Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.234
Filtrar
1.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 340-345, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38733189

RESUMO

Objective: To analyze the distribution characteristics of UGT1A1 mutant genes (including enhancers, promoters, and exons 1-5) and further explore the correlation between UGT1A1 genotype and clinical phenotypes in patients with inherited hyperunconjugated bilirubinemia. Methods: Patients diagnosed with hereditary hyperunconjugated bilirubinemia at Nanjing Second Hospital from June 2015 to December 2022 were retrospectively analyzed. The UGT1A1 gene was examined using Sanger sequencing in all patients. Complete blood count, liver function, and abdominal imaging examinations were performed. Comparison of categorical variable data using χ(2) testor Fisher percision tests. Comparison of continaous veriable data with normal distribution using t-test. Results: 112 cases (male:female ratio 81:31, aged 9-70 years) had inherited hyperunconjugated bilirubinemia, with a total of 14 mutation sites identified, of which seven were confirmed mutations, and the frequency ranged from high to low: (TA)n accounted for 50%, c.211G>A (p.G71R) accounted for 49.10%, 1456T>G (p.Y486D) accounted for 16.96%, c.686C>A (p.R229W) accounted for 12.5%, 1091C>T (p.P364L) accounted for 8.04%, and c- 3279T>G accounted for 0.982%. Simultaneously, all patients had one to four mutations, of which only one mutation was the most common (55.36%), followed by two mutations (37.5%), and rare three and four mutations (5.36% and 1.78%). There was no statistical significance in total bilirubin (TBil) levels among the four groups (F=0.652, P=0.583). One mutation was most common in (TA)n and c.211G>A (p.G71R), among which TA6/TA7 (n=10) and TA7/TA7 (n=14) mutations were statistically significant in TBil (t=2.143, P=0.043). The c.211G>A (p.G71R) heterozygous (n=9) and isolated (n=15) mutation had no statistical significance in TBil (t=0.382, P=0.706). The GS group accounted for 75%, the intermediate group accounted for 16.9%, and the CNS-Ⅱ group accounted for 8%. TBil was statistically significant among the three groups (F=270.992, P<0.001). There was no statistically significant difference (χ(2)=3.317, P=0.19) between mutation 1 (44 cases, 14 cases, and 4 cases, respectively) and mutations ≥ 2 (40 cases, 5 cases, and 5 cases, respectively) in the GS group, intermediate group, and CNS-II group. Conclusion: The number of UGT1A1 gene mutation sites may have no synergistic effect on TBil levels in patients with inherited hyperunconjugated bilirubinemia. TA7/TA7 mutations are not uncommon, and TBil levels are relatively high.


Assuntos
Genótipo , Glucuronosiltransferase , Mutação , Fenótipo , Humanos , Glucuronosiltransferase/genética , Estudos Retrospectivos , Hiperbilirrubinemia Hereditária/genética , Bilirrubina/sangue , Masculino , Feminino , Éxons , Adulto
2.
Analyst ; 149(10): 2877-2886, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38567989

RESUMO

Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) is expressed ubiquitously in cancer cells and can metabolize exogenous substances. Studies show higher UGT1A1 levels in pancreatic cancer cells than normal cells. Therefore, we need a method to monitor the activity level of UGT1A1 in pancreatic cancer cells and in vivo. Here, we report a fluorescent probe, BCy-panc, for UGT1A1 imaging in cells and in vivo. Compared with other molecular probes, this probe is readily prepared, with high selectivity and sensitivity for the detection of UGT1A1. Our results show that BCy-panc rapidly detects UGT1A1 in pancreatic cancer. In addition, there is an urgent need for evidence to clarify the relationship between UGT1A1 and pancreatic cancer development. The present investigation found that the increase of UGT1A1 by chrysin was effective in inducing apoptosis in pancreatic cancer cells. These results indicate that the synergistic effect of chrysin and cisplatin at the cellular level is superior to that of cisplatin alone. The UGT1A1 level may be a biomarker for early diagnosis of cancer. Meanwhile, UGT1A1 plays a crucial role in pancreatic cancer, and the combination of chrysin and cisplatin may provide effective ideas for pancreatic cancer treatment.


Assuntos
Corantes Fluorescentes , Glucuronosiltransferase , Neoplasias Pancreáticas , Neoplasias Pancreáticas/diagnóstico por imagem , Humanos , Glucuronosiltransferase/metabolismo , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Animais , Apoptose/efeitos dos fármacos , Imagem Óptica/métodos , Cisplatino/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
3.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38575184

RESUMO

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Assuntos
Neoplasias da Mama , Mama , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Mama/metabolismo , Neoplasias da Mama/metabolismo , Estrogênios , Homeostase , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
4.
BMC Cancer ; 24(1): 410, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566115

RESUMO

BACKGROUND: High expression of the glycosyltransferase UGT2B17 represents an independent adverse prognostic marker in chronic lymphocytic leukemia (CLL). It also constitutes a predictive marker for therapeutic response and a drug resistance mechanism. The key determinants driving expression of the UGT2B17 gene in normal and leukemic B-cells remain undefined. The UGT2B17 transcriptome is complex and is comprised of at least 10 alternative transcripts, identified by previous RNA-sequencing of liver and intestine. We hypothesized that the transcriptional program regulating UGT2B17 in B-lymphocytes is distinct from the canonical expression previously characterized in the liver. RESULTS: RNA-sequencing and genomics data revealed a specific genomic landscape at the UGT2B17 locus in normal and leukemic B-cells. RNA-sequencing and quantitative PCR data indicated that the UGT2B17 enzyme is solely encoded by alternative transcripts expressed in CLL patient cells and not by the canonical transcript widely expressed in the liver and intestine. Chromatin accessible regions (ATAC-Seq) in CLL cells mapped with alternative promoters and non-coding exons, which may be derived from endogenous retrotransposon elements. By luciferase reporter assays, we identified key cis-regulatory STAT3, RELA and interferon regulatory factor (IRF) binding sequences driving the expression of UGT2B17 in lymphoblastoid and leukemic B-cells. Electrophoretic mobility shift assays and pharmacological inhibition demonstrated key roles for the CLL prosurvival transcription factors STAT3 and NF-κB in the leukemic expression of UGT2B17. CONCLUSIONS: UGT2B17 expression in B-CLL is driven by key regulators of CLL progression. Our data suggest that a NF-κB/STAT3/IRF/UGT2B17 axis may represent a novel B-cell pathway promoting disease progression and drug resistance.


Assuntos
Leucemia Linfocítica Crônica de Células B , NF-kappa B , Humanos , NF-kappa B/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Prognóstico , Apoptose , RNA , Glucuronosiltransferase/genética , Antígenos de Histocompatibilidade Menor
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 551-555, 2024 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-38684299

RESUMO

OBJECTIVE: To analyze the types and distribution of pathogenic variants for neonatal genetic diseases in Huzhou, Zhejiang Province. METHODS: One thousand neonates (48 ~ 42 h after birth) born to Huzhou region were selected as the study subjects. Dry blood spot samples were collected from the newborns, and targeted capture high-throughput sequencing was carried out for pathogenic genes underlying 542 inherited diseases. Candidate variants were verified by Sanger sequencing. RESULTS: Among the 1 000 newborns, the male to female ratio was 1.02 : 1.00. No pathogenic variants were detected in 253 cases, whilst 747 cases were found to carry at least one pathogenic variant, which yielded a carrier rate of 74.7%. The most frequently involved pathogenic gene was FLG, followed by GJB2, UGT1A1, USH2A and DUOX2. The variants were classified as homozygous, compound heterozygous, and hemizygous variants. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), 213 neonates were verified to have carried pathogenic and/or likely pathogenic variants, with a positive rate of 21.3%. The most commonly involved genes had included UGT1A1, FLG, GJB2, MEFV and G6PD. CONCLUSION: Newborn screening based on high-throughput sequencing technology can expand the scope of screening and improve the positive predictive value. Genetic counseling based on the results can improve the patients' medical care and reduce neonatal mortality and childhood morbidity, while provide assistance to family members' health management and reproductive decisions.


Assuntos
Conexina 26 , Proteínas Filagrinas , Testes Genéticos , Humanos , Recém-Nascido , Feminino , Masculino , Conexina 26/genética , Testes Genéticos/métodos , China , Sequenciamento de Nucleotídeos em Larga Escala , Conexinas/genética , Triagem Neonatal/métodos , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/diagnóstico , Glucuronosiltransferase/genética , Mutação
6.
Eur J Drug Metab Pharmacokinet ; 49(3): 393-403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642299

RESUMO

BACKGROUND AND OBJECTIVE: The prediction of pharmacokinetic parameters for drugs metabolised by cytochrome P450 enzymes has been the subject of active research for many years, while the application of in vitro-in vivo extrapolation (IVIVE) techniques for non-cytochrome P450 enzymes has not been thoroughly evaluated. There is still no established quantitative method for predicting hepatic clearance of drugs metabolised by uridine 5'-diphospho-glucuronosyltransferases (UGTs), not to mention those which undergo hepatic uptake. The objective of the study was to predict the human hepatic clearance for telmisartan based on in vitro metabolic stability and hepatic uptake results. METHODS: Telmisartan was examined in liver systems, allowing to estimate intrinsic clearance (CLint, in vitro) based on the substrate disappearance rate with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Obtained CLint, in vitro values were corrected for corresponding unbound fractions. Prediction of human hepatic clearance was made from scaled unbound CLint, in vitro data with the use of the well-stirred model, and finally referenced to the literature value of observed clearance in humans, allowing determination of the essential scaling factors. RESULTS: The in vitro scaled CLint, in vitro by UGT1A3 was assessed using three systems, human hepatocytes, liver microsomes, and recombinant enzymes. Obtained values were scaled and hepatic metabolism clearance was predicted, resulting in significant clearance underprediction. Utilization of the extended clearance concept (ECC) and hepatic uptake improved prediction of hepatic metabolism clearance. The scaling factors for hepatocytes, assessing the in vitro-in vivo difference, changed from sixfold difference to only twofold difference with the application of the ECC. CONCLUSIONS: The study showed that taking into consideration hepatic uptake of a drug allows us to obtain satisfactory scaling factors, hence enabling the prediction of in vivo hepatic glucuronidation from in vitro data.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Microssomos Hepáticos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Telmisartan , Glucuronosiltransferase/metabolismo , Telmisartan/farmacocinética , Telmisartan/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Glucuronídeos/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Fígado/metabolismo , Fígado/enzimologia , Taxa de Depuração Metabólica , Espectrometria de Massas em Tandem/métodos , Hepatócitos/metabolismo , Modelos Biológicos , Cromatografia Líquida/métodos , Benzoatos/farmacocinética , Benzoatos/metabolismo
7.
Ecotoxicol Environ Saf ; 276: 116281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581907

RESUMO

Bromophenols (BPs) are prominent environmental pollutants extensively utilized in aquaculture, pharmaceuticals, and chemical manufacturing. This study aims to identify UDP- glucuronosyltransferases (UGTs) isoforms involved in the metabolic elimination of BPs. Mono-glucuronides of BPs were detected in human liver microsomes (HLMs) incubated with the co-factor uridine-diphosphate glucuronic acid (UDPGA). The glucuronidation metabolism reactions catalyzed by HLMs followed Michaelis-Menten or substrate inhibition kinetics. Recombinant enzymes and inhibition experiments with chemical reagents were employed to phenotype the principal UGT isoforms participating in BP glucuronidation. UGT1A6 emerged as the major enzyme in the glucuronidation of 4-Bromophenol (4-BP), while UGT1A1, UGT1A6, and UGT1A8 were identified as the most essential isoforms for metabolizing 2,4-dibromophenol (2,4-DBP). UGT1A1, UGT1A8, and UGT2B4 were deemed the most critical isoforms in the catalysis of 2,4,6-tribromophenol (2,4,6-TBP) glucuronidation. Species differences were investigated using the liver microsomes of pig (PLM), rat (RLM), monkey (MyLM), and dog (DLM). Additionally, 2,4,6-TBP effects on the expression of UGT1A1 and UGT2B7 in HepG2 cells were evaluated. The results demonstrated potential induction of UGT1A1 and UGT2B7 upon exposure to 2,4,6-TBP at a concentration of 50 µM. Collectively, these findings contribute to elucidating the metabolic elimination and toxicity of BPs.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Microssomos Hepáticos , Fenóis , Glucuronosiltransferase/metabolismo , Humanos , Animais , Fenóis/toxicidade , Fenóis/metabolismo , Glucuronídeos/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Cães , Ratos , Isoenzimas/metabolismo , Especificidade da Espécie
8.
World J Gastroenterol ; 30(9): 1189-1212, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577195

RESUMO

BACKGROUND: Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances. However, its contribution to the progression of liver damage remains unclear. AIM: To determine the role and mechanism of UGT1A1 in liver damage progression. METHODS: We investigated the relationship between UGT1A1 expression and liver injury through clinical research. Additionally, the impact and mechanism of UGT1A1 on the progression of liver injury was analyzed through a mouse model study. RESULTS: Patients with UGT1A1 gene mutations showed varying degrees of liver damage, while patients with acute-on-chronic liver failure (ACLF) exhibited relatively reduced levels of UGT1A1 protein in the liver as compared to patients with chronic hepatitis. This suggests that low UGT1A1 levels may be associated with the progression of liver damage. In mouse models of liver injury induced by carbon tetrachloride (CCl4) and concanavalin A (ConA), the hepatic levels of UGT1A1 protein were found to be increased. In mice with lipopolysaccharide or liver steatosis-mediated liver-injury progression, the hepatic protein levels of UGT1A1 were decreased, which is consistent with the observations in patients with ACLF. UGT1A1 knockout exacerbated CCl4- and ConA-induced liver injury, hepatocyte apoptosis and necroptosis in mice, intensified hepatocyte endoplasmic reticulum (ER) stress and oxidative stress, and disrupted lipid metabolism. CONCLUSION: UGT1A1 is upregulated as a compensatory response during liver injury, and interference with this upregulation process may worsen liver injury. UGT1A1 reduces ER stress, oxidative stress, and lipid metabolism disorder, thereby mitigating hepatocyte apoptosis and necroptosis.


Assuntos
Glucuronosiltransferase , Fígado , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Fígado/metabolismo
10.
Clin Pharmacol Ther ; 115(6): 1428-1440, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493369

RESUMO

In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) of atorvastatin (P = 1.2 × 10-10), 2-hydroxy atorvastatin (P = 4.0 × 10-8), and 4-hydroxy atorvastatin (P = 2.9 × 10-8). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC0-∞ (P = 3.8 × 10-8). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC0-∞ (P = 3.9 × 10-8). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10-11) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10-5) smaller atorvastatin AUC0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10-5) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].


Assuntos
Área Sob a Curva , Atorvastatina , Citocromo P-450 CYP3A , Estudo de Associação Genômica Ampla , Glucuronosiltransferase , Transportador 1 de Ânion Orgânico Específico do Fígado , Polimorfismo de Nucleotídeo Único , Humanos , Atorvastatina/farmacocinética , Atorvastatina/sangue , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Glucuronosiltransferase/genética , Masculino , Feminino , Adulto , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Adulto Jovem , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Pessoa de Meia-Idade , Genótipo , Voluntários Saudáveis , Variantes Farmacogenômicos
11.
Eur J Drug Metab Pharmacokinet ; 49(3): 343-353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472634

RESUMO

BACKGROUND AND OBJECTIVE: In vitro glucuronidation of 17ß-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS: The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS: In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION: Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.


Assuntos
Dimetil Sulfóxido , Estradiol , Etanol , Glucuronídeos , Glucuronosiltransferase , Microssomos Hepáticos , Solventes , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Estradiol/metabolismo , Estradiol/farmacologia , Glucuronosiltransferase/metabolismo , Humanos , Solventes/farmacologia , Animais , Cinética , Etanol/metabolismo , Etanol/farmacologia , Glucuronídeos/metabolismo , Dimetil Sulfóxido/farmacologia , Metanol/farmacologia , Metanol/metabolismo , Acetonitrilas/farmacologia , Acetonitrilas/metabolismo
12.
Technol Cancer Res Treat ; 23: 15330338241236658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497131

RESUMO

Background: Severe delayed diarrhea and hematological toxicity limit the use of irinotecan. Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) is a critical enzyme in irinotecan metabolism. The study aims to investigate the safety and efficacy of irinotecan under the guidance of the pre-treatment UGT1A1 genotype in the second-line treatment of gastric cancer. Methods: This study involved 110 patients. Irinotecan was injected intravenously every 3 weeks, and the dose of irinotecan was determined by polymorphism of the UGT1A1 gene, which was divided into three groups (125 mg/m2: GG type; 100 mg/m2: GA type; 75 mg/m2: AA type). The primary end point was overall survival (OS), the secondary end points were progression-free survival (PFS) and safety. Results: One hundred and seven patients received irinotecan treatment and three patients with AA type received paclitaxel treatment. Among 107 patients, there were no significant differences in PFS (4.8 m vs 4.9 m vs 4.4 m; p = 0.5249) and OS (9.3 m vs 9.3 m vs NA; p = 0.6821) among patients with GG/GA/AA subtypes after dose adjustment. For the patient with homozygosity mutation, treatment was switched to paclitaxel. There were no significant differences in PFS and OS among patients with different alleles or after dose adjustment (p > 0.05). There was a significant difference in the risk of delayed diarrhea (p = 0.000), leukopenia (p = 0.003) and neutropenia (p = 0.000) in patients with different UGT1A1*6 genotypes, while no difference in patients with different UGT1A1*28 genotypes. Additionally, grade 3/4 diarrhea, neutropenia, and leukopenia were significantly more common in AA genotype patients compared to GG (2%, 19%, 24%) or GA (23%, 31%, 31%) genotype patients. Conclusion: Individual irinotecan treatment shows encouraging survival and tolerability outcomes in patients with GG/GA subtype. Irinotecan may be not suitable for patients with AA subtype.


Assuntos
Antineoplásicos Fitogênicos , Neutropenia , Neoplasias Gástricas , Humanos , Antineoplásicos Fitogênicos/uso terapêutico , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Genótipo , Glucuronosiltransferase/genética , Irinotecano/efeitos adversos , Neutropenia/induzido quimicamente , Paclitaxel/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
13.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548118

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Assuntos
Ácidos Aristolóquicos , Doenças Mitocondriais , Humanos , Ácidos Aristolóquicos/toxicidade , Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucuronosiltransferase/metabolismo , Cinética , Catálise , Difosfato de Uridina/metabolismo
14.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 119-124, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38514260

RESUMO

Objective: To explore the relevancy between the uridine diphosphate-glucuronylgly-cosyltransferase 1A1 (UGT1A1) gene mutation and the phenotype of indirect hyperbilirubinemia in children. Methods: Sixteen cases with indirect hyperbilirubinemia who visited the Department of Gastroenterology, Children's Hospital of Nanjing Medical University from July 2013 to November 2019 were retrospectively analyzed and were divided into Gilbert syndrome (GS), Crigler-Najjar syndrome type II (CNS-II), and indirect hyperbilirubinemia groups unexplained by UGT1A1 gene mutations. The differences in gene mutation site information and general clinical data were compared. The association between gene mutation spectrum and bilirubin level was explored by t-test analysis. Results: Ten of the sixteen cases with indirect hyperbilirubinemia had GS, three had CNS-II, and three had indirect hyperbilirubinemia unexplained by UGT1A1 gene mutations. A total of six mutation types were detected, of which c.211G > A accounted for 37.5% (6/16), c.1456T > G accounted for 62.5% (10/16), and TATA accounted for 37.5% (6/16), respectively. Compared with the GS group, the CNS group had early disease onset incidence, high serum total bilirubin (t = 5.539, P < 0.05), and indirect bilirubin (t = 5.312, P < 0.05). However, there was no significant difference in direct bilirubin levels (t = 1.223, P > 0.05) and age of onset (t = 0.3611, P > 0.05) between the two groups. There was no significant correlation between the number of UGT1A1 gene mutations and serum bilirubin levels. Children with c.1456T > G homozygous mutations had the highest serum bilirubin levels. Conclusion: The common pathogenic variants of the UGT1A1 gene sequence are c.1456T > G, c.211G > A, and TATA, indicating that these site mutations are related to the occurrence of indirect hyperbilirubinemia and have important guiding significance for the etiological analysis of indirect hyperbilirubinemia in children.


Assuntos
Síndrome de Crigler-Najjar , Doença de Gilbert , Hiperbilirrubinemia , Criança , Humanos , Bilirrubina , Doença de Gilbert/genética , Glucuronosiltransferase/genética , Hiperbilirrubinemia/genética , Mutação , Estudos Retrospectivos
15.
Br J Clin Pharmacol ; 90(5): 1247-1257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332460

RESUMO

AIMS: Dolutegravir increases serum creatinine by inhibiting its renal tubular secretion and elimination. We investigated determinants of early changes in serum creatinine in a southern African cohort starting first-line dolutegravir-based antiretroviral therapy (ART). METHODS: We conducted a secondary analysis of data from participants in a randomized controlled trial of dolutegravir, emtricitabine and tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide fumarate (TAF) (ADVANCE, NCT03122262). We assessed clinical, pharmacokinetic and genetic factors associated with change in serum creatinine from baseline to Week 4 using linear regression models adjusted for age, sex, baseline serum creatinine, HIV-1 RNA concentration, CD4 T-cell count, total body weight and co-trimoxazole use. RESULTS: We included 689 participants, of whom 470 had pharmacokinetic data and 315 had genetic data. Mean change in serum creatinine was 11.3 (SD 9.9) µmol.L-1. Factors that were positively associated with change in serum creatinine at Week 4 were increased log dolutegravir area under the 24-h concentration-time curve (change in creatinine coefficient [ß] = 2.78 µmol.L-1 [95% confidence interval (CI) 0.54, 5.01]), TDF use (ß = 2.30 [0.53, 4.06]), male sex (ß = 5.20 [2.92, 7.48]), baseline serum creatinine (ß = -0.22 [-0.31, -0.12]) and UGT1A1 rs929596 A→G polymorphism with a dominant model (ß = -2.33 [-4.49, -0.17]). The latter did not withstand correction for multiple testing. CONCLUSIONS: Multiple clinical and pharmacokinetic factors were associated with early change in serum creatinine in individuals initiating dolutegravir-based ART. UGT1A1 polymorphisms may play a role, but further research on genetic determinants is needed.


Assuntos
Creatinina , Infecções por HIV , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Humanos , Piridonas/farmacocinética , Oxazinas/farmacocinética , Oxazinas/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Masculino , Creatinina/sangue , Feminino , Infecções por HIV/tratamento farmacológico , Adulto , África do Sul , Pessoa de Meia-Idade , Glucuronosiltransferase/genética , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/efeitos adversos , HIV-1/genética , HIV-1/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacocinética , Inibidores de Integrase de HIV/uso terapêutico , Inibidores de Integrase de HIV/efeitos adversos , Tenofovir/farmacocinética , Tenofovir/uso terapêutico , Emtricitabina/uso terapêutico , Emtricitabina/farmacocinética , Polimorfismo de Nucleotídeo Único
16.
Clin Pharmacol Ther ; 115(5): 1162-1174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38344867

RESUMO

Neutropenia is the major dose-limiting toxicity of irinotecan-based therapy. The objective of this study was to assess whether inclusion of germline genetic variants into a population pharmacokinetic/pharmacodynamic model can improve prediction of irinotecan-induced grade 4 neutropenia and identify novel variants of clinical value. A semimechanistic population pharmacokinetic/pharmacodynamic model was used to predict neutrophil response over time in 197 patients receiving irinotecan. Covariate analysis was performed for demographic/clinical factors and 4,781 genetic variants in 84 drug response- and toxicity-related genes to identify covariates associated with neutrophil response. We evaluated the predictive value of the model for grade 4 neutropenia reflecting different clinical scenarios of available data on identified demographic/clinical covariates, baseline and post-treatment absolute neutrophil counts (ANCs), individual pharmacokinetics, and germline genetic variation. Adding 8 genetic identified covariates (rs10929302 (UGT1A1), rs1042482 (DPYD), rs2859101 (HLA-DQB3), rs61754806 (NR3C1), rs9266271 (HLA-B), rs7294 (VKORC1), rs1051713 (ALOX5), and ABCB1 rare variant burden) to a model using only baseline ANCs improved prediction of irinotecan-induced grade 4 neutropenia from area under the receiver operating characteristic curve (AUC-ROC) of 50-64% (95% confidence interval (CI), 54-74%). Individual pharmacokinetics further improved the prediction to 74% (95% CI, 64-84%). When weekly ANC was available, the identified covariates and individual pharmacokinetics yielded no additional contribution to the prediction. The model including only ANCs at baseline and at week 1 achieved an AUC-ROC of 78% (95% CI, 69-88%). Germline DNA genetic variants may contribute to the prediction of irinotecan-induced grade 4 neutropenia when incorporated into a population pharmacokinetic/pharmacodynamic model. This approach is generalizable to drugs that induce neutropenia and ultimately allows for personalized intervention to enhance patient safety.


Assuntos
Neoplasias , Neutropenia , Humanos , Irinotecano/efeitos adversos , Genótipo , Neoplasias/tratamento farmacológico , Neutropenia/induzido quimicamente , Neutropenia/genética , Células Germinativas , Glucuronosiltransferase/genética , Vitamina K Epóxido Redutases/genética
17.
Chem Biol Interact ; 391: 110903, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331335

RESUMO

This study delves into the intricate mechanisms underlying drug-induced liver injury (DILI) with a specific focus on bromfenac, the withdrawn nonsteroidal anti-inflammatory drug. DILI is a pervasive concern in drug development, prompting market withdrawals and posing significant challenges to healthcare. Despite the withdrawal of bromfenac due to DILI, the exact role of its microsomal metabolism in inducing hepatotoxicity remains unclear. Herein, employing HepG2 cells with human liver microsomes and UDP-glucuronic acid (UDPGA), our investigation revealed a substantial increase in bromfenac-induced cytotoxicity in the presence of UDPGA, pointing to the significance of UDP-glucuronosyltransferase (UGT)-dependent metabolism in augmenting toxicity. Notably, among the recombinant UGTs examined, UGT2B7 emerged as a pivotal enzyme in the metabolic activation of bromfenac. Metabolite identification studies disclosed the formation of reactive intermediates, with bromfenac indolinone (lactam) identified as a potential mediator of hepatotoxic effects. Moreover, in cytotoxicity experiments, the toxicity of bromfenac lactam exhibited a 34-fold increase, relative to bromfenac. The toxicity of bromfenac lactam was mitigated by nicotinamide adenine dinucleotide phosphate-dependent metabolism. This finding underscores the role of UGT-dependent metabolism in generating reactive metabolites that contribute to the observed hepatotoxicity associated with bromfenac. Understanding these metabolic pathways and the involvement of specific enzymes, such as UGT2B7, provides crucial insights into the mechanisms of bromfenac-induced liver injury. In conclusion, this research sheds light on the metabolic intricacies leading to cytotoxicity induced by bromfenac, especially emphasizing the role of UGT-dependent metabolism and the formation of reactive intermediates like bromfenac lactam. These findings offer insight into the mechanistic basis of DILI and emphasize the importance of understanding metabolism-mediated toxicity.


Assuntos
Benzofenonas , Bromobenzenos , Doença Hepática Induzida por Substâncias e Drogas , Uridina Difosfato Ácido Glucurônico , Humanos , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato Ácido Glucurônico/farmacologia , Microssomos Hepáticos/metabolismo , Glucuronosiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Lactamas/metabolismo , Lactamas/farmacologia , Glucuronídeos/metabolismo
18.
Crit Rev Oncol Hematol ; 196: 104265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307394

RESUMO

The use of genetic testing to personalize therapeutic strategies in cancer is rapidly evolving and thus changing the landscape of treatment of oncologic patients. The UGT1A1 gene is an important component for the metabolism and glucoronidation of certain drugs, including irinotecan and sacituzumab govitecan (SG); therefore, various UGT1A1 polymorphisms leading to decreased function of the UGT1A1 enzyme may lead to increased risk of treatment-related side effects. Testing for UGT1A1 polymorphism is not routinely adopted in clinical practice; that is due to the lack of concise studies and recommendations concerning the clinical relevance of this test and its impact on the quality of life of cancer patients. The knowledge regarding UGT1A1 polymorphism and its clinical relevance will be reviewed in this article, as well as the published literature on the association between UGT1A1 polymorphism and the toxicity risk of irinotecan as well as sacituzumab govitecan. The current recommendations and guidelines on UGT1A1 testing will be discussed in detail in the hopes of providing guidance to oncologists in their clinical practice.


Assuntos
Neoplasias da Mama , Glucuronosiltransferase , Imunoconjugados , Humanos , Feminino , Irinotecano , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/induzido quimicamente , Qualidade de Vida , Camptotecina/efeitos adversos , Imunoconjugados/efeitos adversos , Genótipo
19.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38266493

RESUMO

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Assuntos
Flavanonas , Marchantia , Flavonoides/química , Apigenina , Glucuronídeos/metabolismo , Marchantia/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Escherichia coli/metabolismo , Glucose , Ácido Glucurônico , Difosfato de Uridina
20.
Arch Toxicol ; 98(3): 837-848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182911

RESUMO

Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.


Assuntos
Clorofenóis , Fígado , Microssomos Hepáticos , Bifenil Polibromatos , Humanos , Animais , Ratos , Camundongos , Cães , Suínos , Porco Miniatura/metabolismo , Microssomos Hepáticos/metabolismo , Fígado/metabolismo , Glucuronosiltransferase/metabolismo , Animais de Laboratório/metabolismo , Isoformas de Proteínas/metabolismo , Haplorrinos/metabolismo , Cinética , Glucuronídeos/metabolismo , Difosfato de Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...