of the anterior and posterior segments of the straight heart tube were labeled in two groups of embryos. Labels were tracked along the "C," "S," and "U" loops up to the tetracavitary or mature heart (n = 30 embryos/group; torsion and looping stage). To determine whether the atria and atrioventricular canal are derived from the first heart field the straight heart tube was cultured in vitro and immunodetection of Sox-9 and troponin I was performed to identify the mesenchymal and myocardial lineages respectively. Proliferating cell nuclear antigen (PCNA) immunodetection was used to determine the involvement of cell proliferation in heart tube development during torsion and looping. Embryological constitution of the straight heart tube and heart looping (C, S, and U) were not consistent with current descriptions. In fact, right ventricle precursors were absent in the straight heart tube derived from the first heart field. During torsion and looping, the cephalic segment of the straight heart tube gradually shifted into the heart tube until it was located at the myocardial interventricular septum in the tetracavitary heart. In contrast, the caudal segment of the straight heart tube was elongated and remodeled to become the first heart field derived left ventricle and the proximal part of the ventricular inlets. The ventricular outflows, right ventricle, distal part of the ventricular inlets, and atria developed from the second heart field.


Assuntos
Coração/embriologia , Animais , Carbocianinas , Divisão Celular , Linhagem da Célula , Embrião de Galinha , Corantes Fluorescentes , Mesoderma/citologia , Microscopia Eletrônica de Varredura , Miocárdio/química , Miocárdio/ultraestrutura , Organogênese , Antígeno Nuclear de Célula em Proliferação/análise , Fatores de Transcrição SOX9/análise , Troponina I/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA