Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.010
Filtrar
1.
J Psychiatr Res ; 173: 347-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581903

RESUMO

Several studies on attention-deficit hyperactivity disorder (ADHD) have suggested a developmental sequence of brain changes: subcortico-subcortical connectivity in children, evolving to subcortico-cortical in adolescence, and culminating in cortico-cortical connectivity in young adulthood. This study hypothesized that children with ADHD would exhibit decreased functional connectivity (FC) between the cortex and striatum compared to adults with ADHD, who may show increased FC in these regions. Seventy-six patients with ADHD (26 children, 26 adolescents, and 24 adults) and 74 healthy controls (25 children, 24 adolescents, and 25 adults) participated in the study. Resting state magnetic resonance images were acquired using a 3.0 T Philips Achieva scanner. The results indicated a gradual decrease in the number of subcategories representing intelligence quotient deficits in the ADHD group with age. In adulthood, the ADHD group exhibited lower working memory compared to the healthy control group. The number of regions showing decreased FC from the cortex to striatum between the ADHD and control groups reduced with age, while regions with increased FC from the default mode network and attention network in the ADHD group increased with age. In adolescents and adults, working memory was positively associated with brain activity in the postcentral gyrus and negatively correlated with ADHD clinical symptoms. In conclusion, the findings suggest that intelligence deficits in certain IQ subcategories may diminish as individuals with ADHD age. Additionally, the study indicates an increasing anticorrelation between cortical and subcortical regions with age in individuals with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adulto , Adolescente , Criança , Humanos , Adulto Jovem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo , Vias Neurais/diagnóstico por imagem
2.
J Neural Eng ; 21(2)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38479020

RESUMO

Objective.Recent studies have demonstrated that the analysis of brain functional networks (BFNs) is a powerful tool for exploring brain aging and age-related neurodegenerative diseases. However, investigating the mechanism of brain aging associated with dynamic BFN is still limited. The purpose of this study is to develop a novel scheme to explore brain aging patterns by constructing dynamic BFN using resting-state functional magnetic resonance imaging data.Approach.A dynamic sliding-windowed non-negative block-diagonal representation (dNBDR) method is proposed for constructing dynamic BFN, based on which a collection of dynamic BFN measures are suggested for examining age-related differences at the group level and used as features for brain age classification at the individual level.Results.The experimental results reveal that the dNBDR method is superior to the sliding time window with Pearson correlation method in terms of dynamic network structure quality. Additionally, significant alterations in dynamic BFN structures exist across the human lifespan. Specifically, average node flexibility and integration coefficient increase with age, while the recruitment coefficient shows a decreased trend. The proposed feature extraction scheme based on dynamic BFN achieved the highest accuracy of 78.7% in classifying three brain age groups.Significance. These findings suggest that dynamic BFN measures, dynamic community structure metrics in particular, play an important role in quantitatively assessing brain aging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Envelhecimento , Mapeamento Encefálico/métodos
3.
Cell Stem Cell ; 31(3): 283-284, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458174

RESUMO

Dissecting the role of the thalamus in neuropsychiatric disorders requires new models to analyze complex genetic interactions. In this issue of Cell Stem Cell, Shin et al. use patient-derived thalamocortical organoids to investigate 22q11.2 microdeletion impact on thalamic development, revealing significant transcriptional dysregulation linked to psychiatric disorders.


Assuntos
Córtex Cerebral , Transtornos Mentais , Humanos , Vias Neurais , Transtornos Mentais/genética , Tálamo , Organoides
4.
Exp Gerontol ; 188: 112388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432051

RESUMO

PURPOSE: Declining energy and increasing fatigue, common in older age, predict neurodegenerative conditions, but their neural substrates are not known. We examined brain resting state connectivity in relation to declining self-reported energy levels (SEL) and occurrence of fatigue over time. METHODS: We examined resting-state functional MRI in 272 community dwelling older adults participating in the Health Aging and Body Composition Study (mean age 83 years; 57.4 % female; 40.8 % Black) with measures of fatigue and SEL collected at regular intervals over the prior ten years. Functional connectivity (FC) between cortex and striatum was examined separately for sensorimotor, executive, and limbic functional subregions. Logistic regression tested the association of FC in each network with prior fatigue state (reporting fatigue at least once or never reporting fatigue), and with SEL decline (divided into stable or declining SEL groups) and adjusted for demographic, physical function, mood, cognition, and comorbidities. RESULTS: Higher cortico-striatal FC in the right limbic network was associated with lower odds of reporting fatigue (better) at least once during the study period (adjusted odds ratio [95 % confidence interval], p-value: (0.747 [0.582, 0.955], 0.020), independent of SEL. Higher cortico-striatal FC in the right executive network was associated with higher odds of declining SEL (worse) during the study period (adjusted odds ratio [95 % confidence interval], p-value: (1.31 [1.01, 1.69], 0.041), independent of fatigue. Associations with other networks were not significant. CONCLUSIONS: In this cohort of older adults, the cortico-striatal functional connectivity of declining SEL appears distinct from that underlying fatigue. Studies to further assess the neural correlates of energy and fatigue, and their independent contribution to neurodegenerative conditions are warranted.


Assuntos
Imageamento por Ressonância Magnética , Doenças Neurodegenerativas , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Vias Neurais , Encéfalo/diagnóstico por imagem , Fadiga , Mapeamento Encefálico
5.
Brain Res Bull ; 210: 110925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493835

RESUMO

Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have widely explored the temporal connection changes in the human brain following long-term sleep deprivation (SD). However, the frequency-specific topological properties of sleep-deprived functional networks remain virtually unclear. In this study, thirty-seven healthy male subjects underwent resting-state fMRI during rested wakefulness (RW) and after 36 hours of SD, and we examined frequency-specific spectral connection changes (0.01-0.08 Hz, interval = 0.01 Hz) caused by SD. First, we conducted a multivariate pattern analysis combining linear SVM classifiers with a robust feature selection algorithm, and the results revealed that accuracies of 74.29%-84.29% could be achieved in the classification between RW and SD states in leave-one-out cross-validation at different frequency bands, moreover, the spectral connection at the lowest and highest frequency bands exhibited higher discriminative power. Connection involving the cingulo-opercular network increased most, while connection involving the default-mode network decreased most following SD. Then we performed a graph-theoretic analysis and observed reduced low-frequency modularity and high-frequency global efficiency in the SD state. Moreover, hub regions, which were primarily situated in the cerebellum and the cingulo-opercular network after SD, exhibited high discriminative power in the aforementioned classification consistently. The findings may indicate the frequency-dependent effects of SD on the functional network topology and its efficiency of information exchange, providing new insights into the impact of SD on the human brain.


Assuntos
Mapeamento Encefálico , Privação do Sono , Humanos , Masculino , Privação do Sono/diagnóstico por imagem , Vias Neurais/patologia , Encéfalo/patologia , Vigília , Imageamento por Ressonância Magnética/métodos
6.
Cell Rep ; 43(3): 113933, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460131

RESUMO

Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.


Assuntos
Núcleo Central da Amígdala , Núcleos Septais , Animais , Proteína Quinase C-delta/metabolismo , Anorexia/metabolismo , Neurônios/metabolismo , Núcleo Central da Amígdala/metabolismo , Vias Neurais/fisiologia , Núcleos Septais/fisiologia
7.
Brain Struct Funct ; 229(4): 987-999, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502328

RESUMO

The frontal aslant tract (FAT) is a white matter tract connecting the superior frontal gyrus (SFG) to the inferior frontal gyrus (IFG). Its dorsal origin is identified in humans in the medial wall of the SFG, in the supplementary motor complex (SM-complex). However, empirical observation shows that many FAT fibres appear to originate from the dorsal, rather than medial, portion of the SFG. We quantitatively investigated the actual origin of FAT fibres in the SFG, specifically discriminating between terminations in the medial wall and in the convexity of the SFG. We analysed data from 105 subjects obtained from the Human Connectome Project (HCP) database. We parcelled the cortex of the IFG, dorsal SFG and medial SFG in several regions of interest (ROIs) ordered in a caudal-rostral direction, which served as seed locations for the generation of streamlines. Diffusion imaging data (DWI) was processed using a multi-shell multi-tissue CSD-based algorithm. Results showed that the number of streamlines originating from the dorsal wall of the SFG significantly exceeds those from the medial wall of the SFG. Connectivity patterns between ROIs indicated that FAT sub-bundles are segregated in parallel circuits ordered in a caudal-rostral direction. Such high degree of coherence in the streamline trajectory allows to establish pairs of homologous cortical parcels in the SFG and IFG. We conclude that the frontal origin of the FAT is found in both dorsal and medial surfaces of the superior frontal gyrus.


Assuntos
Conectoma , Substância Branca , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem
8.
Med Image Anal ; 94: 103120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458095

RESUMO

We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize tissue microstructure and positional information from all points within a fiber tract without the need to average or bin data along the streamline as traditionally required by dMRI tractometry methods. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, to gain insight into the brain regions that contribute most strongly to the prediction results, we propose a Critical Region Localization algorithm. This algorithm identifies highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project Young Adult dataset. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models that have been applied to predict individual cognitive performance based on neuroimaging features. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. Within each tract, we localize critical regions whose microstructure and point information are highly and consistently predictive of language performance across different subjects and across multiple independently trained models. These critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.


Assuntos
Conectoma , Aprendizado Profundo , Substância Branca , Adulto Jovem , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idioma , Vias Neurais
9.
Cell Rep ; 43(3): 113915, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484736

RESUMO

Tanimoto et al.1 report essential information on teleostean basal ganglia circuitry. This analysis opens gateways into studying neurophysiology, neuropharmacology, and behavior in zebrafish, guided by this complex functional neural system common to all vertebrates.


Assuntos
Deslizamentos de Terra , Peixe-Zebra , Animais , Vias Neurais/fisiologia , Gânglios da Base/fisiologia
10.
Cell Rep ; 43(3): 113916, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484735

RESUMO

The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.


Assuntos
Gânglios da Base , Peixe-Zebra , Animais , Peixe-Zebra/genética , Gânglios da Base/fisiologia , Corpo Estriado , Globo Pálido/fisiologia , Animais Geneticamente Modificados , Mamíferos , Vias Neurais/fisiologia
12.
Hum Brain Mapp ; 45(5): e26650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553863

RESUMO

Healthy aging is associated with a heterogeneous decline across cognitive functions, typically observed between language comprehension and language production (LP). Examining resting-state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the CamCAN cohort, we performed state-of-the-art graph theoretical analysis to uncover the neural mechanisms underlying this variability. At the cognitive level, our findings suggest that LP is not an isolated function but is modulated throughout the lifespan by the extent of inter-cognitive synergy between semantic and domain-general processes. At the cerebral level, we show that default mode network (DMN) suppression coupled with fronto-parietal network (FPN) integration is the way for the brain to compensate for the effects of dedifferentiation at a minimal cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN suppression in midlife could compromise the ability to manage the cost of FPN integration. This may prompt older adults to adopt a more cost-efficient compensatory strategy that maintains global homeostasis at the expense of LP performances. Taken together, we propose that midlife represents a critical neurocognitive juncture that signifies the onset of LP decline, as older adults gradually lose control over semantic representations. We summarize our findings in a novel synergistic, economical, nonlinear, emergent, cognitive aging model, integrating connectomic and cognitive dimensions within a complex system perspective.


Assuntos
Conectoma , Longevidade , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Cognição , Mapeamento Encefálico , Idioma , Imageamento por Ressonância Magnética , Vias Neurais
13.
Neuroimage ; 290: 120570, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467344

RESUMO

The brain is a complex, dynamic organ that shows differences in the same subject at various periods. Understanding how brain activity changes across age as a function of the brain networks has been greatly abetted by fMRI. Canonical analysis consists of determining how alterations in connectivity patterns (CPs) of certain regions are affected. An alternative approach is taken here by not considering connectivity but rather features computed from recordings at the regions of interest (ROIs). Using machine learning (ML) we assess how neural signals are altered by and prospectively predictive of age and sex via a methodology that is novel in drawing upon pairwise classification across six decades of subjects' chronological ages. ML is used to answer the equally important questions of what properties of the computed features are most predictive as well as which brain networks are most affected by aging. It was found that there is decreased differentiation among the neural signals of older subjects that are separated in age by the same number of years as younger subjects. Furthermore, the burstiness of the signals change at different rates between males and females. The findings provide insight into brain aging via an ROI-based analysis, the consideration of several feature groups, and a novel classification-based ML pipeline. There is also a contribution to understanding the effects of data aggregated from different recording centers on the conclusions of fMRI studies.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Envelhecimento
14.
Cortex ; 173: 296-312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447266

RESUMO

Post-stroke aphasia recovery, especially in the chronic phase, is challenging to predict. Functional integrity of the brain and brain network topology have been suggested as biomarkers of language recovery. This study sought to investigate functional connectivity in four predefined brain networks (i.e., language, default mode, dorsal attention, and salience networks), in relation to aphasia severity and response to language therapy. Thirty patients with chronic post-stroke aphasia were recruited and received a treatment targeting word finding. Structural and functional brain scans were acquired at baseline and resting state functional connectivity for each network was calculated. Additionally, graph measures quantifying network properties were calculated for each network. These included global efficiency for all networks and average strength and clustering coefficient for the language network. Linear mixed effects models showed that mean functional connectivity in the default mode, dorsal attention, and salience networks as well as graph measures of all four networks are independent predictors of response to therapy. While greater mean functional connectivity and global efficiency of the dorsal attention and salience networks predicted greater treatment response, greater mean functional connectivity and global efficiency in the default mode network predicted poorer treatment response. Results for the language network were more nuanced with more efficient network configurations (as reflected in graph measures), but not mean functional connectivity, predicting greater treatment response. These findings highlight the prognostic value of resting-state functional connectivity in chronic treatment-induced aphasia recovery.


Assuntos
Afasia , Terapia da Linguagem , Humanos , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Afasia/diagnóstico por imagem , Afasia/etiologia , Afasia/terapia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
15.
Sci Rep ; 14(1): 6015, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472307

RESUMO

When conversing with an unacquainted person, if it goes well, we can obtain much satisfaction (referred to as conversational satisfaction). Can we predict how satisfied dyads will be with face-to-face conversation? To this end, we employed interpersonal similarity in whole-brain resting-state functional connectivity (RSFC), measured using functional magnetic resonance imaging before dyadic conversation. We investigated whether conversational satisfaction could be predicted from interpersonal similarity in RSFC using multivariate pattern analysis. Consequently, prediction was successful, suggesting that interpersonal similarity in RSFC is an effective neural biomarker predicting how much face-to-face conversation goes well. Furthermore, regression coefficients from predictive models suggest that both interpersonal similarity and dissimilarity contribute to good interpersonal relationships in terms of brain activity. The present study provides the potential of an interpersonal similarity approach using RSFC for understanding the foundations of human relationships and new neuroscientific insight into whether success in human interactions is predetermined.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Vias Neurais , Mapeamento Encefálico/métodos , Relações Interpessoais , Imageamento por Ressonância Magnética , Satisfação Pessoal
16.
Mol Brain ; 17(1): 5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317261

RESUMO

Entorhinal cortical (EC)-hippocampal (HPC) circuits are crucial for learning and memory. Although it was traditionally believed that superficial layers (II/III) of the EC mainly project to the HPC and deep layers (V/VI) receive input from the HPC, recent studies have highlighted the significant projections from layers Va and VI of the EC into the HPC. However, it still remains unknown whether Vb neurons in the EC provide projections to the hippocampus. In this study, using a molecular marker for Vb and retrograde tracers, we identified that the outer layer of Vb neurons in the medial EC (MEC) directly project to both dorsal and ventral hippocampal dentate gyrus (DG), with a significant preference for the ventral DG. In contrast to the distribution of DG-projecting Vb cells, anterior thalamus-projecting Vb cells are distributed through the outer to the inner layer of Vb. Furthermore, dual tracer injections revealed that DG-projecting Vb cells and anterior thalamus-projecting Vb cells are distinct populations. These results suggest that the roles of MEC Vb neurons are not merely limited to the formation of EC-HPC loop circuits, but rather contribute to multiple neural processes for learning and memory.


Assuntos
Córtex Entorrinal , Neurônios , Camundongos , Animais , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Giro Denteado
17.
Hum Brain Mapp ; 45(3): e26629, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38379508

RESUMO

The corpus callosum (CC) is the principal white matter bundle supporting communication between the two brain hemispheres. Despite its importance, a comprehensive mapping of callosal connections is still lacking. Here, we constructed the first bidirectional population-based callosal connectional atlas between the midsagittal section of the CC and the cerebral cortex of the human brain by means of diffusion-weighted imaging tractography. The estimated connectional topographic maps within this atlas have the most fine-grained spatial resolution, demonstrate histological validity, and were reproducible in two independent samples. This new resource, a complete and comprehensive atlas, will facilitate the investigation of interhemispheric communication and come with a user-friendly companion online tool (CCmapping) for easy access and visualization of the atlas.


Assuntos
Córtex Cerebral , Corpo Caloso , Humanos , Adulto Jovem , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico/métodos
18.
Sci Rep ; 14(1): 4304, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383579

RESUMO

Alterations in the default mode network (DMN) are associated with aging. We assessed age-dependent changes of DMN interactions and correlations with a battery of neuropsychological tests, to understand the differences of DMN directed connectivity between young and older subjects. Using a novel multivariate analysis method on resting-state functional MRI data from fifty young and thirty-one healthy older subjects, we calculated intra- and inter-DMN 4-nodes directed pathways. For the old subject group, we calculated the partial correlations of inter-DMN pathways with: psychomotor speed and working memory, executive function, language, long-term memory and visuospatial function. Pathways connecting the DMN with visual and limbic regions in older subjects engaged at BOLD low frequency and involved the dorsal posterior cingulate cortex (PCC), whereas in young subjects, they were at high frequency and involved the ventral PCC. Pathways combining the sensorimotor (SM) cortex and the DMN, were SM efferent in the young subjects and SM afferent in the older subjects. Most DMN efferent pathways correlated with reduced speed and working memory. We suggest that the reduced sensorimotor efferent and the increased need to control such activities, cause a higher dependency on external versus internal cues thus suggesting how physical activity might slow aging.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Voluntários Saudáveis , Memória de Curto Prazo , Envelhecimento , Vias Neurais , Imageamento por Ressonância Magnética/métodos
19.
J Psychiatr Res ; 171: 215-221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309211

RESUMO

Aripiprazole modulates functional connectivity (FC) between several brain regions in first-episode schizophrenia patients, contributing to improvement in clinical symptoms. However, the effects of aripiprazole on abnormal connections among extensive brain networks in schizophrenia patients remain unclear. We aimed to investigate the effects of 12 weeks of aripiprazole treatment on the FC of large-scale brain networks. Forty-five first-episode drug-naïve schizophrenia patients and 45 healthy controls were recruited for this longitudinal study. Resting-state functional magnetic resonance imaging (fMRI) data were collected at baseline and after 12 weeks of aripiprazole treatment. The patients were classified into those in response (SCHr group) and non-response (SCHnr group) according to the improvement of clinical symptoms after 12-weeks treatment. The FC were evaluated for seven large-scale brain networks. In addition, correlation analysis was performed to investigate associations between changes FC of large-scale brain networks and clinical symptoms. Before aripiprazole treatment, schizophrenia patients showed decreased FC of extensive brain networks compared to healthy controls. The 12-week aripiprazole treatment significantly prevented the constantly decreased FC of subcortical network, default mode network and other brain networks in patients with SCHr, in association with the improvement of clinical symptoms. Taken together, these findings have revealed the effects of aripiprazole on FC in large-scale networks in schizophrenia patients, which could provide new insight on interpreting symptom improvement in SCH.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Aripiprazol/farmacologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico , Vias Neurais/diagnóstico por imagem
20.
Nat Rev Neurosci ; 25(3): 143-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316956

RESUMO

The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.


Assuntos
Regulação da Temperatura Corporal , Temperatura Baixa , Humanos , Animais , Regulação da Temperatura Corporal/fisiologia , Tremor por Sensação de Frio/fisiologia , Vias Neurais/fisiologia , Músculo Esquelético , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...