Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.457
Filtrar
1.
J Am Heart Assoc ; 13(8): e033881, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563369

RESUMO

BACKGROUND: Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS: We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1ß release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS: Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Masculino , Feminino , Camundongos , Humanos , Animais , Dissulfiram , 60574 , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Autofagia
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612397

RESUMO

Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder characterized by overgrowth, stemming from various genetic and epigenetic changes. This study delves into the role of IGF2 upregulation in BWS, focusing on insulin-like growth factor pathways, which are poorly known in this syndrome. We examined the IGF2R, the primary receptor of IGF2, WNT, and autophagy/lysosomal pathways in BWS patient-derived lymphoblastoid cell lines, showing different genetic and epigenetic defects. The findings reveal a decreased expression and mislocalization of IGF2R protein, suggesting receptor dysfunction. Additionally, our results point to a dysregulation in the AKT/GSK-3/mTOR pathway, along with imbalances in autophagy and the WNT pathway. In conclusion, BWS cells, regardless of the genetic/epigenetic profiles, are characterized by alteration of the IGF2R pathway that is associated with the perturbation of the autophagy and lysosome processes. These alterations seem to be a key point of the molecular pathogenesis of BWS and potentially contribute to BWS's characteristic overgrowth and cancer susceptibility. Our study also uncovers alterations in the WNT pathway across all BWS cell lines, consistent with its role in growth regulation and cancer development.


Assuntos
Síndrome de Beckwith-Wiedemann , Neoplasias , Humanos , Autofagia/genética , Síndrome de Beckwith-Wiedemann/genética , Linhagem Celular , Quinase 3 da Glicogênio Sintase
3.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612416

RESUMO

Acute kidney injury (AKI) is a public health burden with increasing morbidity and mortality rates and health care costs. Acute tubular necrosis (ATN) is the most common cause of AKI. Cisplatin (CIS) is a platinum-based chemotherapeutic agent used in the treatment of a wide variety of malignancies such as lung, breast, ovary, testis, bladder, cervix, and head and neck cancers. Autophagy plays an important role in AKI. Galectin-3 (Gal-3) is significantly increased in renal tubules in AKI; however, its role in autophagy is not well understood. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used to induce AKI using a CIS mouse model of ATN. Renal Gal-3 and autophagy proteins' expression were measured using standard histologic, immunofluorescent, and enzyme-linked immunosorbent assay techniques. The data were presented as the mean ± S.E. Statistically significant differences (p < 0.05) were calculated between experimental groups and corresponding control groups by one-way analysis of variance. There was a significant increase in renal concentrations of Gal-3 in the Gal-3 wild-type CIS-treated mice when compared with sham control mice. There were significantly higher concentrations of renal LC3B, ATG13, Ulk-1, Beclin, ATG5, ATG12, ATG9A, and p-AMPK in the CIS-treated Gal-3 KO mice than in the Gal-3 wild-type CIS-treated mice. Further, there were significantly higher concentrations of mTOR, p- NF-κB, beta-catenin, and p62 in the kidneys of the Gal-3 wild-type CIS-treated mice than in the Gal-3 KO CIS-treated mice. Our findings affirm the connection between Gal-3 and autophagy, revealing its central role as a connector with prosurvival signaling proteins. Gal-3 plays a pivotal role in orchestrating cellular responses by interacting with prosurvival signal pathways and engaging with autophagy proteins. Notably, our observations highlight that the absence of Gal-3 can enhance autophagy in CIS-induced ATN.


Assuntos
Injúria Renal Aguda , Necrose do Córtex Renal , Animais , Masculino , Camundongos , Autofagia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Galectina 3/genética , Rim , Necrose
4.
Ren Fail ; 46(1): 2338933, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616177

RESUMO

Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/etiologia , Fibronectinas , Autofagia , Colágeno Tipo I , Alvo Mecanístico do Complexo 1 de Rapamicina , Tiorredoxinas , Fibrose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética
5.
Oncol Rep ; 51(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38624021

RESUMO

It has been reported that PL2L60 proteins, a product of PIWIL2 gene which might be activated by an intragenic promoter, could mediate a common pathway specifically for tumorigenesis. In the present study, it was further identified by using western blot assay that the PL2L60 proteins could be degraded in cancer cells through a mechanism of selective autophagy in response to oxidative stress. The PL2L60 was downregulated in various types of cancer cells under the hypoxic condition independently of HIF­1α, resulting in apoptosis of cancer cells. Inhibition of autophagy by small interfering RNA targeting of either Beclin­1 (BECN1) or Atg5 resulted in restoration of PL2L60 expression in hypoxic cancer cell. The hypoxic degradation of PL2L60 was also blocked by the attenuation of the autophagosome membrane protein Atg8/microtubule­associated protein 1 light chain 3 (LC3) or autophagy cargo protein p62 expression. Surprisingly, Immunofluorescence analysis demonstrated that LC3 could be directly bound to PL2L60 and was required for the transport of PL2L60 from the nucleus to the cytoplasm for lysosomal flux under basal or activated autophagy in cancer cells. Moreover, flow cytometric analysis displayed that knocking down of PL2L60 mRNA but not PIWIL2 mRNA effectively inhibited cancer cell proliferation and promoted apoptosis of cancer cells. The similar results were obtained from in vivo tumorigenic experiment, in which PL2L60 downregulation in necroptosis areas was confirmed by immunohistochemistry. These results suggested that various cancer could be suppressed by promoting autophagy. The present study revealed a key role of autophagic degradation of PL2L60 in hypoxia­induced cancer cell death, which could be used as a novel therapeutic target of cancer.


Assuntos
Neoplasias , Humanos , RNA Interferente Pequeno/metabolismo , Hipóxia/metabolismo , Apoptose , Autofagia , Estresse Fisiológico , RNA Mensageiro , Proteínas Argonautas/metabolismo
6.
Bioorg Chem ; 146: 107327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579616

RESUMO

Colorectal cancer (CRC) is well known as a prevalent malignancy affecting the digestive tract, yet its precise etiological determinants remain to be elusive. Accordingly, identifying specific molecular targets for colorectal cancer and predicting potential malignant tumor behavior are potential strategies for therapeutic interventions. Of note, apoptosis (type I programmed cell death) has been widely reported to play a pivotal role in tumorigenesis by exerting a suppressive effect on cancer development. Moreover, autophagy-dependent cell death (type II programmed cell death) has been implicated in different types of human cancers. Thus, investigating the molecular mechanisms underlying apoptosis and autophagy-dependent cell death is paramount in treatment modalities of colorectal cancer. In this study, we uncovered that a new small-molecule activator of SIRT3, named MY-13, triggered both autophagy-dependent cell death and apoptosis by modulating the SIRT3/Hsp90/AKT signaling pathway. Consequently, this compound inhibited tumor cell proliferation and migration in RKO and HCT-116 cell lines. Moreover, we further demonstrated that the small-molecule activator significantly suppressed tumor growth in vivo. In conclusion, these findings demonstrate that the novel small-molecule activator of SIRT3 may hold a therapeutic potential as a drug candidate in colorectal cancer.


Assuntos
Morte Celular Autofágica , Neoplasias Colorretais , Sirtuína 3 , Humanos , Neoplasias Colorretais/metabolismo , Autofagia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
7.
Cell Mol Neurobiol ; 44(1): 35, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630150

RESUMO

An increasing body of research suggests that promoting microglial autophagy hinders the neuroinflammation initiated though the NLRP3 inflammasome activation in Alzheimer's disease (AD). The function of FoxG1, a crucial transcription factor involved in cell survival by regulating mitochondrial function, remains unknown during the AD process and neuroinflammation occurs. In the present study, we firstly found that Aß peptides induced AD-like neuroinflammation upregulation and downregulated the level of autophagy. Following low-dose Aß25-35 stimulation, FoxG1 expression and autophagy exhibited a gradual increase. Nevertheless, with high-concentration Aß25-35 treatment, progressive decrease in FoxG1 expression and autophagy levels as the concentration of Aß25-35 escalated. In addition, FoxG1 has a positive effect on cell viability and autophagy in the nervous system. In parallel with the Aß25-35 stimulation, we employed siRNA to decrease the expression of FoxG1 in N2A cells. A substantial reduction in autophagy level (Beclin1, LC3II, SQSTM1/P62) and a notable growth in inflammatory response (NLRP3, TNF-α, and IL-6) were observed. In addition, we found FoxG1 overexpression owned the effect on the activation of AMPK/mTOR autophagy pathway and siRNA-FoxG1 successfully abolished this effect. Lastly, FoxG1 suppressed the NLRP3 inflammasome and enhanced the cognitive function in AD-like mouse model induced by Aß25-35. Confirmed by cellular and animal experiments, FoxG1 suppressed NLRP3-mediated neuroinflammation, which was strongly linked to autophagy regulated by AMPK/mTOR. Taken together, FoxG1 may be a critical node in the pathologic progression of AD and has the potential to serve as therapeutic target.


Assuntos
Doença de Alzheimer , Inflamassomos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases Ativadas por AMP , Doenças Neuroinflamatórias , Autofagia , RNA Interferente Pequeno
8.
Cell Mol Life Sci ; 81(1): 184, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630152

RESUMO

Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.


Assuntos
Nanopartículas , Nanoestruturas , Autofagia
9.
Chemosphere ; 355: 141813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575082

RESUMO

The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.


Assuntos
Microplásticos , Polietilenotereftalatos , Humanos , Polietilenotereftalatos/toxicidade , Polímeros , Inflamação/induzido quimicamente , Estresse Oxidativo , Autofagia , Plásticos , Polietileno
10.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38577927

RESUMO

The intestinal mucosal barrier is of great importance for maintaining the stability of the internal environment, which is closely related to the occurrence and development of intestinal inflammation. Octreotide (OCT) has potential applicable clinical value for treating intestinal injury according to previous studies, but the underlying molecular mechanisms have remained elusive. This article is based on a cell model of inflammation induced by lipopolysaccharide (LPS), aiming to explore the effects of OCT in protecting intestinal mucosal barrier function. A Cell Counting Kit­8 assay was used to determine cell viability and evaluate the effectiveness of OCT. Gene silencing technology was used to reveal the mediated effect of somatostatin receptor 2 (SSTR2). The changes in intestinal permeability were detected through trans­epithelial electrical resistance and fluorescein isothiocyanate­dextran 4 experiments, and the alterations in tight junction proteins were detected using immunoblotting and reverse transcription fluorescence­quantitative PCR technology. Autophagosomes were observed by electron microscopy and the dynamic changes of the autophagy process were characterized by light chain (LC)3­II/LC3­I conversion and autophagic flow. The results indicated that SSTR2­dependent OCT can prevent the decrease in cell activity. After LPS treatment, the permeability of monolayer cells decreased and intercellular tight junctions were disrupted, resulting in a decrease in tight junction protein zona occludens 1 in cells. The level of autophagy­related protein LC3 was altered to varying degrees at different times. These abnormal changes gradually returned to normal levels after the combined application of LPS and SSTR2­dependent OCT, confirming the role of OCT in protecting intestinal barrier function. These experimental results suggest that OCT maintains basal autophagy and cell activity mediated by SSTR2 in intestinal epithelial cells, thereby preventing the intestinal barrier dysfunction in inflammation injury.


Assuntos
Lipopolissacarídeos , Octreotida , Humanos , Células CACO-2 , Octreotida/farmacologia , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Autofagia , Inflamação/metabolismo , Junções Íntimas/metabolismo , Permeabilidade
11.
Traffic ; 25(4): e12933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600522

RESUMO

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Assuntos
Autofagia , Metabolismo Energético , Humanos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
12.
Mol Reprod Dev ; 91(4): e23741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616716

RESUMO

Inflammatory damage in ovarian granulosa cells (GCs) is a key mechanism in polycystic ovary syndrome (PCOS), cytoplasmic polyadenylation element binding protein-1 (CPEB1) is important in inflammatory regulation, however, its role in PCOS is unclear. We aim to research the mechanism of CPEB1 in ovarian GCs in PCOS using dehydroepiandrosterone (DHEA)-induced PCOS rat models and testosterone-incubated GC models. The pathophysiology in PCOS rats was analyzed. Quantitative-realtime-PCR, TUNEL, immunohistochemistry, and Western blot were applied for quantification. Additionally, cell counting kit-8, flow cytometry, immunofluorescence, Western blot, and Monodansylcadaverine staining were performed. We found that PCOS rat models exhibited a disrupted estrus cycle, elevated serum levels of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), increased LH/FSH ratio, and heightened ovarian index. Furthermore, reduced corpus luteum and increased follicular cysts were observed in ovarian tissue. In ovarian tissue, autophagy and apoptosis were activated and CPEB1 was overexpressed. In vitro, CPEB1 overexpression inhibited cell viability and sirtuin-1 (SIRT1), activated tumor necrosis factor-α, and interleukin-6 levels, as well as apoptosis and autophagy; however, CPEB1 knockdown had the opposite effect. In conclusion, overexpression of CPEB1 activated autophagy and apoptosis of ovarian GCs in PCOS.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Ratos , Apoptose , Autofagia , Hormônio Foliculoestimulante Humano , Células da Granulosa , Hormônio Luteinizante , Fatores de Poliadenilação e Clivagem de mRNA/genética , Síndrome do Ovário Policístico/induzido quimicamente , Testosterona , Fatores de Transcrição
13.
World J Gastroenterol ; 30(12): 1764-1776, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38617741

RESUMO

BACKGROUND: Increasing evidence has demonstrated that N6-methyladenosine (m6A) RNA modification plays an essential role in a wide range of pathological conditions. Impaired autophagy is a critical hallmark of acute pancreatitis (AP). AIM: To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP. METHODS: The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells (MPC-83), and the results were confirmed by the levels of amylase and inflammatory factors. Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes. ZKSCAN3 and ALKBH5 were knocked down to study the function in AP. A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH. RESULTS: The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established. The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP. The expression of ZKSCAN3 was upregulated in AP. Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors, LC3-II/I and SQSTM1. Furthermore, ALKBH5 was upregulated in AP. Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP. Notably, the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA. The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP. Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA, which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner. CONCLUSION: ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP, thereby aggravating the severity of the disease.


Assuntos
Pancreatite , Animais , Camundongos , Doença Aguda , Adenosina/farmacologia , Amilases , Autofagia , Desmetilação , Modelos Animais de Doenças , Pancreatite/induzido quimicamente , Pancreatite/genética , RNA Mensageiro , Proteína Sequestossoma-1 , Fatores de Transcrição
14.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
15.
Proc Natl Acad Sci U S A ; 121(16): e2315958121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588427

RESUMO

The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.


Assuntos
Proteínas de Drosophila , Junção Neuromuscular , Animais , Humanos , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Drosophila/fisiologia , Neurônios/metabolismo , Autofagia/genética , Plasticidade Neuronal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transmissão Sináptica/fisiologia , GTP Fosfo-Hidrolases/metabolismo
16.
PeerJ ; 12: e17028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590708

RESUMO

Background: Autophagy, a crucial cellular mechanism, facilitates the degradation and removal of misfolded proteins and impaired organelles. Recent research has increasingly highlighted the intimate connection between autophagy and heat shock proteins (HSPs) in the context of tumor development. However, the specific role and underlying mechanisms of heat shock protein 90 beta family member 1 (HSP90B1) in modulating autophagy within head and neck squamous cell carcinoma (HNSCC) remain elusive. Methods: Quantitative real-time PCR (qRT-PCR), Western blot (WB), immunohistochemistry (IHC) were used to detect the expression in HNSC cell lines and tissues. The relationship between HSP90B1 and clinicopathologic features was explored based on TCGA (The Cancer Genome Atlas) data and IHC results. The biological functions of HSP90B1 were analyzed through in vitro and in vivo models to evaluate proliferation, migration, invasion, and autophagy. The mechanisms of HSP90B1 were studied using bioinformatics and WB. Results: HSP90B1 was upregulated in HNSC cells and tissues. High HSP90B1 levels were associated with T-stage, M-stage, clinical stage, and poor prognosis in HNSC patients. Functionally, HSP90B1 promotes HNSC cell proliferation, migration, invasion and inhibits apoptosis. We discovered that HSP90B1 obstructs autophagy and advances HNSC progression through the PI3K/Akt/mTOR pathway. Conclusion: Our study demonstrates that HSP90B1 is highly expressed in HNSC. Furthermore, HSP90B1 may regulate autophagy through the PI3K/Akt/mTOR pathway, mediating HNSC cell biological behaviors. These provide new insights into potential biomarkers and targets for HNSC therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/genética , Autofagia/genética
17.
Med Oncol ; 41(5): 108, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592406

RESUMO

Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors' microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , ATPases Vacuolares Próton-Translocadoras , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Autofagia , Microambiente Tumoral
18.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577949

RESUMO

Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia­reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol­cytochrome c reductase core protein U, the Bcl­2­associated X protein/B­cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule­associated protein 1 light 3 protein, caspase­3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND­99 staining results showed that BBR pretreatment inhibited H/R­induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase­3. However, the protective effects of BBR were attenuated by pAD/RhoE­small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP­activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP­activated protein kinase pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Berberina , Traumatismo por Reperfusão Miocárdica , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Berberina/farmacologia , Caspase 3/metabolismo , Dissulfeto de Glutationa/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Animais , Ratos
19.
Sci Rep ; 14(1): 8094, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582781

RESUMO

The mammalian target of rapamycin (mTOR), and specifically the mTOR complex 1 (mTORC1) is the central regulator of anabolism in skeletal muscle. Among the many functions of this kinase complex is the inhibition of the catabolic process of autophagy; however, less work has been done in investigating the role of autophagy in regulating mTORC1 signaling. Using an in vitro model to better understand the pathways involved, we activated mTORC1 by several different means (growth factors, leucine supplementation, or muscle contraction), alone or with the autophagy inhibitor NSC185058. We found that inhibiting autophagy with NSC185058 suppresses mTORC1 activity, preventing any increase in cellular protein anabolism. These decrements were the direct result of action on the mTORC1 kinase, which we demonstrate, for the first time, cannot function when autophagy is inhibited by NSC185058. Our results indicate that, far from being a matter of unidirectional action, the relationship between mTORC1 and the autophagic cascade is more nuanced, with autophagy serving as an mTORC1 input, and mTORC1 inhibition of autophagy as a form of homeostatic feedback to regulate anabolic signaling. Future studies of cellular metabolism will have to consider this fundamental intertwining of protein anabolism and catabolism, and how it ultimately serves to regulate muscle proteostasis.


Assuntos
Aminopiridinas , Autofagia , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia/fisiologia , Músculo Esquelético/metabolismo
20.
Sci Rep ; 14(1): 8102, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582921

RESUMO

Lung cancer is a major public health issue and heavy burden in China and worldwide due to its high incidence and mortality without effective treatment. It's imperative to develop new treatments to overcome drug resistance. Natural products from food source, given their wide-ranging and long-term benefits, have been increasingly used in tumor prevention and treatment. This study revealed that Hibiscus manihot L. flower extract (HML) suppressed the proliferation and migration of A549 cells in a dose and time dependent manner and disrupting cell cycle progression. HML markedly enhanced the accumulation of ROS, stimulated the dissipation of mitochondrial membrane potential (MMP) and that facilitated mitophagy through the loss of mitochondrial function. In addition, HML induced apoptosis by activation of the PTEN-P53 pathway and inhibition of ATG5/7-dependent autophagy induced by PINK1-mediated mitophagy in A549 cells. Moreover, HML exert anticancer effects together with 5-FU through synergistic effect. Taken together, HML may serve as a potential tumor prevention and adjuvant treatment for its functional attributes.


Assuntos
Hibiscus , Neoplasias Pulmonares , Manihot , Humanos , Células A549 , Hibiscus/metabolismo , Manihot/metabolismo , Autofagia , Neoplasias Pulmonares/patologia , Flores/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...