RESUMO
Rodent infestations are a common problem that can result in several issues, including diseases, damage to property, and crop loss. Conventional methods of controlling rodent infestations often involve using mousetraps and applying rodenticides manually, leading to high manpower expenses and environmental pollution. To address this issue, we introduce a system for remotely monitoring rodent infestations using Internet of Things (IoT) nodes equipped with Long Range (LoRa) modules. The sensing nodes wirelessly transmit data related to rodent activity to a cloud server, enabling the server to provide real-time information. Additionally, this approach involves using images to auxiliary detect rodent activity in various buildings. By capturing images of rodents and analyzing their behavior, we can gain insight into their movement patterns and activity levels. By visualizing the recorded information from multiple nodes, rodent control personnel can analyze and address infestations more efficiently. Through the digital and quantitative sensing technology proposed at this stage, it can serve as a new objective indicator before and after the implementation of medication or other prevention and control methods. The hardware cost for the proposed system is approximately USD 43 for one sensor module and USD 17 for one data collection gateway (DCG). We also evaluated the power consumption of the sensor module and found that the 3.7 V 18,650 Li-ion batteries in series can provide a battery life of two weeks. The proposed system can be combined with rodent control strategies and applied in real-world scenarios such as restaurants and factories to evaluate its performance.
Assuntos
Computadores , Internet das Coisas , Coleta de Dados , Fontes de Energia Elétrica , Poluição AmbientalRESUMO
Health is gold, and good health is a matter of survival for humanity. The development of the healthcare industry aligns with the development of humans throughout history. Nowadays, along with the strong growth of science and technology, the medical domain in general and the healthcare industry have achieved many breakthroughs, such as remote medical examination and treatment applications, pandemic prediction, and remote patient health monitoring. The advent of 5th generation communication networks in the early 2020s led to the Internet of Things concept. Moreover, the 6th generation communication networks (so-called 6G) expected to launch in 2030 will be the next revolution of the IoT era, and will include autonomous IoT systems and form a series of endogenous intelligent applications that serve humanity. One of the domains that receives the most attention is smart healthcare. In this study, we conduct a comprehensive survey of IoT-based technologies and solutions in the medical field. Then, we propose an all-in-one computing architecture for real-time IoHT applications and present possible solutions to achieving the proposed architecture. Finally, we discuss challenges, open issues, and future research directions. We hope that the results of this study will serve as essential guidelines for further research in the human healthcare domain.
Assuntos
Internet das Coisas , Humanos , Internet , Ouro , Inteligência , Atenção à SaúdeRESUMO
Numerous sensitive applications, such as healthcare and medical services, need reliable transmission as a prerequisite for the success of the new age of communications technology. Unfortunately, these systems are highly vulnerable to attacks like Sybil, where many false nodes are created and spread with deceitful intentions. Therefore, these false nodes must be instantly identified and isolated from the network due to security concerns and the sensitivity of data utilized in healthcare applications. Especially for life-threatening diseases like COVID-19, it is crucial to have devices connected to the Internet of Medical Things (IoMT) that can be believed to respond with high reliability and accuracy. Thus, trust-based security offers a safe environment for IoMT applications. This study proposes a blockchain-based fuzzy trust management framework (BFT-IoMT) to detect and isolate Sybil nodes in IoMT networks. The results demonstrate that the proposed BFT-IoMT framework is 25.43% and 12.64%, 12.54% and 6.65%, 37.85% and 19.08%, 17.40% and 8.72%, and 13.04% and 5.05% more efficient and effective in terms of energy consumption, attack detection, trust computation reliability, packet delivery ratio, and throughput, respectively, as compared to the other state-of-the-art frameworks available in the literature.
Assuntos
Blockchain , COVID-19 , Internet das Coisas , Humanos , Lógica Fuzzy , Reprodutibilidade dos Testes , ConfiançaRESUMO
The Internet of Things (IoT) is a source of knowledge about the surrounding environment and people in such an environment. The insights collected by IoT can provide the knowledge needed to improve people's health and overall well-being. Schools are one environment where IoT is scarcely applied, yet, it is expected that this is where children and teenagers spend most of their time. Drawing on previous findings, this paper presents preliminary results from qualitative inquiry investigating how and what IoT-based solutions could support health and well-being in elementary educational settings.
Assuntos
Internet das Coisas , Criança , Adolescente , Humanos , Conhecimento , Resolução de Problemas , Pesquisa Qualitativa , Instituições AcadêmicasRESUMO
The planning of urban public health spatial can not only help people's physical and mental health but also help to optimize and protect the urban environment. It is of great significance to study the planning methods of urban public health spatial. The application effect of traditional urban public health spatial planning is poor, in this paper, urban public health spatial planning using big data technology and visual communication in the Internet of Things (IoT) is proposed. First, the urban public health spatial planning architecture is established in IoT, which is divided into the perception layer, the network layer and the application layer; Second, information collection is performed at the perception layer, and big data technology is used at the network layer to simplify spatial model information, automatically sort out spatial data, and establish a public health space evaluation system according to the type and characteristics of spatial data; Finally, the urban public health space is planned based on the health assessment results and the visual communication design concept through the application layer. The results show that when the number of regions reaches 60,000, the maximum time of region merging is 7.86s. The percentage of spatial fitting error is 0.17. The height error of spatial model is 0.31m. The average deviation error of the spatial coordinates is 0.23, which can realize the health planning of different public spaces.
Assuntos
Big Data , Internet das Coisas , Estados Unidos , Humanos , Saúde Pública , Tecnologia , ComunicaçãoRESUMO
The integration of the Internet of Bio Nano Things (IoBNT) with artificial intelligence (AI) and molecular communications technology is now required to achieve eHealth, specifically in the targeted drug delivery system (TDDS). In this work, we investigate an analytical framework for IoBNT with Forster resonance energy transfer (FRET) nanocommunication to enable intelligent bio nano thing (BNT) machine to accurately deliver therapeutic drug to the diseased cells. The FRET nanocommunication is accomplished by using the well-known pair of fluorescent proteins, EYFP and ECFP. Furthermore, the proposed IoBNT monitors drug transmission by using the quenching process in order to reduce side effects in healthy cells. We investigate the IoBNT framework by driving diffusional rate models in the presence of a quenching process. We evaluate the performance of the proposed framework in terms of the energy transfer efficiency, diffusion-controlled rate and drug loss rate. According to the simulation results, the proposed IoBNT with the intelligent bio nano thing for monitoring the quenching process can significantly achieve high energy transfer efficiency and low drug delivery loss rate, i.e., accurately delivering the desired therapeutic drugs to the diseased cell.
Assuntos
Internet das Coisas , Telemedicina , Transferência Ressonante de Energia de Fluorescência , Inteligência Artificial , InternetRESUMO
Internet of things (IoT) applications in smart agricultural systems vary from monitoring climate conditions, automating irrigation systems, greenhouse automation, crop monitoring and management, and crop prediction, up to end-to-end autonomous farm management systems. One of the main challenges to the advancement of IoT systems for the agricultural domain is the lack of training data under operational environmental conditions. Most of the current designs are based on simulations and artificially generated data. Therefore, the essential first step is studying and understanding the finely tuned and highly sensitive mechanism plants have developed to sense, respond, and adapt to changes in their environment, and their behavior under field and controlled systems. Therefore, this study was designed to achieve two specific objectives; to develop low-cost IoT components from basic building blocks, and to study the performance of the developed systems, and generate real-time experimental data, with and without plants. Low-cost IoT devices developed locally were used to convert existing basic polytunnels to semi-controlled and monitoring-only polytunnels. Their performances were analyzed and compared with each other based on several matrices while maintaining the planted tomato variety and agronomic practices similar. The developed system performed as expected suggesting the possibility of commercial applications and research purposes.
Assuntos
Internet das Coisas , Agricultura , Fazendas , Automação , ClimaRESUMO
Cyber-attack is one of the most challenging aspects of information technology. After the emergence of the Internet of Things, which is a vast network of sensors, technology started moving towards the Internet of Things (IoT), many IoT based devices interplay in most of the application wings like defence, healthcare, home automation etc., As the technology escalates, it gives an open platform for raiders to hack the network devices. Even though many traditional methods and Machine Learning algorithms are designed hot, still it "Have a Screw Loose" in detecting the cyber-attacks. To "Pull the Plug on" an effective "Intrusion Detection System (IDS)" is designed with "Deep Learning" technique. This research work elucidates the importance in detecting the cyber-attacks as "Anomaly" and "Normal". Fast Region-Based Convolution Neural Network (Fast R-CNN), a deep convolution network is implemented to develop an efficient and adaptable IDS. After hunting many research papers and articles, "Gradient Boosting" is found to be a powerful optimizer algorithm that gives us a best results when compared to other existing methods. This algorithm uses "Regression" tactics, a statistical technique to predict the continuous target variable that correlates between the variables. To create a structured valid dataset, a stacked model is made by implementing the two most popular dimensionality reduction techniques Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) algorithms. The brainwaves made us to hybridize Fast R-CNN and Gradient Boost Regression (GBR) which reduces the loss function, processing time and boosts the model's performance. All the above said methods are trained and tested with NIDS dataset V.10 2017. Finally, the "Decision Making" model decides the best result by giving an alert message. Our proposed model attains a high accuracy of 99.5% in detecting the "Cyber Attacks". The experiment results revealed that the effectiveness of our proposed model surpasses other deep neural network and machine learning techniques which have less accuracy.
Assuntos
Internet das Coisas , Animais , Internet , Algoritmos , Automação , Parafusos ÓsseosRESUMO
Walking/gait quality is a useful clinical tool to assess general health and is now broadly described as the sixth vital sign. This has been mediated by advances in sensing technology, including instrumented walkways and three-dimensional motion capture. However, it is wearable technology innovation that has spawned the highest growth in instrumented gait assessment due to the capabilities for monitoring within and beyond the laboratory. Specifically, instrumented gait assessment with wearable inertial measurement units (IMUs) has provided more readily deployable devices for use in any environment. Contemporary IMU-based gait assessment research has shown evidence of the robust quantifying of important clinical gait outcomes in, e.g., neurological disorders to gather more insightful habitual data in the home and community, given the relatively low cost and portability of IMUs. The aim of this narrative review is to describe the ongoing research regarding the need to move gait assessment out of bespoke settings into habitual environments and to consider the shortcomings and inefficiencies that are common within the field. Accordingly, we broadly explore how the Internet of Things (IoT) could better enable routine gait assessment beyond bespoke settings. As IMU-based wearables and algorithms mature in their corroboration with alternate technologies, such as computer vision, edge computing, and pose estimation, the role of IoT communication will enable new opportunities for remote gait assessment.
Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Marcha , Caminhada , AlgoritmosRESUMO
The multi-agent system is used to study the negotiation problem of virtual enterprises in the context of the Internet of Things (IoT) to strengthen the decision-making ability of enterprises and improve the negotiation efficiency between different enterprises. Firstly, virtual enterprises and high-tech virtual enterprises are introduced. Secondly, the virtual enterprise negotiation model is implemented using the agent technology in the IoT, including constructing the operation mode of the alliance enterprise agent and the member enterprise agent. Finally, a negotiation algorithm based on improved Bayesian theory is proposed. It is applied to virtual enterprise negotiation, and the effect of the negotiation algorithm is verified by setting an example. The results show that: (1) When one side of the enterprise adopts a risk-taking strategy, the number of negotiation rounds between the two sides increases. (2) High joint utility can be achieved when both parties to the negotiation adopt a conservative strategy. (3) The improved Bayesian algorithm can improve the negotiation efficiency of enterprises by reducing the number of negotiation rounds. This study aims to achieve efficient negotiation between the alliance and the member enterprises to improve the decision-making ability of the alliance owner enterprise.
Assuntos
Internet das Coisas , Teorema de Bayes , Negociação , Algoritmos , InternetRESUMO
The Wearable Internet of Medical Things (WIoMT) is a collective term for all wearable medical devices connected to the internet to facilitate the collection and sharing of health data such as blood pressure, heart rate, oxygen level, and more. Standard wearable devices include smartwatches and fitness bands. This evolving phenomenon due to the IoT has become prevalent in managing health and poses severe security and privacy risks to personal information. For better implementation, performance, adoption, and secured wearable medical devices, observing users' perception is crucial. This study examined users' perspectives of trust in the WIoMT while also exploring the associated security risks. Data analysed from 189 participants indicated a significant variance (R2 = 0.553) on intention to use WIoMT devices, which was determined by the significant predictors (95% Confidence Interval; p < 0.05) perceived usefulness, perceived ease of use, and perceived security and privacy. These were found to have important consequences, with WIoMT users intending to use the devices based on the trust factors of usefulness, easy to use, and security and privacy features. Further outcomes of the study identified how users' security matters while adopting the WIoMT and provided implications for the healthcare industry to ensure regulated devices that secure confidential data.
Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , Segurança Computacional , Privacidade , Percepção , InternetRESUMO
Individuals with diabetes mellitus type 1 (DM1) tend to check their blood sugar levels multiple times daily and utilize this information to predict their future glycemic levels. Based on these predictions, patients decide on the best approach to regulate their glucose levels with considerations such as insulin dosage and other related factors. Nevertheless, modern developments in Internet of Things (IoT) technology and innovative biomedical sensors have enabled the constant gathering of glucose level data using continuous glucose monitoring (CGM) in addition to other biomedical signals. With the use of machine learning (ML) algorithms, glycemic level patterns can be modeled, enabling accurate forecasting of this variable. Constrained devices have limited computational power, making it challenging to run complex machine learning algorithms directly on these devices. However, by leveraging edge computing, using lightweight machine learning algorithms, and performing preprocessing and feature extraction, it is possible to run machine learning algorithms on constrained devices despite these limitations. In this paper we test the burdens of some constrained IoT devices, probing that it is feasible to locally predict glycemia using a smartphone, up to 45 min in advance and with acceptable accuracy using random forest.
Assuntos
Diabetes Mellitus Tipo 1 , Internet das Coisas , Humanos , Automonitorização da Glicemia , Glicemia , Aprendizado de MáquinaRESUMO
Throughout the course of human history, owing to innovations that shape the future of mankind, many technologies have been innovated and used towards making people's lives easier. Such technologies have made us who we are today and are involved with every domain that is vital for human survival such as agriculture, healthcare, and transportation. The Internet of Things (IoT) is one such technology that revolutionizes almost every aspect of our lives, found early in the 21st century with the advancement of Internet and Information Communication (ICT) Technologies. As of now, the IoT is served in almost every domain, as we mentioned above, allowing the connectivity of digital objects around us to the Internet, thus allowing the remote monitoring, control, and execution of actions based on underlying conditions, making such objects smarter. Over time, the IoT has progressively evolved and paved the way towards the Internet of Nano-Things (IoNT) which is the use of nano-size miniature IoT devices. The IoNT is a relatively new technology that has lately begun to establish a name for itself, and many are not aware of it, even in academia or research. The use of the IoT always comes at a cost, owing to the connectivity to the Internet and the inherently vulnerable nature of IoT, wherein it paves the way for hackers to compromise security and privacy. This is also applicable to the IoNT, which is the advanced and miniature version of IoT, and brings disastrous consequences if such security and privacy violations were to occur as no one can notice such issues pertaining to the IoNT, due to their miniaturized nature and novelty in the field. The lack of research in the IoNT domain has motivated us to synthesize this research, highlighting architectural elements in the IoNT ecosystem and security and privacy challenges pertaining to the IoNT. In this regard, in the study, we provide a comprehensive overview of the IoNT ecosystem and security and privacy pertaining to the IoNT as a reference to future research.
Assuntos
Internet das Coisas , Privacidade , Humanos , Ecossistema , Segurança Computacional , Atenção à Saúde , InternetRESUMO
Internet of things (IoT)-enabled wireless body area network (WBAN) is an emerging technology that combines medical devices, wireless devices, and non-medical devices for healthcare management applications. Speech emotion recognition (SER) is an active research field in the healthcare domain and machine learning. It is a technique that can be used to automatically identify speakers' emotions from their speech. However, the SER system, especially in the healthcare domain, is confronted with a few challenges. For example, low prediction accuracy, high computational complexity, delay in real-time prediction, and how to identify appropriate features from speech. Motivated by these research gaps, we proposed an emotion-aware IoT-enabled WBAN system within the healthcare framework where data processing and long-range data transmissions are performed by an edge AI system for real-time prediction of patients' speech emotions as well as to capture the changes in emotions before and after treatment. Additionally, we investigated the effectiveness of different machine learning and deep learning algorithms in terms of performance classification, feature extraction methods, and normalization methods. We developed a hybrid deep learning model, i.e., convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM), and a regularized CNN model. We combined the models with different optimization strategies and regularization techniques to improve the prediction accuracy, reduce generalization error, and reduce the computational complexity of the neural networks in terms of their computational time, power, and space. Different experiments were performed to check the efficiency and effectiveness of the proposed machine learning and deep learning algorithms. The proposed models are compared with a related existing model for evaluation and validation using standard performance metrics such as prediction accuracy, precision, recall, F1 score, confusion matrix, and the differences between the actual and predicted values. The experimental results proved that one of the proposed models outperformed the existing model with an accuracy of about 98%.
Assuntos
Internet das Coisas , Fala , Humanos , Redes Neurais de Computação , Aprendizado de Máquina , EmoçõesRESUMO
Farming is a fundamental factor driving economic development in most regions of the world. As in agricultural activity, labor has always been hazardous and can result in injury or even death. This perception encourages farmers to use proper tools, receive training, and work in a safe environment. With the wearable device as an Internet of Things (IoT) subsystem, the device can read sensor data as well as compute and send information. We investigated the validation and simulation dataset to determine whether accidents occurred with farmers by applying the Hierarchical Temporal Memory (HTM) classifier with each dataset input from the quaternion feature that represents 3D rotation. The performance metrics analysis showed a significant 88.00% accuracy, precision of 0.99, recall of 0.04, F_Score of 0.09, average Mean Square Error (MSE) of 5.10, Mean Absolute Error (MAE) of 0.19, and a Root Mean Squared Error (RMSE) of 1.51 for the validation dataset, 54.00% accuracy, precision of 0.97, recall of 0.50, F_Score of 0.66, MSE = 0.06, MAE = 3.24, and = 1.51 for the Farming-Pack motion capture (mocap) dataset. The computational framework with wearable device technology connected to ubiquitous systems, as well as statistical results, demonstrate that our proposed method is feasible and effective in solving the problem's constraints in a time series dataset that is acceptable and usable in a real rural farming environment for optimal solutions.
Assuntos
Aprendizado Profundo , Internet das Coisas , Humanos , Fazendeiros , Fazendas , AgriculturaRESUMO
Generally, there is much to praise about the rise in acknowledging the need for young citizens to exercise their rights and duties, but the belief remains that this is not yet entrenched in young citizens' overall democratic involvement. A lack of citizenship and engagement in community issues was revealed by a recent study conducted by the authors in a secondary school from the outskirts of Aveiro, Portugal, during the 2019/2020 school year. Under the umbrella of a Design-Based Research methodological framework, citizen science strategies were implemented in the context of teaching, learning, and assessment, and at the service of the educational project of the target school, in a STEAM approach, and under Domains of Curricular Autonomy activities. The study's findings suggest that to build the bridge for participatory citizenship, teachers should engage students in collecting and analyzing data regarding communal environmental issues in a Citizen Science approach supported by the Internet of Things. The new pedagogies addressing the lack of citizenship and engagement in community issues promoted students' involvement at school and in the community, contributed to inform municipal education policies, and promoted dialogue and communication between local actors.
Assuntos
Ciência do Cidadão , Internet das Coisas , Humanos , Cidadania , Instituições Acadêmicas , Exercício FísicoRESUMO
Deep neural networks (DNNs) have been widely adopted in many fields, and they greatly promote the Internet of Health Things (IoHT) systems by mining health-related information. However, recent studies have shown the serious threat to DNN-based systems posed by adversarial attacks, which has raised widespread concerns. Attackers maliciously craft adversarial examples (AEs) and blend them into the normal examples (NEs) to fool the DNN models, which seriously affects the analysis results of the IoHT systems. Text data is a common form in such systems, such as the patients' medical records and prescriptions, and we study the security concerns of the DNNs for textural analysis. As identifying and correcting AEs in discrete textual representations is extremely challenging, the available detection techniques are still limited in performance and generalizability, especially in IoHT systems. In this paper, we propose an efficient and structure-free adversarial detection method, which detects AEs even in attack-unknown and model-agnostic circumstances. We reveal that sensitivity inconsistency prevails between AEs and NEs, leading them to react differently when important words in the text are perturbed. This discovery motivates us to design an adversarial detector based on adversarial features, which are extracted based on sensitivity inconsistency. Since the proposed detector is structure-free, it can be directly deployed in off-the-shelf applications without modifying the target models. Compared to the state-of-the-art detection methods, our proposed method improves adversarial detection performance, with an adversarial recall of up to 99.7% and an F1-score of up to 97.8%. In addition, extensive experiments have shown that our method achieves superior generalizability as it can be generalized across different attackers, models, and tasks.
Assuntos
Internet das Coisas , Aprendizagem , Humanos , Internet , Registros Médicos , Redes Neurais de ComputaçãoRESUMO
As an equipment failure that often occurs in coal production and transportation, belt conveyor failure usually requires many human and material resources to be identified and diagnosed. Therefore, it is urgent to improve the efficiency of fault identification, and this paper combines the internet of things (IoT) platform and the Light Gradient Boosting Machine (LGBM) model to establish a fault diagnosis system for the belt conveyor. Firstly, selecting and installing sensors for the belt conveyor to collect the running data. Secondly, connecting the sensor and the Aprus adapter and configuring the script language on the client side of the IoT platform. This step enables the collected data to be uploaded to the client side of the IoT platform, where the data can be counted and visualized. Finally, the LGBM model is built to diagnose the conveyor faults, and the evaluation index and K-fold cross-validation prove the model's effectiveness. In addition, after the system was established and debugged, it was applied in practical mine engineering for three months. The field test results show: (1) The client of the IoT can well receive the data uploaded by the sensor and present the data in the form of a graph. (2) The LGBM model has a high accuracy. In the test, the model accurately detected faults, including belt deviation, belt slipping, and belt tearing, which happened twice, two times, one time and one time, respectively, as well as timely gaving warnings to the client and effectively avoiding subsequent accidents. This application shows that the fault diagnosis system of belt conveyors can accurately diagnose and identify belt conveyor failure in the coal production process and improve the intelligent management of coal mines.
Assuntos
Internet das Coisas , Humanos , Meios de Transporte , SoftwareRESUMO
Due to the global COVID-19 pandemic, public health control and screening measures have been introduced at healthcare facilities, including those housing our most vulnerable populations. These warning measures situated at hospital entrances are presently labour-intensive, requiring additional staff to conduct manual temperature checks and risk-assessment questionnaires of every individual entering the premises. To make this process more efficient, we present eGate, a digital COVID-19 health-screening smart Internet of Things system deployed at multiple entry points around a children's hospital. This paper reports on design insights based on the experiences of concierge screening staff stationed alongside the eGate system. Our work contributes towards social-technical deliberations on how to improve design and deploy of digital health-screening systems in hospitals. It specifically outlines a series of design recommendations for future health screening interventions, key considerations relevant to digital screening control systems and their implementation, and the plausible effects on the staff who work alongside them.
Assuntos
COVID-19 , Internet das Coisas , Criança , Humanos , Pandemias/prevenção & controle , Internet , Hospitais PediátricosRESUMO
In recent years, circular business models (CBM) have become an inevitable requirement to foster improvements in environmental performance. However, the current literature rarely discusses the link between Internet of Things (IoT) and CBM. This paper first identifies four IoT capabilities including monitoring, tracking, optimization and design evolution for improving CBM performance based on the ReSOLVE framework. In a second step, a systematic literature review using the PRISMA approach analyzes how these capabilities contribute to 6 R and CBM through the CBM-6R and CBM-IoT cross-section heatmaps and relationship frameworks, followed by assessing the quantitative impacts of IoT on potential energy saving in CBM. Finally, challenges are analyzed for the realization of IoT-enabled CBM. The results show that the assessments of Loop and Optimize business models dominate current studies. IoT plays a significant role in these business models respectively through tracking, monitoring and optimization capabilities. While (quantitative) case studies for Virtualize, Exchange and Regenerate CBM are substantially needed. IoT holds the potential to reduce energy consumption by around 20-30% for referenced applications in the literature. However, the IoT hardware, software and protocol energy consumption, interoperability, security and financial investment might become main obstacles for the wider use of IoT in CBM.