Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.093
Filtrar
1.
PLoS One ; 19(4): e0300811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568891

RESUMO

Multi-locus genetic data for phylogeographic studies is generally limited in geographic and taxonomic scope as most studies only examine a few related species. The strong adoption of DNA barcoding has generated large datasets of mtDNA COI sequences. This work examines the butterfly fauna of Canada and United States based on 13,236 COI barcode records derived from 619 species. It compiles i) geographic maps depicting the spatial distribution of haplotypes, ii) haplotype networks (minimum spanning trees), and iii) standard indices of genetic diversity such as nucleotide diversity (π), haplotype richness (H), and a measure of spatial genetic structure (GST). High intraspecific genetic diversity and marked spatial structure were observed in the northwestern and southern North America, as well as in proximity to mountain chains. While species generally displayed concordance between genetic diversity and spatial structure, some revealed incongruence between these two metrics. Interestingly, most species falling in this category shared their barcode sequences with one at least other species. Aside from revealing large-scale phylogeographic patterns and shedding light on the processes underlying these patterns, this work also exposed cases of potential synonymy and hybridization.


Assuntos
Borboletas , Animais , Estados Unidos , Borboletas/genética , Filogeografia , DNA Mitocondrial/genética , DNA Mitocondrial/química , Mitocôndrias/genética , Haplótipos , Variação Genética , Código de Barras de DNA Taxonômico , Filogenia
2.
PLoS One ; 19(4): e0301392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578719

RESUMO

Despite is known to have widespread distribution and the most active species of the family Chlorocyphidae, the molecular data of Rhinocypha fenestrella (Rambur, 1842) are relatively scarce. The present study is the first that examined the genetic diversity and phylogeographic pattern of the peacock jewel-damselfly R. fenestrella by sequencing the cytochrome C oxidase I (cox1) and 16S rRNA gene regions from 147 individuals representing eight populations in Malaysia. A total of 26 and 10 unique haplotypes were revealed by the cox1 and 16S rRNA genes, respectively, and 32 haplotypes were recovered by the concatenated sequences of cox1+16S. Analyses indicated that haplotype AB2 was the most frequent and the most widespread haplotype in Malaysia while haplotype AB1 was suggested as the common ancestor haplotype of the R. fenestrella that may arose from the Negeri Sembilan as discovered from cox1+16S haplotype network analysis. Overall haplotype and nucleotide diversities of the concatenated sequences were Hd = 0.8937 and Pi = 0.0028, respectively, with great genetic differentiation (FST = 0.6387) and low gene flow (Nm = 0.14). Population from Pahang presented the highest genetic diversity (Hd = 0.8889, Pi = 0.0022, Nh = 9), whereas Kedah population demonstrated the lowest diversity (Hd = 0.2842, Pi = 0.0003, Nh = 4). The concatenated sequences of cox1+16S showed genetic divergence ranging from 0.09% to 0.97%, whereas the genetic divergence for cox1 and 16S rRNA genes were 0.16% to 1.63% and 0.01% to 0.75% respectively. This study provides for the first-time insights on the intraspecific genetic diversity, phylogeographic pattern and ancestral haplotype of Rhinocypha fenestrella. The understanding of molecular data especially phylogeographic pattern can enhance the knowledge about insect origin, their diversity, and capability to disperse in particular environments.


Assuntos
Variação Genética , Odonatos , Humanos , Animais , Filogenia , RNA Ribossômico 16S/genética , Odonatos/genética , Filogeografia , Haplótipos , DNA Mitocondrial/genética
4.
Orphanet J Rare Dis ; 19(1): 148, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582886

RESUMO

BACKGROUND: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS: We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS: With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.


Assuntos
DNA Mitocondrial , Atrofia Óptica Hereditária de Leber , Humanos , DNA Mitocondrial/genética , Atrofia Óptica Hereditária de Leber/genética , Linhagem , Mutação/genética , Fenótipo
5.
Genome Med ; 16(1): 50, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566210

RESUMO

BACKGROUND: Mitochondria play essential roles in tumorigenesis; however, little is known about the contribution of mitochondrial DNA (mtDNA) to esophageal squamous cell carcinoma (ESCC). Whole-genome sequencing (WGS) is by far the most efficient technology to fully characterize the molecular features of mtDNA; however, due to the high redundancy and heterogeneity of mtDNA in regular WGS data, methods for mtDNA analysis are far from satisfactory. METHODS: Here, we developed a likelihood-based method dMTLV to identify low-heteroplasmic mtDNA variants. In addition, we described fNUMT, which can simultaneously detect non-reference nuclear sequences of mitochondrial origin (non-ref NUMTs) and their derived artifacts. Using these new methods, we explored the contribution of mtDNA to ESCC utilizing the multi-omics data of 663 paired tumor-normal samples. RESULTS: dMTLV outperformed the existing methods in sensitivity without sacrificing specificity. The verification using Nanopore long-read sequencing data showed that fNUMT has superior specificity and more accurate breakpoint identification than the current methods. Leveraging the new method, we identified a significant association between the ESCC overall survival and the ratio of mtDNA copy number of paired tumor-normal samples, which could be potentially explained by the differential expression of genes enriched in pathways related to metabolism, DNA damage repair, and cell cycle checkpoint. Additionally, we observed that the expression of CBWD1 was downregulated by the non-ref NUMTs inserted into its intron region, which might provide precursor conditions for the tumor cells to adapt to a hypoxic environment. Moreover, we identified a strong positive relationship between the number of mtDNA truncating mutations and the contribution of signatures linked to tumorigenesis and treatment response. CONCLUSIONS: Our new frameworks promote the characterization of mtDNA features, which enables the elucidation of the landscapes and roles of mtDNA in ESCC essential for extending the current understanding of ESCC etiology. dMTLV and fNUMT are freely available from https://github.com/sunnyzxh/dMTLV and https://github.com/sunnyzxh/fNUMT , respectively.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , DNA Mitocondrial/genética , DNA Mitocondrial/análise , DNA Mitocondrial/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Funções Verossimilhança , Mitocôndrias/genética , Carcinogênese
6.
Sci Rep ; 14(1): 7934, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575614

RESUMO

Biodistribution tests are crucial for evaluating the safety of cell therapy (CT) products in order to prevent unwanted organ homing of these products in patients. Quantitative polymerase chain reaction (qPCR) using intronic Alu is a popular method for biodistribution testing owing to its ability to detect donor cells without modifying CT products and low detection limit. However, Alu-qPCR may generate inaccurate information owing to background signals caused by the mixing of human genomic DNA with that of experimental animals. The aim of this study was to develop a test method that is more specific and sensitive than Alu-qPCR, targeting the mitochondrial DNA (mtDNA) sequence that varies substantially between humans and experimental animals. We designed primers for 12S, 16S, and cytochrome B in mtDNA regions, assessed their specificity and sensitivity, and selected primers and probes for the 12S region. Human adipose-derived stem cells, used as CT products, were injected into the tail vein of athymic NCr-nu/nu mice and detected, 7 d after administration, in their lungs at an average concentration of 2.22 ± 0.69 pg/µg mouse DNA, whereas Alu was not detected. Therefore, mtDNA is more specific and sensitive than Alu and is a useful target for evaluating CT product biodistribution.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , Camundongos , Animais , DNA Mitocondrial/genética , Distribuição Tecidual , Primers do DNA , Mitocôndrias/genética
7.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561677

RESUMO

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Lamiales , Filogenia , DNA Mitocondrial/genética , Lamiales/genética , Mitocôndrias/genética
8.
Zoolog Sci ; 41(2): 216-229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587917

RESUMO

The house shrew (Suncus murinus-S. montanus species complex) colonized regions across southern Asia and the Indian Ocean following human activity. The house shrew is distributed on islands of the Ryukyu Archipelago, the southernmost part of Japan, but the evolutionary history of the shrew on those islands and possible associations between these populations and humans remain unknown. In this study, we conducted phylogenetic and population genetic analyses based on both nuclear and mitochondrial genome sequences of house shrews. Phylogenetic analyses based on mitochondrial cytochrome b (cytb) sequences revealed that shrews from the Ryukyu Archipelago showed strong genetic affinity to Vietnamese and southern Chinese shrews. Demographic analyses of cytb sequences indicated a rapid population expansion event affecting the haplotype group in Vietnam, southern China, and the Ryukyu Archipelago 3300-7900 years ago. Furthermore, gene flow between Ryukyu (Yonaguni Island) and Taiwan and between Ryukyu and Vietnam inferred from f4 statistics of the nuclear genomes suggested repeated immigration to Ryukyu in recent years. The present study demonstrates that the Nagasaki population has a different origin from the Ryukyu population. These findings elucidate the complex pattern of genetic admixture in house shrews and provide insights into their evolutionary history.


Assuntos
DNA Mitocondrial , Musaranhos , Animais , Humanos , Filogenia , Japão , DNA Mitocondrial/genética , Musaranhos/genética , Genética Populacional
9.
Zoolog Sci ; 41(2): 177-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587912

RESUMO

Knowledge of the phylogeographic history of organisms is valuable for understanding their evolutionary processes. To the best of our knowledge, the phylogeographic structure of Hokuriku salamander, Hynobius takedai, an endangered species, remains unclear. This study aimed to elucidate the phylogeographic history of H. takedai, which is expected to be strongly influenced by paleogeographic events. Phylogenetic analysis based on partial sequences of the mitochondrial DNA cytochrome b gene confirmed the genetic independence of H. takedai, and the divergence time with closely related species was estimated to be from the Late Pliocene to the Early Pleistocene. In the phylogenetic tree, two clades were identified within H. takedai, and their haplotypes were found in samples collected from the west and east of the distribution range. These intraspecific divergences were strongly influenced by geohistorical subdivisions of the current major distribution areas in the Middle Pleistocene. One clade was further subdivided and its formation may have been influenced by sea level changes in the Late Pleistocene.


Assuntos
Anfíbios , Urodelos , Animais , Urodelos/genética , Filogenia , Filogeografia , DNA Mitocondrial/genética , Variação Genética , Análise de Sequência de DNA
10.
Sci Adv ; 10(13): eadk0164, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536913

RESUMO

Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.


Assuntos
COVID-19 , Exossomos , Miocardite , Humanos , DNA Mitocondrial/genética , Volume Sistólico , Cálcio , Função Ventricular Esquerda , Inflamação , SARS-CoV-2 , Citocinas
11.
Proc Natl Acad Sci U S A ; 121(14): e2217019121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547062

RESUMO

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.


Assuntos
Proteínas de Membrana , Dinâmica Mitocondrial , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mitocôndrias/genética , DNA Mitocondrial , Controle de Qualidade , Dinaminas/genética
12.
Eur J Med Chem ; 269: 116361, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547736

RESUMO

Stabilization of G-quadruplex (G4) structures in mitochondria leads to the damage of mitochondrial DNA (mtDNA), making mtDNA G4s a promising target in the field of cancer therapy in recent years. Damaged mtDNA released into the cytosol can stimulate cytosolic DNA-sensing pathways, and cGAS-STING pathway is a typical one with potent immunostimulatory effects. A few small molecule ligands of mtDNA G4s are identified with antitumor efficacy, but little is known about their results and mechanisms on immunomodulation. In this study, we engineered a series of triphenylamine-based analogues targeting mtDNA G4s, and A6 was determined as the most promising compound. Cellular studies indicated that A6 caused severe mtDNA damage. Then, damaged mtDNA stimulated cGAS-STING pathway, resulting in the following cytokine production of tumor cells and the maturation of DCs. In vivo experiments certified that A6 exerted suppressive influences on tumor growth and metastasis in 4T1 cell-bearing mice by the regulation of TME, including the remodeling of macrophages and the activation of T cells. To our knowledge, it is the first time to report a ligand targeting mtDNA G4s to activate the cGAS-STING immunomodulatory pathway, providing a novel strategy for the future development of mtDNA G4-based antitumor agents.


Assuntos
Quadruplex G , Animais , Camundongos , Ligantes , Mitocôndrias , DNA Mitocondrial , Aminas , Imunomodulação , Nucleotidiltransferases
15.
DNA Repair (Amst) ; 137: 103666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492429

RESUMO

Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase ß, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) ß, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.


Assuntos
DNA Polimerase beta , Liases , Fósforo-Oxigênio Liases , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Liases/metabolismo , Lisina , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Polimerase gama/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição , Proteínas Mitocondriais/metabolismo
16.
BMC Med Genomics ; 17(1): 71, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443925

RESUMO

BACKGROUND: The timely and accurate diagnosis of bloodstream infection (BSI) is critical for patient management. With longstanding challenges for routine blood culture, metagenomics is a promising approach to rapidly provide sequence-based detection and characterisation of bloodborne bacteria. Long-read sequencing technologies have successfully supported the use of clinical metagenomics for syndromes such as respiratory illness, and modified approaches may address two requisite factors for metagenomics to be used as a BSI diagnostic: depletion of the high level of host DNA to then detect the low abundance of microbes in blood. METHODS: Blood samples from healthy donors were spiked with different concentrations of four prevalent causative species of BSI. All samples were then subjected to a modified saponin-based host DNA depletion protocol and optimised DNA extraction, whole genome amplification and debranching steps in preparation for sequencing, followed by bioinformatical analyses. Two related variants of the protocol are presented: 1mL of blood processed without bacterial enrichment, and 5mL of blood processed following a rapid bacterial enrichment protocol-SepsiPURE. RESULTS: After first identifying that a large proportion of host mitochondrial DNA remained, the host depletion process was optimised by increasing saponin concentration to 3% and scaling the reaction to allow more sample volume. Compared to non-depleted controls, the 3% saponin-based depletion protocol reduced the presence of host chromosomal and mitochondrial DNA < 106 and < 103 fold respectively. When the modified depletion method was further combined with a rapid bacterial enrichment method (SepsiPURE; with 5mL blood samples) the depletion of mitochondrial DNA improved by a further > 10X while also increasing detectable bacteria by > 10X. Parameters during DNA extraction, whole genome amplification and long-read sequencing were also adjusted, and subsequently amplicons were detected for each input bacterial species at each of the spiked concentrations, ranging from 50-100 colony forming units (CFU)/mL to 1-5 CFU/mL. CONCLUSION: In this proof-of-concept study, four prevalent BSI causative species were detected in under 12 h to species level (with antimicrobial resistance determinants) at concentrations relevant to clinical blood samples. The use of a rapid and precise metagenomic protocols has the potential to advance the diagnosis of BSI.


Assuntos
Saponinas , Sepse , Humanos , DNA Mitocondrial , Metagenômica , Mitocôndrias
17.
Biomed Khim ; 70(1): 41-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450680

RESUMO

Pesticides represent a serious problem for agricultural workers due to their neurotoxic effects. The aim of this study was to evaluate the ability of pharmacological oxidative phosphorylation uncouplers to reduce the effect of the difenoconazole fungicide on mitochondrial DNA (mtDNA) of various organs in mice. Injections of difenoconazole caused cognitive deficits in mice, and the protonophore 2,4-dinitrophenol (2,4-DNP) and Azur I (AzI), a demethylated metabolite of methylene blue (MB), prevented the deterioration of cognitive abilities in mice induced by difenoconazole. Difenoconazole increased the rate of reactive oxygen species (ROS) production, likely through inhibition of complex I of the mitochondrial respiratory chain. After intraperitoneal administration of difenoconazole lungs, testes and midbrain were most sensitive to the accumulation of mtDNA damage. In contrast, the cerebral cortex and hippocampus were not tolerant to the effects of difenoconazole. The protonophore 2,4-DNP reduced the rate of ROS formation and significantly reduced the amount of mtDNA damage caused by difenoconazole in the midbrain, and partially, in the lungs and testes. MB, an alternative electron carrier capable of bypassing inhibited complex I, had no effect on the effect of difenoconazole on mtDNA, while its metabolite AzI, a demethylated metabolite of MB, was able to protect the mtDNA of the midbrain and testes. Thus, mitochondria-targeted therapy is a promising approach to reduce pesticide toxicity for agricultural workers.


Assuntos
Corantes Azur , Dioxolanos , Fungicidas Industriais , Triazóis , Animais , Camundongos , Fungicidas Industriais/toxicidade , 2,4-Dinitrofenol , Espécies Reativas de Oxigênio , Mitocôndrias , DNA Mitocondrial , Complexo I de Transporte de Elétrons
18.
J Transl Med ; 22(1): 238, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438847

RESUMO

Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.


Assuntos
Doenças Mitocondriais , Células-Tronco Neurais , Doenças Neurodegenerativas , Adulto , Humanos , Mitocôndrias , DNA Mitocondrial/genética , Fosforilação Oxidativa , Hipóxia
19.
Mol Biol Rep ; 51(1): 378, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427103

RESUMO

BACKGROUND: The Ganga River System (GRS) is a biodiversity hotspot, its ecological richness is shaped by a complex geological history. In this study, we examined the genetic diversity, spatial connectivity, and population structure of the Asian Silurid catfish, Wallago attu, across seven tributaries of the GRS. METHODS AND RESULTS: We employed three mitochondrial DNA (mtDNA) regions: cytochrome c oxidase subunit I (COXI), cytochrome b (Cyt b), and control region (CR). Our comprehensive dataset encompassed 2420 bp of mtDNA, derived from 176 W. attu individuals across 19 sampling sites within the seven rivers of GRS. Our findings revealed high gene diversity (Hd:0.99) within W. attu populations. Analysis of Molecular Variance (AMOVA) highlighted that maximum genetic variations were attributed within the populations, and the observed genetic differentiation among the seven populations of W. attu ranged from low to moderate. Network analysis uncovered the presence of three distinct genetic clades, showing no specific association with seven studied rivers. Bayesian skyline plots provided insights into the demographic history of W. attu, suggesting a recent population expansion estimated to have occurred approximately 0.04 million years ago (mya) during the Pleistocene epoch. CONCLUSIONS: These results significantly enhance our understanding of the genetic diversity and spatial connectivity of W. attu, serving as a vital foundation for developing informed conservation strategies and the sustainable management of this economically valuable resource within the Ganga River System.


Assuntos
Peixes-Gato , Rios , Humanos , Animais , DNA Mitocondrial/genética , Peixes-Gato/genética , Teorema de Bayes , Variação Genética/genética , Filogenia , Genética Populacional
20.
Nat Commun ; 15(1): 2778, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555361

RESUMO

Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.


Assuntos
Fenótipo Secretor Associado à Senescência , Febre Tifoide , Humanos , Febre Tifoide/metabolismo , Mutagênicos/metabolismo , Senescência Celular/fisiologia , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Salmonella , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...