Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.405
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 264, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997701

RESUMO

BACKGROUND AND OBJECTIVES: Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG-repeat expansions (> 200) in the FMR1 gene leading to lack of expression. Espansion between 55 and 200 triplets fall within the premutation range (PM) and can lead to different clinical conditions, including fragile X- primary ovarian insufficiency (FXPOI), fragile X-associated neuropsychiatric disorders (FXAND) and fragile X-associated tremor/ataxia syndrome (FXTAS). Although there is not a current cure for FXS and for the Fragile X-PM associated conditions (FXPAC), timely diagnosis as well as the implementation of treatment strategies, psychoeducation and behavioral intervention may improve the quality of life (QoL) of people with FXS or FXPAC. With the aim to investigate the main areas of concerns and the priorities of treatment in these populations, the Italian National Fragile X Association in collaboration with Bambino Gesù Children's Hospital, conducted a survey among Italian participants. METHOD: Here, we present a survey based on the previous study that Weber and colleagues conducted in 2019 and that aimed to investigate the main symptoms and challenges in American individuals with FXS. The survey has been translated into Italian language to explore FXS needs of treatment also among Italian individuals affected by FXS, family members, caretakers, and professionals. Furthermore, we added a section designated only to people with PM, to investigate the main symptoms, daily living challenges and treatment priorities. RESULTS: Anxiety, challenging behaviors, language difficulties and learning disabilities were considered the major areas of concern in FXS, while PM was reported as strongly associated to cognitive problems, social anxiety, and overthinking. Anxiety was reported as a treatment priority in both FXS and PM. CONCLUSION: FXS and PM can be associated with a range of cognitive, affective, and physical health complications. Taking a patient-first perspective may help clinicians to better characterize the cognitive-behavioral phenotype associated to these conditions, and eventually to implement tailored therapeutic approaches.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Feminino , Itália , Masculino , Inquéritos e Questionários , Adulto , Qualidade de Vida , Pessoa de Meia-Idade , Ataxia/genética , Ataxia/terapia , Adulto Jovem , Adolescente , Tremor/genética , Tremor/terapia , Criança
2.
J Neurogenet ; 38(2): 27-34, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975939

RESUMO

Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.


Assuntos
Ataxia , DNA Mitocondrial , Humanos , Masculino , Feminino , DNA Mitocondrial/genética , Adulto , Pessoa de Meia-Idade , Ataxia/genética , Adolescente , Doenças Mitocondriais/genética , Adulto Jovem , Mitocôndrias/genética , Criança , Idoso , Sequenciamento do Exoma , Fenótipo
3.
Medicine (Baltimore) ; 103(29): e38966, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029081

RESUMO

RATIONALE: Neuromyelitis optica spectrum disorder (NMOSD) involves autoimmune and inflammatory responses in the central nervous system, primarily affecting the optic nerves and spinal cord. Atypical presentations such as ataxia and syncope complicate the diagnosis, and lesions in the medulla are easily mistaken for cerebral infarction. This case report emphasizes the need to recognize such manifestations to avoid misdiagnosis and ensure timely treatment. PATIENT CONCERNS: This case report presents an NMOSD female patient who experienced ataxia, syncope, and neuropathic pain during her illness. DIAGNOSIS: NMOSD. INTERVENTIONS: The patient managed her blood sugar with insulin, controlled neuropathic pain with pregabalin, and underwent 5 plasma exchanges. OUTCOMES: Significant improvement was noted 1 week post-plasma exchange, with complete resolution of neuropathic pain and no symptom recurrence reported at 6-month follow-up. LESSONS: Atypical manifestations of NMOSD, such as ataxia, syncope, and trigeminal neuralgia, increase diagnostic difficulty. Recognizing these symptoms is crucial to avoid misdiagnosis and ensure timely and appropriate treatment for patients.


Assuntos
Ataxia , Neuralgia , Neuromielite Óptica , Síncope , Humanos , Feminino , Neuromielite Óptica/complicações , Neuromielite Óptica/diagnóstico , Ataxia/diagnóstico , Ataxia/etiologia , Síncope/etiologia , Síncope/diagnóstico , Neuralgia/etiologia , Neuralgia/diagnóstico , Progressão da Doença , Adulto , Pessoa de Meia-Idade , Troca Plasmática/métodos
4.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928331

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.


Assuntos
Mitocôndrias , Neurônios , Estresse Oxidativo , Rotenona , Ubiquinona , Humanos , Ataxia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais , Debilidade Muscular/metabolismo , Debilidade Muscular/induzido quimicamente , Debilidade Muscular/patologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/etiologia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade , Rotenona/efeitos adversos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/deficiência
5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928470

RESUMO

Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.


Assuntos
Oxirredução , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiência , Humanos , Mitocôndrias/metabolismo , Animais , Selênio/metabolismo , Ataxia , Debilidade Muscular , Doenças Mitocondriais
6.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928282

RESUMO

Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.


Assuntos
Biotina , Deficiência de Biotinidase , Biotinidase , Homeostase , Humanos , Biotina/metabolismo , Deficiência de Biotinidase/metabolismo , Deficiência de Biotinidase/diagnóstico , Deficiência de Biotinidase/genética , Deficiência de Biotinidase/tratamento farmacológico , Biotinidase/metabolismo , Biotinidase/genética , Deficiência de Holocarboxilase Sintetase/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Animais , Ataxia/metabolismo , Ataxia/genética , Doenças dos Gânglios da Base
7.
Neuropharmacology ; 257: 110035, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876310

RESUMO

We previously showed that the PDE4 inhibitor apremilast reduces ethanol consumption in mice by protein kinase A (PKA) and GABAergic mechanisms. Preventing PKA phosphorylation of GABAA ß3 subunits partially blocked apremilast-mediated decreases in drinking. Here, we produced Gabrb1-S409A mice to render GABAA ß1 subunits resistant to PKA-mediated phosphorylation. Mass spectrometry confirmed the presence of the S409A mutation and lack of changes in ß1 subunit expression or phosphorylation at other residues. ß1-S409A male and female mice did not differ from wild-type C57BL/6J mice in expression of Gabrb1, Gabrb2, or Gabrb3 subunits or in behavioral characteristics. Apremilast prolonged recovery from ethanol ataxia to a greater extent in Gabrb1-S409A mice but prolonged recovery from zolpidem and propofol to a similar extent in both genotypes. Apremilast shortened recovery from diazepam ataxia in wild-type but prolonged recovery in Gabrb1-S409A mice. In wild-type mice, the PKA inhibitor H89 prevented apremilast modulation of ataxia by ethanol and diazepam, but not by zolpidem. In Gabrb1-S409A mice, inhibiting PKA or EPAC2 (exchange protein directly activated by cAMP) partially reversed apremilast potentiation of ethanol, diazepam, and zolpidem ataxia. Apremilast prevented acute tolerance to ethanol ataxia in both genotypes, but there were no genotype differences in ethanol consumption before or after apremilast. In contrast to results in Gabrb3-S408A/S409A mice, PKA phosphorylation of ß1-containing GABAA receptors is not required for apremilast's effects on acute tolerance or on ethanol consumption but is required for its ability to decrease diazepam intoxication. Besides PKA we identified EPAC2 as an additional cAMP-dependent mechanism by which apremilast regulates responses to GABAergic drugs.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Etanol , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 4 , Receptores de GABA-A , Talidomida , Animais , Talidomida/farmacologia , Talidomida/análogos & derivados , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Masculino , Feminino , Etanol/farmacologia , Camundongos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efeitos dos fármacos , Técnicas de Introdução de Genes , Fosforilação/efeitos dos fármacos , Ataxia/genética , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/genética , Camundongos Transgênicos , Diazepam/farmacologia
8.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891946

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and retinal pigment epithelial atrophy, leading to severe visual impairment or blindness. RP can be classified as nonsyndromic or syndromic with complex clinical phenotypes. Three unrelated Polish probands affected with retinitis pigmentosa coexisting with cerebellar ataxia were recruited for this study. Clinical heterogeneity and delayed appearance of typical disease symptoms significantly prolonged the patients' diagnostic process. Therefore, many clinical and genetic tests have been performed in the past. Here, we provide detailed clinical and genetic analysis results of the patients. Whole-exome sequencing (WES) and targeted NGS analysis allow the identification of four novel and two previously reported variants in the following genes: ABHD12, FLVCR1, and PNPLA6. The use of next-generation sequencing (NGS) methods finally allowed for confirmation of the clinical diagnosis. Ultra-rare diseases such as PHARC, PCARP, and Oliver-McFarlane syndromes were diagnosed in patients, respectively. Our findings confirmed the importance of the application of next-generation sequencing methods, especially in ultra-rare genetic disorders with overlapping features.


Assuntos
Sequenciamento do Exoma , Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Masculino , Feminino , Linhagem , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Proteínas de Membrana Transportadoras/genética , Monoacilglicerol Lipases/genética , Mutação , Ataxia/genética , Ataxia/diagnóstico , Fenótipo , Aciltransferases , Catarata , Fosfolipases , Polineuropatias
9.
J Am Coll Radiol ; 21(6S): S100-S125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823940

RESUMO

Diagnostic evaluation of a patient with dizziness or vertigo is complicated by a lack of standardized nomenclature, significant overlap in symptom descriptions, and the subjective nature of the patient's symptoms. Although dizziness is an imprecise term often used by patients to describe a feeling of being off-balance, in many cases dizziness can be subcategorized based on symptomatology as vertigo (false sense of motion or spinning), disequilibrium (imbalance with gait instability), presyncope (nearly fainting or blacking out), or lightheadedness (nonspecific). As such, current diagnostic paradigms focus on timing, triggers, and associated symptoms rather than subjective descriptions of dizziness type. Regardless, these factors complicate the selection of appropriate diagnostic imaging in patients presenting with dizziness or vertigo. This document serves to aid providers in this selection by using a framework of definable clinical variants. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Assuntos
Tontura , Sociedades Médicas , Tontura/diagnóstico por imagem , Humanos , Estados Unidos , Ataxia/diagnóstico por imagem , Medicina Baseada em Evidências , Diagnóstico Diferencial
10.
Free Radic Biol Med ; 221: 257-260, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754742

RESUMO

It has generally been accepted that vitamin E refers to a group of tocochromanols, α-, ß-, γ-, and δ-tocopherols and the corresponding four tocotrienols. Recently, Azzi and colleagues proposed to restrict the term vitamin E only to RRR-α-tocopherol, not to other tocopherols and tocotrienols (Azzi A et al. Free Radic Biol Med. 2023; 207:178-180. doi: 10.1016/j.freeradbiomed.2023.06.029). The aim of this paper is to express our opinion on the nomenclature of vitamin E based on available scientific data. In our opinion, it would be inappropriate to exclude all the tocochromanols other than RRR-α-tocopherol from the vitamin E group at this stage when the molecular mechanisms showing how vitamin E deficiency causes diseases such as ataxia and how vitamin E prevents/reverses such diseases are not elucidated. Understanding of whole functions of tocochromanols including underlying mechanisms and dynamics is essential before revision of currently accepted definition of vitamin E. The potential roles of γ-tocopherol and tocotrienols are discussed despite whether they are vitamin function should be clarified in the future studies.


Assuntos
Terminologia como Assunto , Deficiência de Vitamina E , Vitamina E , alfa-Tocoferol , Vitamina E/química , Vitamina E/classificação , Humanos , alfa-Tocoferol/química , Ataxia/classificação , Tocotrienóis/classificação , Tocotrienóis/química , Antioxidantes/química , Animais
12.
Ann Clin Transl Neurol ; 11(6): 1420-1429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717724

RESUMO

OBJECTIVE: Mitochondrial impairments have been implicated in the pathogenesis of Fragile X-associated tremor/ataxia syndrome (FXTAS) based on analysis of mitochondria in peripheral tissues and cultured cells. We sought to assess whether mitochondrial abnormalities present in postmortem brain tissues of patients with FXTAS are also present in plasma neuron-derived extracellular vesicles (NDEVs) from living carriers of fragile X messenger ribonucleoprotein1 (FMR1) gene premutations at an early asymptomatic stage of the disease continuum. METHODS: We utilized postmortem frozen cerebellar and frontal cortex samples from a cohort of eight patients with FXTAS and nine controls and measured the quantity and activity of the mitochondrial proteins complex IV and complex V. In addition, we evaluated the same measures in isolated plasma NDEVs by selective immunoaffinity capture targeting L1CAM from a separate cohort of eight FMR1 premutation carriers and four age-matched controls. RESULTS: Lower complex IV and V quantity and activity were observed in the cerebellum of FXTAS patients compared to controls, without any differences in total mitochondrial content. No patient-control differences were observed in the frontal cortex. In NDEVs, FMR1 premutation carriers compared to controls had lower activity of Complex IV and Complex V, but higher Complex V quantity. INTERPRETATION: Quantitative and functional abnormalities in mitochondrial electron transport chain complexes IV and V seen in the cerebellum of patients with FXTAS are also manifest in plasma NDEVs of FMR1 premutation carriers. Plasma NDEVs may provide further insights into mitochondrial pathologies in this syndrome and could potentially lead to the development of biomarkers for predicting symptomatic FXTAS among premutation carriers and disease monitoring.


Assuntos
Ataxia , Vesículas Extracelulares , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Mitocôndrias , Tremor , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Tremor/genética , Tremor/metabolismo , Tremor/fisiopatologia , Tremor/patologia , Vesículas Extracelulares/metabolismo , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , Ataxia/fisiopatologia , Masculino , Idoso , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia
13.
BMC Neurol ; 24(1): 154, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714961

RESUMO

BACKGROUND: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by CGG repeat expansion of FMR1 gene. Both FXTAS and neuronal intranuclear inclusion disease (NIID) belong to polyglycine diseases and present similar clinical, radiological, and pathological features, making it difficult to distinguish these diseases. Reversible encephalitis-like attacks are often observed in NIID. It is unclear whether they are presented in FXTAS and can be used for differential diagnosis of NIID and FXTAS. CASE PRESENTATION: A 63-year-old Chinese male with late-onset gait disturbance, cognitive decline, and reversible attacks of fever, consciousness impairment, dizziness, vomiting, and urinary incontinence underwent neurological assessment and examinations, including laboratory tests, electroencephalogram test, imaging, skin biopsy, and genetic test. Brain MRI showed T2 hyperintensities in middle cerebellar peduncle and cerebrum, in addition to cerebellar atrophy and DWI hyperintensities along the corticomedullary junction. Lesions in the brainstem were observed. Skin biopsy showed p62-positive intranuclear inclusions. The possibilities of hypoglycemia, lactic acidosis, epileptic seizures, and cerebrovascular attacks were excluded. Genetic analysis revealed CGG repeat expansion in FMR1 gene, and the number of repeats was 111. The patient was finally diagnosed as FXTAS. He received supportive treatment as well as symptomatic treatment during hospitalization. His encephalitic symptoms were completely relieved within one week. CONCLUSIONS: This is a detailed report of a case of FXTAS with reversible encephalitis-like episodes. This report provides new information for the possible and rare features of FXTAS, highlighting that encephalitis-like episodes are common in polyglycine diseases and unable to be used for differential diagnosis.


Assuntos
Ataxia , Encefalite , Síndrome do Cromossomo X Frágil , Tremor , Humanos , Ataxia/diagnóstico , Ataxia/genética , Diagnóstico Diferencial , Encefalite/diagnóstico , Encefalite/complicações , Encefalite/genética , Encefalite/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/complicações , Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/complicações , Tremor/diagnóstico , Tremor/genética , Tremor/etiologia
14.
Neurosci Biobehav Rev ; 162: 105731, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763180

RESUMO

Fragile X messenger ribonucleoprotein 1 (FMRP) is a widely expressed RNA binding protein involved in several steps of mRNA metabolism. Mutations in the FMR1 gene encoding FMRP are responsible for fragile X syndrome (FXS), a leading genetic cause of intellectual disability and autism spectrum disorder, and fragile X-associated tremor-ataxia syndrome (FXTAS), a neurodegenerative disorder in aging men. Although FMRP is mainly expressed in neurons, it is also present in glial cells and its deficiency or altered expression can affect functions of glial cells with implications for the pathophysiology of brain disorders. The present review focuses on recent advances on the role of glial subtypes, astrocytes, oligodendrocytes and microglia, in the pathophysiology of FXS and FXTAS, and describes how the absence or reduced expression of FMRP in these cells can impact on glial and neuronal functions. We will also briefly address the role of FMRP in radial glial cells and its effects on neural development, and gliomas and will speculate on the role of glial FMRP in other brain disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Neuroglia , Humanos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Neuroglia/metabolismo , Animais , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/patologia , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Encefalopatias/genética , Ataxia/metabolismo , Ataxia/fisiopatologia , Ataxia/genética , Tremor/metabolismo , Tremor/fisiopatologia , Tremor/genética
16.
Cell Rep ; 43(5): 114148, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38697100

RESUMO

Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.


Assuntos
Modelos Animais de Doenças , Doenças Mitocondriais , Parabenos , Ubiquinona , Animais , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/patologia , Doenças Mitocondriais/metabolismo , Parabenos/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Ubiquinona/deficiência , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Ataxia/tratamento farmacológico , Ataxia/patologia , Ataxia/metabolismo
17.
BMJ Case Rep ; 17(5)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802254

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive hereditary neurodegenerative disorder which causes intention tremor and cerebellar ataxia. It typically affects the ageing population. Deep brain stimulation (DBS) is widely accepted in the treatment of common movement disorders and has been trialled in treating rare and complex neurodegenerative disorders. We report a case of a man in his 40s with a long history of tremor affecting his hands. MRI brain revealed high T2 signal in the middle cerebellar peduncles. Genetic testing revealed FMR1 premutation confirming the diagnosis of FXTAS. Subsequently, he was treated with multitarget DBS of the ventralis intermediate nucleus and ventralis oralis posterior nuclei bilaterally, with excellent neurological function at 9 years follow-up. This case suggests multitarget DBS for FXTAS with neurophysiology-guided DBS programming can provide excellent long-term tremor suppression in selected patients.


Assuntos
Ataxia , Estimulação Encefálica Profunda , Síndrome do Cromossomo X Frágil , Tremor , Humanos , Masculino , Ataxia/terapia , Estimulação Encefálica Profunda/métodos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/terapia , Imageamento por Ressonância Magnética , Tremor/terapia
18.
Orphanet J Rare Dis ; 19(1): 200, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755691

RESUMO

BACKGROUND: MT-ATP6 is a mitochondrial gene which encodes for the intramembrane subunit 6 (or A) of the mitochondrial ATP synthase, also known asl complex V, which is involved in the last step of oxidative phosphorylation to produce cellular ATP through aerobic metabolism. Although classically associated with the NARP syndrome, recent evidence highlights an important role of MT-ATP6 pathogenic variants in complicated adult-onset ataxias. METHODS: We describe two unrelated patients with adult-onset cerebellar ataxia associated with severe optic atrophy and mild cognitive impairment. Whole mitochondrial DNA sequencing was performed in both patients. We employed patients' primary fibroblasts and cytoplasmic hybrids (cybrids), generated from patients-derived cells, to assess the activity of respiratory chain complexes, oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential. RESULTS: In both patients, we identified the same novel m.8777 T > C variant in MT-ATP6 with variable heteroplasmy level in different tissues. We identifed an additional heteroplasmic novel variant in MT-ATP6, m.8879G > T, in the patients with the most severe phenotype. A significant reduction in complex V activity, OCR and ATP production was observed in cybrid clones homoplasmic for the m.8777 T > C variant, while no functional defect was detected in m.8879G > T homoplasmic clones. In addition, fibroblasts with high heteroplasmic levelsof m.8777 T > C variant showed hyperpolarization of mitochondrial membranes. CONCLUSIONS: We describe a novel pathogenic mtDNA variant in MT-ATP6 associated with adult-onset ataxia, reinforcing the value of mtDNA screening within the diagnostic workflow of selected patients with late onset ataxias.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Humanos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Ataxia/genética , Ataxia/patologia , Itália , DNA Mitocondrial/genética , Adulto , Fibroblastos/metabolismo , Fibroblastos/patologia
19.
J Neurol Sci ; 461: 123056, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772058

RESUMO

FMR1 premutation carriers (55-200 CGG repeats) are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder associated with motor and cognitive impairment. Bilateral hyperintensities of the middle cerebellar peduncles (MCP sign) are the major radiological hallmarks of FXTAS. In the general population, enlarged perivascular spaces (PVS) are biomarkers of small vessel disease and glymphatic dysfunction and are associated with cognitive decline. Our aim was to determine if premutation carriers show higher ratings of PVS than controls and whether enlarged PVS are associated with motor and cognitive impairment, MRI features of neurodegeneration, cerebrovascular risk factors and CGG repeat length. We evaluated 655 MRIs (1-10 visits/participant) from 229 carriers (164 with FXTAS and 65 without FXTAS) and 133 controls. PVS in the basal ganglia (BG-EPVS), centrum semiovale, and midbrain were evaluated with a semiquantitative scale. Mixed-effects models were used for statistical analysis adjusting for age. In carriers with FXTAS, we revealed that (1) BG-PVS ratings were higher than those of controls and carriers without FXTAS; (2) BG-PVS severity was associated with brain atrophy, white matter hyperintensities, enlarged ventricles, FXTAS stage and abnormal gait; (3) age-related increase in BG-PVS was associated with cognitive dysfunction; and (4) PVS ratings of all three regions showed robust associations with CGG repeat length and were higher in carriers with the MCP sign than carriers without the sign. This study demonstrates clinical relevance of PVS in FXTAS especially in the basal ganglia region and suggests microangiopathy and dysfunctional cerebrospinal fluid circulation in FXTAS physiopathology.


Assuntos
Ataxia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Sistema Glinfático , Imageamento por Ressonância Magnética , Tremor , Humanos , Masculino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Síndrome do Cromossomo X Frágil/patologia , Pessoa de Meia-Idade , Idoso , Proteína do X Frágil da Deficiência Intelectual/genética , Tremor/genética , Tremor/diagnóstico por imagem , Tremor/patologia , Ataxia/genética , Ataxia/diagnóstico por imagem , Ataxia/patologia , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Fatores de Risco , Heterozigoto , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/etiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
20.
Ann Clin Transl Neurol ; 11(5): 1097-1109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590028

RESUMO

OBJECTIVE: Voluntary upper limb movements are an ecologically important yet insufficiently explored digital-motor outcome domain for trials in degenerative ataxia. We extended and validated the trial-ready quantitative motor assessment battery "Q-Motor" for upper limb movements with clinician-reported, patient-focused, and performance outcomes of ataxia. METHODS: Exploratory single-center cross-sectional assessment in 94 subjects (46 cross-genotype ataxia patients; 48 matched controls), comprising five tasks measured by force transducer and/or position field: Finger Tapping, diadochokinesia, grip-lift, and-as novel implementations-Spiral Drawing, and Target Reaching. Digital-motor measures were selected if they discriminated from controls (AUC >0.7) and correlated-with at least one strong correlation (rho ≥0.6)-to the Scale for the Assessment and Rating of Ataxia (SARA), activities of daily living (FARS-ADL), and the Nine-Hole Peg Test (9HPT). RESULTS: Six movement features with 69 measures met selection criteria, including speed and variability in all tasks, stability in grip-lift, and efficiency in Target Reaching. The novel drawing/reaching tasks best captured impairment in dexterity (|rho9HPT| ≤0.81) and FARS-ADL upper limb items (|rhoADLul| ≤0.64), particularly by kinematic analysis of smoothness (SPARC). Target hit rate, a composite of speed and endpoint precision, almost perfectly discriminated ataxia and controls (AUC: 0.97). Selected measures in all tasks discriminated between mild, moderate, and severe impairment (SARA upper limb composite: 0-2/>2-4/>4-6) and correlated with severity in the trial-relevant mild ataxia stage (SARA ≤10, n = 20). INTERPRETATION: Q-Motor assessment captures multiple features of impaired upper limb movements in degenerative ataxia. Validation with key clinical outcome domains provides the basis for evaluation in longitudinal studies and clinical trial settings.


Assuntos
Ataxia , Extremidade Superior , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Extremidade Superior/fisiopatologia , Estudos Transversais , Adulto , Idoso , Ataxia/fisiopatologia , Ataxia/diagnóstico , Desempenho Psicomotor/fisiologia , Atividade Motora/fisiologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA