Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
J Nanobiotechnology ; 22(1): 529, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218876

RESUMO

Magnetic nanoparticles offer many exciting possibilities in biomedicine, from cell imaging to cancer treatment. One of the currently researched nanoparticles are magnetosomes, magnetite nanoparticles of high chemical purity synthesized by magnetotactic bacteria. Despite their therapeutic potential, very little is known about their degradation in human cells, and even less so of their degradation within tumours. In an effort to explore the potential of magnetosomes for cancer treatment, we have explored their degradation process in a 3D human lung carcinoma model at the subcellular level and with nanometre scale resolution. We have used state of the art hard X-ray probes (nano-XANES and nano-XRF), which allow for identification of distinct iron phases in each region of the cell. Our results reveal the progression of magnetite oxidation to maghemite within magnetosomes, and the biosynthesis of magnetite and ferrihydrite by ferritin.


Assuntos
Óxido Ferroso-Férrico , Neoplasias Pulmonares , Nanopartículas de Magnetita , Magnetossomos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Magnetossomos/metabolismo , Magnetossomos/química , Nanopartículas de Magnetita/química , Óxido Ferroso-Férrico/química , Linhagem Celular Tumoral , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferritinas/metabolismo , Ferritinas/química , Oxirredução
2.
Microbiome ; 12(1): 158, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182147

RESUMO

BACKGROUND: Magnetotactic bacteria (MTB) are a unique group of microorganisms that sense and navigate through the geomagnetic field by biomineralizing magnetic nanoparticles. MTB from the phylum Nitrospirota (previously known as Nitrospirae) thrive in diverse aquatic ecosystems. They are of great interest due to their production of hundreds of magnetite (Fe3O4) magnetosome nanoparticles per cell, which far exceeds that of other MTB. The morphological, phylogenetic, and genomic diversity of Nitrospirota MTB have been extensively studied. However, the metabolism and ecophysiology of Nitrospirota MTB are largely unknown due to the lack of cultivation techniques. METHODS: Here, we established a method to link the morphological, genomic, and metabolic investigations of an uncultured Nitrospirota MTB population (named LHC-1) at the single-cell level using nanoscale secondary-ion mass spectrometry (NanoSIMS) in combination with rRNA-based in situ hybridization and target-specific mini-metagenomics. RESULTS: We magnetically separated LHC-1 from a freshwater lake and reconstructed the draft genome of LHC-1 using genome-resolved mini-metagenomics. We found that 10 LHC-1 cells were sufficient as a template to obtain a high-quality draft genome. Genomic analysis revealed that LHC-1 has the potential for CO2 fixation and NO3- reduction, which was further characterized at the single-cell level by combining stable-isotope incubations and NanoSIMS analyses over time. Additionally, the NanoSIMS results revealed specific element distributions in LHC-1, and that the heterogeneity of CO2 and NO3- metabolisms among different LHC-1 cells increased with incubation time. CONCLUSIONS: To our knowledge, this study provides the first metabolic measurements of individual Nitrospirota MTB cells to decipher their ecophysiological traits. The procedure constructed in this study provides a promising strategy to simultaneously investigate the morphology, genome, and ecophysiology of uncultured microbes in natural environments. Video Abstract.


Assuntos
Genoma Bacteriano , Filogenia , Análise de Célula Única , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Magnetossomos/metabolismo , Magnetossomos/genética , Lagos/microbiologia , Metagenômica/métodos , RNA Ribossômico 16S/genética
3.
PLoS Biol ; 22(7): e3002695, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38995981

RESUMO

Multicellular magnetotactic bacteria (MMB) have a surprisingly complex multicellular lifestyle. A new study in PLOS Biology combines genomics, microscopy, and isotopic labeling to show that MMB form obligately multicellular consortia of genetically diverse cells with rudimentary division of labor.


Assuntos
Bactérias , Bactérias/genética , Bactérias/metabolismo , Magnetospirillum/metabolismo , Magnetospirillum/fisiologia , Magnetospirillum/genética , Magnetospirillum/citologia , Magnetossomos/metabolismo
4.
Biomater Adv ; 163: 213969, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059114

RESUMO

While significant advances have been made in exploring and uncovering the promising potential of biomagnetic materials, persistent challenges remain on various fronts, notably in the characterization of individual elements. This study makes use of advanced modes of Magnetic Force Microscopy (MFM) and tailored MFM probes to characterize individual magnetotactic bacteria in different environments. The characterization of these elements posed a significant challenge, as the magnetosomes, besides presenting low magnetic signal, are embedded in bacteria of much larger size. To overcome this, customed Atomic Force Microscopy probes are developed through various strategies, enhancing sensitivity in different environments, including liquids. Furthermore, employing MFM imaging under an in-situ magnetic field provides an opportunity to gather quantitative data regarding the critical fields of these individual chains of nanoparticles. This approach marks a substantial advancement in the field of MFM for biological applications, enabling the detection of magnetosomes under different conditions.


Assuntos
Magnetossomos , Microscopia de Força Atômica , Magnetossomos/metabolismo , Magnetossomos/química , Magnetossomos/ultraestrutura , Microscopia de Força Atômica/métodos , Magnetospirillum/metabolismo , Campos Magnéticos
5.
J Bacteriol ; 206(6): e0000824, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38819153

RESUMO

Magnetotactic bacteria are a diverse group of microbes that use magnetic particles housed within intracellular lipid-bounded magnetosome organelles to guide navigation along geomagnetic fields. The development of magnetosomes and their magnetic crystals in Magnetospirillum magneticum AMB-1 requires the coordinated action of numerous proteins. Most proteins are thought to localize to magnetosomes during the initial stages of organelle biogenesis, regardless of environmental conditions. However, the magnetite-shaping protein Mms6 is only found in magnetosomes that contain magnetic particles, suggesting that it might conditionally localize after the formation of magnetosome membranes. The mechanisms for this unusual mode of localization to magnetosomes are unclear. Here, using pulse-chase labeling, we show that Mms6 translated under non-biomineralization conditions translocates to pre-formed magnetosomes when cells are shifted to biomineralizing conditions. Genes essential for magnetite production, namely mamE, mamM, and mamO, are necessary for Mms6 localization, whereas mamN inhibits Mms6 localization. MamD localization was also investigated and found to be controlled by similar cellular factors. The membrane localization of Mms6 is dependent on a glycine-leucine repeat region, while the N-terminal domain of Mms6 is necessary for retention in the cytosol and impacts conditional localization to magnetosomes. The N-terminal domain is also sufficient to impart conditional magnetosome localization to MmsF, altering its native constitutive magnetosome localization. Our work illuminates an alternative mode of protein localization to magnetosomes in which Mms6 and MamD are excluded from magnetosomes by MamN until biomineralization initiates, whereupon they translocate into magnetosome membranes to control the development of growing magnetite crystals.IMPORTANCEMagnetotactic bacteria (MTB) are a diverse group of bacteria that form magnetic nanoparticles surrounded by membranous organelles. MTB are widespread and serve as a model for bacterial organelle formation and biomineralization. Magnetosomes require a specific cohort of proteins to enable magnetite formation, but how those proteins are localized to magnetosome membranes is unclear. Here, we investigate protein localization using pulse-chase microscopy and find a system of protein coordination dependent on biomineralization-permissible conditions. In addition, our findings highlight a protein domain that alters the localization behavior of magnetosome proteins. Utilization of this protein domain may provide a synthetic route for conditional functionalization of magnetosomes for biotechnological applications.


Assuntos
Proteínas de Bactérias , Magnetossomos , Magnetospirillum , Magnetospirillum/genética , Magnetospirillum/metabolismo , Magnetossomos/metabolismo , Magnetossomos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transporte Proteico
6.
Proc Natl Acad Sci U S A ; 121(23): e2319148121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805285

RESUMO

Magnetotactic bacteria produce chains of nanoscopic iron minerals used for navigation, which can be preserved over geological timescales in the form of magnetofossils. Micrometer-sized magnetite crystals with unusual shapes suggesting a biologically controlled mineralization have been found in the geological record and termed giant magnetofossils. The biological origin and function of giant magnetofossils remains unclear, due to the lack of modern analogues to giant magnetofossils. Using distinctive Ptychographic nanotomography data of Precambrian (1.88 Ga) rocks, we recovered the morphology of micrometric cuboid grains of iron oxides embedded in an organic filamentous fossil to construct synthetic magnetosomes. Their morphology is different from that of previously found giant magnetofossils, but their occurrence in filamentous microfossils and micromagnetic simulations support the hypothesis that they could have functioned as a navigation aid, akin to modern magnetosomes.


Assuntos
Fósseis , Magnetossomos , Magnetossomos/química , Magnetossomos/metabolismo , Óxido Ferroso-Férrico/química , Sedimentos Geológicos/química
7.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38726825

RESUMO

Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm-1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.


Assuntos
Antibacterianos , Magnetossomos , Nanopartículas , Providencia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Ferro/química , Ferro/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetossomos/metabolismo , Testes de Sensibilidade Microbiana , Nanopartículas/química , Tamanho da Partícula , Providencia/química , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus/efeitos dos fármacos
8.
Anal Methods ; 16(10): 1546-1553, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38404205

RESUMO

The compound 3-phenoxybenzoic acid (3-PBA) is frequently utilized as a biomarker to detect exposure to various pyrethroids. In this study, a bivalent nanobody (Nb2) specifically targeting 3-PBA was biotinylated and immobilized onto streptavidin (SA)-modified bacterial magnetic nanoparticles (BMPs), resulting in the formation of BMP-SA-Biotin-Nb2 complexes. These complexes demonstrated remarkable stability when exposed to strongly acidic solutions (4 M HCl), methanol (80%), and high ionic strength (1.37 M NaCl). An immunoassay was subsequently developed utilizing BMP-SA-Biotin-Nb2 as the capture agent and 3-PBA-horseradish peroxidase as the detection probe. The immunoassay exhibited an IC50 value (half-maximum signal inhibition concentration) of 1.11 ng mL-1 for 3-PBA. To evaluate the accuracy of the assay, spiked sheep and cow urine samples (ranging from 3.0 to 240 ng mL-1) were analyzed. The quantitative recoveries ranged from 82.5% to 113.1%, which agreed well with the findings obtained using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Overall, the BMP-SA-Biotin-Nb2-based immunoassay holds great promise for rapid monitoring of 3-PBA following acid dissociation.


Assuntos
Benzoatos , Biotina , Magnetossomos , Feminino , Bovinos , Animais , Ovinos , Estreptavidina/química , Biotina/química , Ensaio de Imunoadsorção Enzimática/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem
9.
Microb Cell Fact ; 23(1): 70, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419080

RESUMO

We report the successful fabrication of a pharmaceutical cellular bank (PCB) containing magnetotactic bacteria (MTB), which belong to the Magnetospirillum gryphiswaldense MSR1 species. To produce such PCB, we amplified MTB in a minimal growth medium essentially devoid of other heavy metals than iron and of CMR (Carcinogenic, mutagenic and reprotoxic) products. The PCB enabled to acclimate MTB to such minimal growth conditions and then to produce highly pure magnetosomes composed of more than 99.9% of iron. The qualification of the bank as a PCB relies first on a preserved identity of the MTB compared with the original strain, second on genetic bacterial stability observed over 100 generations or under cryo-preservation for 16 months, third on a high level of purity highlighted by an absence of contaminating microorganisms in the PCB. Furthermore, the PCB was prepared under high-cell load conditions (9.108 cells/mL), allowing large-scale bacterial amplification and magnetosome production. In the future, the PCB could therefore be considered for commercial as well as research orientated applications in nanomedicine. We describe for the first-time conditions for setting-up an effective pharmaceutical cellular bank preserving over time the ability of certain specific cells, i.e. Magnetospirillum gryphiswaldense MSR1 MTB, to produce nano-minerals, i.e. magnetosomes, within a pharmaceutical setting.


Assuntos
Magnetossomos , Magnetospirillum , Magnetospirillum/genética , Ferro , Preparações Farmacêuticas , Proteínas de Bactérias/genética
10.
Small ; 20(21): e2308247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174612

RESUMO

Iron oxide nanoparticles are a kind of important biomedical nanomaterials. Although their industrial-scale production can be realized by the conventional coprecipitation method, the controllability of their size and morphology remains a huge challenge. In this study, a kind of synthetic polypeptide Mms6-28 which mimics the magnetosome protein Mms6 is used for the bioinspired synthesis of Fe3O4 nanoparticles (NPs). Magnetosomes-like Fe3O4 NPs with uniform size, cubooctahedral shape, and smooth crystal surfaces are synthesized via a partial oxidation process. The Mms6-28 polypeptides play an important role by binding with iron ions and forming nucleation templates and are also preferably attached to the [100] and [111] crystal planes to induce the formation of uniform cubooctahedral Fe3O4 NPs. The continuous release and oxidation of Fe2+ from pre-formed Fe2+-rich precursors within the Mms6-28-based template make the reaction much controllable. The study affords new insights into the bioinspired- and bio-synthesis mechanism of magnetosomes.


Assuntos
Magnetossomos , Magnetossomos/química , Nanopartículas de Magnetita/química , Oxirredução
11.
Food Chem ; 441: 138377, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38219367

RESUMO

Immunomagnetic beads provide novel tools for high-throughput immunoassay techniques. In this study, protein G (PG) was immobilized onto bacterial magentic particles (BMPs) using an additional cysteine residue at the C-terminus. A broad-spectrum monoclonal antibody against glucocorticoids (GCs) was attached to BMPs through PG-Fc interaction, generating BMP-PG-mIgG immunomagentic beads. A sensitive one-step immunoassay was developed for GCs based on combination of BMP-PG-mIgG and dexamethasone-horseradish peroxidase tracer (DMS-HRP). The developed assay exhibited half inhibitory concentrations (IC50) for dexamethasone (DMS), betamethasone (BMS), prednisolone (PNS), hydrocortisone (HCS), beclomethasone (BCMS), cortisone (CS), 6-α-methylprednisone (6-α-MPNS), fludrocortisone acetate (HFCS) of 0.98, 1.49, 2.42, 9.29, 1.63, 6.13, 7.3, and 4.89 ng/mL, respectively. The method showed recoveries ranging rates from 86.5 % to 117 % with a coefficient of variation less than 12.3 % in milk sample, which showed a good correlation with LC-MS/MS. Thus, the proposed assay offers a rapid and broad-spectrum screening tool for simultaneous detection of GCs in milk.


Assuntos
Glucocorticoides , Magnetossomos , Animais , Glucocorticoides/análise , Leite/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Imunoensaio/métodos , Bactérias , Dexametasona/análise , Separação Imunomagnética/métodos
12.
Nucleic Acids Res ; 52(6): 2924-2941, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197240

RESUMO

Nitric oxide (NO) plays an essential role as signaling molecule in regulation of eukaryotic biomineralization, but its role in prokaryotic biomineralization is unknown. Magnetospirillum gryphiswaldense MSR-1, a model strain for studies of prokaryotic biomineralization, has the unique ability to form magnetosomes (magnetic organelles). We demonstrate here that magnetosome biomineralization in MSR-1 requires the presence of NsrRMg (an NO sensor) and a certain level of NO. MSR-1 synthesizes endogenous NO via nitrification-denitrification pathway to activate magnetosome formation. NsrRMg was identified as a global transcriptional regulator that acts as a direct activator of magnetosome gene cluster (MGC) and nitrification genes but as a repressor of denitrification genes. Specific levels of NO modulate DNA-binding ability of NsrRMg to various target promoters, leading to enhancing expression of MGC genes, derepressing denitrification genes, and repressing nitrification genes. These regulatory functions help maintain appropriate endogenous NO level. This study identifies for the first time the key transcriptional regulator of major MGC genes, clarifies the molecular mechanisms underlying NsrR-mediated NO signal transduction in magnetosome formation, and provides a basis for a proposed model of the role of NO in the evolutionary origin of prokaryotic biomineralization processes.


Assuntos
Proteínas de Bactérias , Magnetossomos , Magnetospirillum , Proteínas de Bactérias/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo
13.
Artif Cells Nanomed Biotechnol ; 52(1): 69-83, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38214676

RESUMO

Magnetosomes are iron oxide or iron sulphide nano-sized particles surrounded by a lipid bilayer synthesised by a group of bacteria known as magnetotactic bacteria (MTB). Magnetosomes have become a promising candidate for biomedical applications and could be potentially used as a drug-carrier. However, pharmacokinetics and immunogenicity of the magnetosomes have not been understood yet which preclude its clinical applications. Herein, we investigated the pharmacokinetics of magnetosomes including Absorption, Distribution, Metabolism, and Elimination (ADME) along with its immunogenicity in vitro and in vivo. The magnetosomes were conjugated with fluorescein isothiocyanate (Mag-FITC) and their conjugation was confirmed through fluorescence microscopy and its absorption in HeLa cell lines was evaluated using flow cytometry analysis. The results revealed a maximum cell uptake of 97% at 200 µg/mL concentration. Further, the biodistribution of Mag-FITC was investigated in vivo by a bioimaging system using BALB/c mice as a subject at different time intervals. The Mag-FITC neither induced death nor physical distress and the same was eliminated post 36 h of injection with meagre intensities left behind. The metabolism and elimination analysis were assessed to detect the iron overload which revealed that magnetosomes were entirely metabolised within 48-h interval. Furthermore, the histopathology and serum analysis reveal no histological damage with the absence of any abnormal biochemical parameters. The results support our study that magnetosomes were completely removed from the blood circulation within 48-h time interval. Moreover, the immunogenicity analysis has shown that magnetosomes do not induce any inflammation as indicated by reduced peaks of immune markers such as IL 1ß, IL 2, IL 6, IL8, IFN γ, and TNF α estimated through Indirect ELISA. The normal behaviour of animals with the absence of acute or chronic toxicities in any organs declares that magnetosomes are safe to be injected. This shows that magnetosomes are benign for biological systems enrouting towards beneficial biomedical applications. Therefore, this study will advance the understanding and application of magnetosomes for clinical purposes.


Assuntos
Magnetossomos , Humanos , Animais , Camundongos , Magnetossomos/metabolismo , Células HeLa , Fluoresceína-5-Isotiocianato/metabolismo , Distribuição Tecidual , Bactérias/metabolismo , Óxido Ferroso-Férrico
14.
Nat Nanotechnol ; 19(1): 115-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37735601

RESUMO

Magnetosomes produced by magnetotactic bacteria have great potential for application in biotechnology and medicine due to their unique physicochemical properties and high biocompatibility. Attempts to transfer the genes for magnetosome biosynthesis into non-magnetic organisms have had mixed results. Here we report on a systematic study to identify key components needed for magnetosome biosynthesis after gene transfer. We transfer magnetosome genes to 25 proteobacterial hosts, generating seven new magnetosome-producing strains. We characterize the recombinant magnetosomes produced by these strains and demonstrate that denitrification and anaerobic photosynthesis are linked to the ability to synthesize magnetosomes upon the gene transfer. In addition, we show that the number of magnetosomes synthesized by a foreign host negatively correlates with the guanine-cytosine content difference between the host and the gene donor. Our findings have profound implications for the generation of magnetized living cells and the potential for transgenic biogenic magnetic nanoparticle production.


Assuntos
Magnetossomos , Magnetospirillum , Magnetospirillum/genética , Magnetossomos/genética , Magnetossomos/química , Biotecnologia , Fenômenos Magnéticos , Especificidade de Hospedeiro , Proteínas de Bactérias
15.
Anal Bioanal Chem ; 416(1): 141-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934249

RESUMO

In this study, two mutant strains, TBC and TBC+, able to biosynthesize a novel functional magnetosome-nanobody (Nb), were derived from the magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1. The magnetosome-Nbs biosynthesized by TBC+ containing multi-copies of the Nb gene had a higher binding ability to an environmental pollutant, tetrabromobisphenol A (TBBPA), than those biosynthesized by TBC containing only one copy of the Nb gene. The magnetosome-Nbs from TBC+ can effectively bind to TBBPA in solutions with high capacity without being affected by a broad range of NaCl and methanol concentrations as well as pH. Therefore, a magnetosome-Nb-based enzyme-linked immunosorbent assay (ELISA) was developed and optimized for the detection of TBBPA, yielding a half-maximum signal inhibition concentration of 0.23 ng/mL and a limit of detection of 0.025 ng/mL. The assay was used to detect TBBPA in spiked river water samples, giving average recoveries between 90 and 120% and coefficients of variation of 2.5-6.3%. The magnetosome-Nb complex could be reused 4 times in ELISA without affecting the performance of the assay. Our results demonstrate the potential of magnetosome-Nbs produced by TBC+ as cost-effective and environment-friendly reagents for immunoassays to detect small molecules in environmental waters.


Assuntos
Magnetossomos , Magnetossomos/metabolismo , Água , Ensaio de Imunoadsorção Enzimática , Proteínas de Bactérias/química
16.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38066686

RESUMO

AIMS: Magnetotactic bacteria (MTB) can use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field. They play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have shown that the applied magnetic fields could affect the magnetosome formation and antioxidant defense systems in MTB. However, the molecular mechanisms by which magnetic fields affect MTB cells remain unclear. We aim to better understand the dark at 28°C-29°C for 20 h, as shownthe interactions between magnetic fields and cells, and the mechanism of MTB adaptation to magnetic field at molecular levels. METHODS AND RESULTS: We performed microbiological, transcriptomic, and genetic experiments to analyze the effects of a weak static magnetic field (SMF) exposure on the cell growth and magnetosome formation in the MTB strain Magnetospirillum magneticum AMB-1. The results showed that a 1.5 mT SMF significantly promoted the cell growth but reduced magnetosome formation in AMB-1, compared to the geomagnetic field. Transcriptomic analysis revealed decreased expression of genes primarily involved in the sulfate reduction pathway. Consistently, knockout mutant lacking adenylyl-sulfate kinase CysC did no more react to the SMF and the differences in growth and Cmag disappeared. Together with experimental findings of increased reactive oxidative species in the SMF-treated wild-type strain, we proposed that cysC, as a key gene, can participate in the cell growth and mineralization in AMB-1 by SMF regulation. CONCLUSIONS: This study suggests that the magnetic field exposure can trigger a bacterial oxidative stress response involved in AMB-1 growth and magnetosome mineralization by regulating the sulfur metabolism pathway. CysC may serve as a pivotal enzyme in mediating sulfur metabolism to synchronize the impact of SMF on both growth and magnetization of AMB-1.


Assuntos
Magnetossomos , Magnetossomos/genética , Magnetossomos/metabolismo , Sulfatos/metabolismo , Redes e Vias Metabólicas , Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37974050

RESUMO

Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.


Assuntos
Lagos , Magnetossomos , Lagos/microbiologia , Pequim , Filogenia , Biomineralização , Magnetossomos/química , Magnetossomos/genética , Bactérias/genética , Bactérias Gram-Negativas , Óxido Ferroso-Férrico/análise
18.
ACS Appl Mater Interfaces ; 15(42): 48882-48891, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823552

RESUMO

The natural biofilm on magnetosomes obtained from the biomineralization of magnetotactic bacteria, which replaced a complex chemical modification process on the surface of Fe3O4, can be used as the organic component and copper(II) ions as the inorganic component to form organic-inorganic nanoflowers in phosphate systems. Characterization by scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating-sample magnetometry proved that magnetic nanoflowers loaded with silver ions (Ag/MN-Cu×NFs) were successfully fabricated. In vitro antibacterial experiments demonstrated that Ag/MN-Cu×NFs displayed strong antibacterial effects against Escherichia coli and Staphylococcus aureus, with minimum inhibitory concentrations of 10 and 80 µg/mL, respectively. Ag/MN-Cu×NFs, which possessed good biocompatibility as confirmed by cytotoxicity and hemolysis tests, were able to promote wound healing in the face of bacterial infection in vivo without causing toxicity to major organs. Therefore, magnetosomes as a natural carrier have great application potential in the synthesis of multifunctional magnetosomes by direct hybridization with a target substance.


Assuntos
Magnetossomos , Nanopartículas Metálicas , Prata/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Íons , Nanopartículas Metálicas/química
19.
mBio ; 14(5): e0164923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823629

RESUMO

IMPORTANCE: To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants. Our results further indicate the existence of species-specific MamK interactors and shed light on the evolutionary relationships of one of the key proteins associated with bacterial magnetotaxis.


Assuntos
Magnetossomos , Magnetospirillum , Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Bactérias/metabolismo
20.
Microbiol Spectr ; 11(6): e0172923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800960

RESUMO

IMPORTANCE: As the most important non-magnetotactic magnetosome-producing bacteria, Acidithiobacillus ferrooxidans only requires very mild conditions to produce Fe3O4 nanoparticles, thus conferring greater flexibility and potential application in biomagnetic nanoparticle production. However, the available information cannot explain the mechanism of Fe3O4 nanoparticle formation in A. ferrooxidans. In this study, we applied phenomic and transcriptomic analyses to reveal this mechanism. We found that different treatment condition factors notably affect the phenomic data of Fe3O4 nanoparticle in A. ferrooxidans. Using transcriptomic analyses, the gene network controlling/regulating Fe3O4 nanoparticle biogenesis in A. ferrooxidans was proposed, excavating the candidate hub genes for Fe3O4 nanoparticle formation in A. ferrooxidans. Based on this information, a sequential model for Fe3O4 nanoparticle synthesis in A. ferrooxidans was hypothesized. It lays the groundwork for further clarifying the feature of Fe3O4 nanoparticle synthesis.


Assuntos
Magnetossomos , Nanopartículas , Fenômica , Magnetossomos/genética , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA