Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.348
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892121

RESUMO

Dermatology and cosmetology currently prioritize healthy, youthful-looking skin. As a result, research is being conducted worldwide to uncover natural substances and carriers that allow for controlled release, which could aid in the battle against a variety of skin illnesses and slow the aging process. This study examined the biological and physicochemical features of novel hydrogels containing cannabidiol (CBD) and α-terpineol (TER). The hydrogels were obtained from ε-caprolactone (CL) and poly(ethylene glycol) (PEG) copolymers, diethylene glycol (DEG), poly(tetrahydrofuran) (PTHF), 1,6-diisocyanatohexane (HDI), and chitosan (CHT) components, whereas the biodegradable oligomers were synthesized using the enzyme ring-opening polymerization (e-ROP) method. The in vitro release rate of the active compounds from the hydrogels was characterized by mainly first-order kinetics, without a "burst release". The antimicrobial, anti-inflammatory, cytotoxic, antioxidant, and anti-aging qualities of the designed drug delivery systems (DDSs) were evaluated. The findings indicate that the hydrogel carriers that were developed have the ability to scavenge free radicals and impact the activity of antioxidant enzymes while avoiding any negative effects on keratinocytes and fibroblasts. Furthermore, they have anti-inflammatory qualities by impeding protein denaturation as well as the activity of proteinase and lipoxygenase. Additionally, their ability to reduce the multiplication of pathogenic bacteria and inhibit the activity of collagenase and elastase has been demonstrated. Thus, the developed hydrogel carriers may be effective systems for the controlled delivery of CBD, which may become a valuable tool for cosmetologists and dermatologists.


Assuntos
Canabidiol , Hidrogéis , Pele , Hidrogéis/química , Hidrogéis/farmacologia , Canabidiol/farmacologia , Canabidiol/química , Pele/efeitos dos fármacos , Pele/metabolismo , Humanos , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Regeneração/efeitos dos fármacos , Polímeros/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Queratinócitos/efeitos dos fármacos , Células HaCaT , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
2.
Ecotoxicol Environ Saf ; 280: 116545, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850709

RESUMO

Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, ß-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.


Assuntos
Alumínio , Monoterpenos Bicíclicos , Citrus , Limoneno , Fotossíntese , Folhas de Planta , Terpenos , Alumínio/toxicidade , Terpenos/metabolismo , Citrus/metabolismo , Citrus/efeitos dos fármacos , Limoneno/metabolismo , Fotossíntese/efeitos dos fármacos , Monoterpenos Bicíclicos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Monoterpenos/metabolismo , Hemiterpenos/metabolismo , Cicloexenos/metabolismo , Fosfatos Açúcares/metabolismo , Butadienos/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Ácido Mevalônico/metabolismo , Monoterpenos Cicloexânicos , Citrus sinensis/metabolismo , Citrus sinensis/efeitos dos fármacos , Citrus sinensis/genética , Clorofila/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Volatilização
4.
Neurochem Res ; 49(7): 1863-1878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753259

RESUMO

The study aimed to assess 𝛾-Terpinene's (𝛾-TER) neuroprotective potential in acute cerebral ischemia, characterized by reduced cerebral blood flow in rats. Middle cerebral artery occlusion (MCAO), a standard method for inducing cerebral ischemia, was employed in male Wistar rats. 𝛾-TER at varying doses (5, 10, and 15 mg/kg) were intraperitoneally administered during reperfusion onset. Neurological outcomes, cerebral infarct size, edema, and enzymatic activities (SOD, GPx, and catalase) in the brain were evaluated using diverse techniques. The study examined gene expression and pathways associated with neuroinflammation and apoptosis using Cytoscape software, identifying the top 10 genes involved. Pro-inflammatory and pro-apoptotic factors were assessed through real-time PCR and ELISA, while apoptotic cell rates were measured using the TUNEL and Flow cytometry assay. Immunohistochemistry assessed apoptosis-related proteins like Bax and bcl-2 in the ischemic area. 𝛾-TER, particularly at doses of 10 and 15 mg/kg, significantly reduced neurological deficits and cerebral infarction size. The 15 mg/kg dose mitigated TNF-α, IL-1ß, Bax, and caspase-3 gene and protein levels in the cortex, hippocampus, and striatum compared to controls. Furthermore, Bcl-2 levels increased in these regions. 𝛾-TER show cased neuroprotective effects by suppressing inflammation, apoptosis, and oxidation. In conclusion, 𝛾-TER, possessing natural anti-inflammatory and anti-apoptotic properties, shields the brain against ischemic damage by reducing infarction, edema, oxidative stress, and inflammation. It modulates the expression of crucial genes and proteins associated with apoptosis in diverse brain regions. These findings position 𝛾-TER as a potential therapeutic agent for ischemic stroke.


Assuntos
Apoptose , Fármacos Neuroprotetores , Ratos Wistar , Animais , Masculino , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estresse Oxidativo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Monoterpenos Cicloexânicos/uso terapêutico , Monoterpenos Cicloexânicos/farmacologia , Oxirredução/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731815

RESUMO

The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.


Assuntos
Antifúngicos , Quitosana , Monoterpenos Cicloexânicos , Hidrazonas , Nanopartículas , Quitosana/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Nanopartículas/química , Monoterpenos Cicloexânicos/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana , Portadores de Fármacos/química
6.
BMC Plant Biol ; 24(1): 483, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822252

RESUMO

BACKGROUND: Zataria multiflora Boiss. is a medicinal and aromatic plant from the Lamiaceae family. It is extensively used in Iranian traditional medicine, mostly as a replacement for Thyme species. This study was focused on the analysis of chemical composition and the distribution and types of trichomes of Z. multiflora grown under different conditions. Equilibrium headspace analysis in combination with GC-FID-MS was used to identify volatile compounds released by aerial parts of Z. multiflora in development stages of 50 and 100% flowering under normal and drought-stress conditions. RESULTS: The main constituents were p-cymene (20.06-27.40%), γ-terpinene (12.44-16.93%), and α-pinene (6.91-16.58%) and thymol (8.52-9.99%). The highest content of p-cymene (27.40%) and thymol (9.99%) was observed in the 50% flowering stage at the 90% field capacity, while the maximum γ-terpinene (16.93%) content was recorded in the 100% flowering stage under normal conditions. Using the SEM method, it was found that peltate glandular and non-glandular trichomes are distributed on the surface of the leaf, stem, and outer side of the calyx. However, capitate trichomes only are detected on the stem and calyx in the 100% flowering and beginning of blooming stages, respectively. The type and structure of trichomes do not vary in different development stages, but they differ in density. The highest number of leaf peltate glandular trichomes was observed in the vegetative and beginning of blooming stages at 50% and 90% field capacity, respectively. Non-glandular trichomes of the stem were observed with high density in both normal and stress conditions, which are more densely in 90% field capacity. CONCLUSIONS: Since this plant has strong potential to be used in the food and pharmacological industries, this study provides valuable information for its cultivation and harvesting at specific phenological stages, depending on desired compounds and their concentrations.


Assuntos
Lamiaceae , Tricomas , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/metabolismo , Lamiaceae/fisiologia , Lamiaceae/química , Secas , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Estresse Fisiológico , Monoterpenos Cicloexânicos/metabolismo , Cimenos/metabolismo , Monoterpenos/metabolismo , Monoterpenos Bicíclicos/metabolismo , Timol/metabolismo
7.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731415

RESUMO

Investigations have shown that storage bugs seriously harm grains during storage. In the interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were evaluated using DL-limonene, carvone, and their two optical isomer components using contact, repelling, and fumigation techniques. Simultaneously, the fumigation, contact, and repellent activities of carvone and its two optical isomers mixed with DL-limonene against L. serruricorne were evaluated. The results showed that E. ciliata, its main components (R-carvone, DL-limonene), and S-carvone exhibited both fumigations (LC50 = 14.47, 4.42, 20.9 and 3.78 mg/L) and contact (LD50 = 7.31, 4.03, 28.62 and 5.63 µg/adult) activity against L.serricorne. A binary mixture (1:1) of R-carvone and DL-limonene displayed an obvious synergistic effect. A binary mixture (1:1) of carvone and its two optical isomers exhibited an obvious synergistic effect, too. Furthermore, the repellent activity of the EO, carvone, and its two optical isomers, DL-limonene, and a combination of them varied. To stop insect damage during storage, E. ciliata and its components can be utilized as bio-insecticides.


Assuntos
Inseticidas , Lamiaceae , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Lamiaceae/química , Animais , Inseticidas/química , Inseticidas/farmacologia , Limoneno/química , Limoneno/farmacologia , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Sinergismo Farmacológico , Fumigação
8.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731461

RESUMO

This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Mentha spicata , Mentha , Óleos Voláteis , Óleos Voláteis/química , Mentha/química , Mentha spicata/química , Análise Multivariada , Região do Mediterrâneo , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/análise , Monoterpenos/química , Monoterpenos/análise , Limoneno/química , Terpenos/química , Terpenos/análise , Mentol
9.
Toxicol Appl Pharmacol ; 487: 116978, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795847

RESUMO

Non-small cell lung cancer (NSCLC) is a complex malignancy with a high degree of heterogeneity, representing approximately 85% of all lung cancer cases. The treatment landscape for NSCLC has been revolutionised by incorporating targeted and immunotherapies; however, novel therapeutic modalities are consistently needed to enhance the treatment outcomes. Indeed, alternative anti-cancer therapies involving natural products have drawn the attention of clinicians and scientists owing to their remarkable chemopreventive potential, often displaying minimal toxicity. D-carvone (CN) is one such natural product that has exhibited numerous promising therapeutic benefits, yet its efficacy against NSCLC remains enigmatic. In the present study, network pharmacological studies and molecular docking in conjunction with in-vitro validation were used to elucidate the underlying mechanism of action of CN comprehensively. Different databases revealed a total of 77 putative anti-NSCLC targets of CN. The identified core targets were utilised to construct a "Compound- Target- Disease" network by Cytoscape (v3.9.0). Further analysis identified 5 core/ hub targets of CN including JAK2, ERK1, ESR1, GSK3B and HSP90AA1. Molecular docking indicated a strong binding interaction of the compound with these core targets. Also, Gene Ontology and KEGG analysis validated the involvement of multiple biological processes. Additionally, CN significantly inhibited cell proliferation, clonogenicity, and wound healing potential while promoting apoptosis in a dose-dependent manner in H1299 and A549 cell lines as examined by flow cytometry, morphological assessment, and western blotting. In conclusion, this study delineates the therapeutic effects of CN on NSCLC, thus highlighting CN as a putative drug candidate for further analysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Monoterpenos Cicloexânicos , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Monoterpenos Cicloexânicos/farmacologia , Células A549 , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mapas de Interação de Proteínas , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
10.
J Agric Food Chem ; 72(15): 8389-8400, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568986

RESUMO

A global demand for tea tree oil (TTO) has resulted in increased adulteration in commercial products. In this study, we use a novel enantiomeric gas chromatography mass spectrometry method for chiral analysis of key terpenes ((±)-terpinen-4-ol, (±)-α-terpineol, and (±)-limonene) and quantification of components present at >0.01% to test different methods of identifying adulterated TTO. Data from authentic Australian (n = 88) and oxidized (n = 12) TTO samples of known provenance were consistent with recommended ranges in ISO 4730:2017 and previously published enantiomeric ratios, with p-cymene identified as the major marker of TTO oxidation. The 15 ISO 4730:2017 constituents comprised between 84.5 and 89.8% of the total ion chromatogram (TIC) peak area. An additional 53 peaks were detected in all samples (7.3-11.0% of TIC peak area), while an additional 43 peaks were detected in between 0 and 99% (0.15-2.0% of the TIC peak area). Analysis of nine commercial samples demonstrated that comparison to the ISO 4730:2017 standard does not always identify adulterated TTO samples. While statistical analysis of minor components in TTO did identify two commercial samples that differed from authentic TTO, the (+)-enantiomer percentages for limonene, terpinen-4-ol, and α-terpineol provided clearer evidence that these samples were adulterated. Thus, straightforward identification of unadulterated and unoxidized TTO could be based on analysis of appropriate enantiomeric ratios and quantitation of the p-cymene percentage.


Assuntos
Monoterpenos Cicloexânicos , Cimenos , Melaleuca , Óleo de Melaleuca , Limoneno , Cromatografia Gasosa-Espectrometria de Massas/métodos , Árvores , Austrália , Terpenos/química , Chá , Melaleuca/química
11.
Oncol Rep ; 51(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456489

RESUMO

α­Phellandrene (α­PA), a natural constituent of herbs, inhibits cancer cell viability and proliferation. 5­Fluorouracil (5­FU) is a frequently utilized chemotherapeutic medicine for the treatment of colon cancer, which works by triggering cancer cell apoptosis. The present study examined how the combination of α­PA and 5­FU affects the suppression of human colon cancer cells by promoting apoptosis. The impact of this treatment on cell viability, apoptosis, and the expression levels of Bcl­2 family members, caspase family members and mitochondria­related molecules in HT­29 cells was assessed by the MTT assay, immunocytochemistry, western blotting and quantitative PCR. The combination of 5­FU and α­PA had a synergistic inhibitory effect on cell viability, as determined by assessing the combination index value. Bax protein expression levels were higher in the 50, 100 or 250 µM α­PA combined with 5­FU groups compared with those in the 5­FU alone group (P<0.05). By contrast, Bcl­2 protein expression levels and mitochondrial membrane potential (MMP, ΔΨm) were lower in the 100 or 250 µM α­PA combined with 5­FU groups than those in the 5­FU alone group (P<0.05). In addition, hexokinase­2 (HK­2) protein expression levels were lower in the 50, 100 or 250 µM α­PA combined with 5­FU groups than those in the 5­FU alone group (P<0.05). Compared with 5­FU alone, after HT­29 cells were treated with 50, 100 or 250 µM α­PA combined with 5­FU, the mRNA expression levels of extrinsic­induced apoptotic molecules, including caspase­8 and Bid, were higher (P<0.05). Treatment with 50, 100 or 250 µM α­PA combined with 5­FU also increased the mRNA expression levels of cytochrome c, caspase­9 and caspase­3, regulating intrinsic apoptosis (P<0.05). These results showed that α­PA and 5­FU had a synergistic effect on reducing the viability of human colon cancer HT­29 cells by inducing extrinsic and intrinsic apoptosis pathways. The mechanism by which apoptosis is induced may involve the intrinsic apoptosis pathway that activates the mitochondria­dependent pathway, including regulating the expression levels of Bcl­2 family members, including Bax, Bcl­2 and Bid, regulating MMP and HK­2 expression levels, and increasing the expression of caspase cascade molecules, including caspase­9 and caspase­3. In addition, it may involve the extrinsic apoptosis pathway that activates caspase­8 and caspase­3 leading to apoptosis.


Assuntos
Neoplasias do Colo , Monoterpenos Cicloexânicos , Fluoruracila , Humanos , Fluoruracila/farmacologia , Caspase 3 , Caspase 9 , Caspase 8 , Células HT29 , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Caspases , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro
12.
Plant Foods Hum Nutr ; 79(2): 410-416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492174

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest arisen contagious respiratory pathogen related to the global outbreak of atypical pneumonia pandemic (COVID-19). The essential oils (EOs) of Eucalyptus camaldulensis, E. ficifolia F. Muell., E. citriodora Hook, E. globulus Labill, E. sideroxylon Cunn. ex Woolls, and E. torquata Luehm. were investigated for its antiviral activity against SARS-CoV-2. The EOs phytochemical composition was determined using GC/MS analysis. Correlation with the explored antiviral activity was also studied using multi-variate data analysis and Pearson's correlation. The antiviral MTT and cytopathic effect inhibition assays revealed very potent and promising anti SARS-CoV-2 potential for E. citriodora EO (IC50 = 0.00019 µg/mL and SI = 26.27). The multivariate analysis revealed α-pinene, α-terpinyl acetate, globulol, γ -terpinene, and pinocarvone were the main biomarkers for E. citriodora oil. Pearson's correlation revealed that globulol is the top positively correlated compound in E. citriodora oil to its newly explored potent anti SARS-CoV-2 potential. A molecular simulation was performed on globulol via docking in the main active sites of both SARS-CoV-2 viral main protease (Mpro) and spike protein (S). In silico predictive ADMET study was also developed to investigate the pharmacokinetic profile and predict globulol toxicity. The obtained in silico, in vitro and Pearson's correlation results were aligned showing promising SARS-CoV-2 inhibitory activity of E. citriodora and globulol. This study is a first record for E. citriodora EO as a novel lead exhibiting potent in vitro, and in silico anti SARS-CoV-2 potential and suggesting its component globulol as a promising candidate for further extensive in silico, in vitro and in vivo anti-COVID studies.


Assuntos
Antivirais , Eucalyptus , Simulação de Acoplamento Molecular , Óleos Voláteis , Compostos Fitoquímicos , SARS-CoV-2 , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eucalyptus/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Células Vero , Chlorocebus aethiops , Óleo de Eucalipto/farmacologia , Proteases 3C de Coronavírus , Simulação por Computador , Humanos , COVID-19 , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/farmacologia , Monoterpenos/análise , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Cicloexânicos , Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais
13.
Sci Rep ; 14(1): 7342, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538682

RESUMO

The present work aimed to investigate the effect of salinity in natural habitats in Egypt on the main secondary metabolites of Rosmarinus officinalis L. and Artemisia monosperma L. plants compared to plants grown at normal conditions. Plants grown under salinity were collected from Egyptian Western Coastal region habitats irrigated with underground water. Results showed that salinity increased the essential oil percentage of R. officinalis L. by 52.7% and A. monosperma L by 0.29% in addition to the total phenolics and flavonoids content in dry leaves compared to control plants. GC/MS analysis of rosemary essential oils revealed that salinity decreased the amount of some major oil monoterpenes component as verbenone, with a slight effect on 1,8 cineole and increased Camphor, endo- Boreneol, and linalool in addition to the appearance of new specific components such as Chrysanthenone monoterpene ketone and Caryophyllene sesquiterpene, while, in the case of Artemisia, the GC/MS showed that Artemisia ketone, Camphor, ß -phellandrene monoterpenes andα-Bisabolol sesquiterpenewere the major oil components; salinity decreased Camphor and ß -phellandrene content and increased artemisia ketone and α-Bisabolol oil content. About 11 new oil constituents were detected such as ( +)-2-Bornanone and Sesquisabinene hydrate. Mineral ions (N, K+, Ca+2, P, and Mg+2) uptake by R. officinalis and A. monosperma decreased in plants grown under salinity, while Na content increased compared to corresponding controls. Results demonstrated that both plants could tolerate the high salinity level in natural Western Coastal region soil which promoted more production of valuable secondary metabolites. The antimicrobial effect of R. officinalis L. and A. monosperma L. leaf methanolic extracts, results showed that R. officinalis extracts had an inhibitory response against all tested gram-positive and negative bacteria, in addition to the yeast (Candida albicans), whereas there was no any inhibitory effect concerning A. monosperma L extract on the tested species.


Assuntos
Anti-Infecciosos , Artemisia , Monoterpenos Cicloexânicos , Sesquiterpenos Monocíclicos , Óleos Voláteis , Rosmarinus , Cânfora/farmacologia , Egito , Óleos Voláteis/farmacologia , Monoterpenos/farmacologia , Folhas de Planta
14.
Phytomedicine ; 127: 155471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452695

RESUMO

BACKGROUND: Glioblastoma (GBM) is notorious for the aggressive behaviors and easily results in chemo-resistance. Studies have shown that the use of herbal medicines as treatments for GBM as limited by the blood-brain barrier (BBB) and glioma stem cells. PURPOSE: The aim of this study was to investigate the relationship between GBM suppression and α-terpineol, the monoterpenoid alcohol derived from Eucalyptus glubulus and Pinus merkusii. STUDY DESIGN: Using serial in-vitro and in-vivo studies to confirm the mechanism of α-terpineol on down-regulating GBM development. METHODS: The 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate IC50 of α-terpineol to inhibit GBM cell survival. In order to evaluate the impact of GBM aggressive behaviors by α-terpineol, the analysis of cell migration, invasion and colony formation were implemented. In addition, the ability of tumor spheres and WB of CD44 and OCT3/4 were evaluated under the impression of α-terpineol decreased GBM stemness. The regulation of neoangiogenesis by α-terpineol via the WB of angiogenic factors and human umbilical vein endothelial cells (HUVEC) tube assay. To survey the decided factors of α-terpineol downregulating GBM chemoresistance depended on the impact of O6-methylguanine-DNA methyltransferase (MGMT) expression and autophagy-related factors activation. Additionally, WB and quantitative real-time polymerase chain reaction (qRT/PCR) of KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2), endoplasmic reticulum (ER) stress, phosphoinositide 3-kinase (PI3k), mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) cascade signaling factors were examined to explore the mechanism of α-terpineol inhibiting GBM viability. Finally, the orthotopic GBM mouse model was applied to prove the efficacy and toxicity of α-terpineol on regulating GBM survival. RESULTS: α-terpineol significantly suppressed GBM growth, migration, invasion, angiogenesis and temozolomide (TMZ) resistance. Furthermore, α-terpineol specifically targeted KDELC2 to downregulate Notch and PI3k/mTOR/MAPK signaling pathway. Finally, we also demonstrated that α-terpineol could penetrate the BBB to inhibit GBM proliferation, which resulted in reduced cytotoxicity to vital organs. CONCLUSION: Compared to published literatures, we firstly proved α-terpineol possessed the capability to inhibit GBM through various mechanisms and potentially decreased the occurrence of chemoresistance, making it a promising alternative therapeutic option for GBM in the future.


Assuntos
Neoplasias Encefálicas , Monoterpenos Cicloexânicos , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases , Células Endoteliais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Serina-Treonina Quinases TOR , Fosfatidilinositol 3-Quinase , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Mamíferos
15.
Food Funct ; 15(8): 4292-4309, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526853

RESUMO

Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airway inflammation and mucus hypersecretion. α-Terpineol is a monocyclic terpene found in many natural plants and foods. It has been reported to possess a wide range of pharmacological activities including anti-inflammatory and expectorant effects. However, the role of α-terpineol in asthma and its potential protective mechanism have not been well elucidated. This study is designed to investigate the pharmacological effect and mechanism of α-terpineol on asthmatic mice using the metabolomics platform. A murine model of asthma was established using ovalbumin (OVA) sensitization and then challenged for one week. The leukocyte count and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory  infiltrate and mucus secretion were evaluated. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics study was performed on lung tissues and serum to explore endogenous small molecule metabolites affected by α-terpineol in asthmatic mice. After α-terpineol treatment, leukocyte count, inflammatory cytokines in the BALF, and peribronchial inflammation infiltration were significantly downregulated. Goblet cell hyperplasia and mucus secretion were attenuated, with the level of Muc5ac in BALF decreased. These results proved the protective effect of α-terpineol against airway inflammation, mucus hypersecretion and Th1/Th2 immune imbalance. To further investigate the underlying mechanisms of α-terpineol in asthma treatment, UPLC-MS/MS-based metabolomics analysis was performed. 26 and 15 identified significant differential metabolites were found in the lung tissues and serum of the control, model and α-terpineol groups, respectively. Based on the above differential metabolites, enrichment analysis showed that arachidonic acid (AA) metabolism was reprogrammed in both mouse lung tissues and serum. 5-Lipoxygenase (5-LOX) and cysteinyl leukotrienes (CysLTs) are the key enzyme and the end product of AA metabolism, respectively. In-depth studies have shown that pretreatment with α-terpineol can alleviate asthma by decreasing the AA level, downregulating the expression of 5-LOX and reducing the accumulation of CysLTs in mouse lung tissues. In summary, this study demonstrates that α-terpineol is a potential agent that can prevent asthma via regulating disordered AA metabolism.


Assuntos
Ácido Araquidônico , Asma , Líquido da Lavagem Broncoalveolar , Monoterpenos Cicloexânicos , Pulmão , Metabolômica , Camundongos Endogâmicos BALB C , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Camundongos , Monoterpenos Cicloexânicos/farmacologia , Ácido Araquidônico/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Feminino , Modelos Animais de Doenças , Citocinas/metabolismo , Ovalbumina , Espectrometria de Massas em Tandem , Mucina-5AC/metabolismo , Cromatografia Líquida de Alta Pressão
16.
Int J Biol Macromol ; 265(Pt 2): 131017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513909

RESUMO

Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.


Assuntos
Ciclopentanos , Oenanthe , Oxilipinas , Terpenos , Terpenos/metabolismo , Oenanthe/metabolismo , Monoterpenos Cicloexânicos , Acetatos/farmacologia
17.
Sci Rep ; 14(1): 5608, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454146

RESUMO

Essential oil from Thymus vulgaris L. has valuable therapeutic potential that is highly desired in pharmaceutical, food, and cosmetic industries. Considering these advantages and the rising market demand, induced polyploids were obtained using oryzalin to enhance essential oil yield. However, their therapeutic values were unexplored. So, this study aims to assess the phytochemical content, and antimicrobial, antioxidant, and anti-inflammatory activities of tetraploid and diploid thyme essential oils. Induced tetraploids had 41.11% higher essential oil yield with enhanced thymol and γ-terpinene content than diploid. Tetraploids exhibited higher antibacterial activity against all tested microorganisms. Similarly, in DPPH radical scavenging assay tetraploid essential oil was more potent with half-maximal inhibitory doses (IC50) of 180.03 µg/mL (40.05 µg TE/mg) than diploid with IC50 > 512 µg/mL (12.68 µg TE/mg). Tetraploids exhibited more effective inhibition of in vitro catalytic activity of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) than diploids at 50 µg/mL concentration. Furthermore, molecular docking revealed higher binding affinity of thymol and γ-terpinene towards tested protein receptors, which explained enhanced bioactivity of tetraploid essential oil. In conclusion, these results suggest that synthetic polyploidization using oryzalin could effectively enhance the quality and quantity of secondary metabolites and can develop more efficient essential oil-based commercial products using this induced genotype.


Assuntos
Monoterpenos Cicloexânicos , Dinitrobenzenos , Óleos Voláteis , Óleos de Plantas , Sulfanilamidas , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Timol/farmacologia , Thymus (Planta)/química , Tetraploidia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia
18.
J Nat Prod ; 87(4): 861-868, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38438305

RESUMO

PC-A (1), a bromo nor-eremophilane, showed selective antiproliferative activity against a triple-negative breast cancer (TNBC) cell line. This unique activity prompted us to establish a total synthesis to facilitate a structure-activity relationship (SAR) study and selectivity optimization. An enantioselective first total synthesis of 1 was achieved starting from (R)-carvone through a side chain extension with a Mukaiyama aldol reaction and decalin construction. The synthesized decalin derivatives and debromo PC-A (2) were evaluated for antiproliferative activity against five human tumor cell lines, including TNBC, to assess preliminary SAR correlations.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias de Mama Triplo Negativas , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Estereoisomerismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Monoterpenos Cicloexânicos/farmacologia , Monoterpenos Cicloexânicos/química , Monoterpenos/farmacologia , Monoterpenos/química , Monoterpenos/síntese química , Sesquiterpenos/farmacologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Feminino , Linhagem Celular Tumoral , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/síntese química
19.
Zhongguo Zhong Yao Za Zhi ; 49(1): 62-69, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403339

RESUMO

The volatile oils are the effective components of Agastache rugosa, which are stored in the glandular scale. The leaves of pulegone-type A. rugosa were used as materials to observe the leaf morphology of A. rugosa at different growth stages, and the components of volatile oils in gland scales were detected by GC-MS. At the same time, qRT-PCR was used to determine the relative expression of key enzyme genes in the biosynthesis pathway of monoterpenes in volatile oils. The results showed that the density of A. rugosa glandular scale decreased first and then tended to be stable. With the growth of leaves, the relative content of pulegone decreased from 79.26% to 3.94%(89.97%-41.44%), while that of isomenthone increased from 2.43% to 77.87%(0.74%-51.01%), and the changes of other components were relatively insignificant. The correlation analysis between the relative content of monoterpenes and the relative expression levels of their key enzyme genes showed that there was a significant correlation between the relative content of menthone and isomenthone and the relative expression levels of pulegone reductase(PR)(r>0.6, P<0.01). To sum up, this study revealed the accumulation rules of the main components of the contents of the glandular scale of A. rugosa and the expression rules of the key enzyme genes for biosynthesis, which provided a scientific basis and data support for determining the appropriate harvesting period and quality control of the medicinal herbs. This study also initially revealed the biosynthesis mechanism of the monoterpenes mainly composed of pulegone and isomenthone in A. rugosa, laying a foundation for further research on the molecular mechanism of synthesis and accumulation of monoterpenes in A. rugosa.


Assuntos
Agastache , Monoterpenos Cicloexânicos , Óleos Voláteis , Óleos Voláteis/análise , Agastache/metabolismo , Monoterpenos/metabolismo
20.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396868

RESUMO

Monoterpenes are secondary plant metabolites, and such volatile compounds have antioxidant, antibacterial, antiviral, and enzyme inhibitory properties. These compounds are also able to reduce the potentially pro-neurodegenerative trace metal ions that can be sources of free radicals. One basic method used to evaluate the ability of chemical compounds to reduce Fe(III) is FRAP. To date, most studies based on a FRAP assay were performed within several dozen minutes. However, taking into account the diversity of compounds, it is justified to observe their activity over a much longer period of time. The present study aimed to observe the activity of isopulegol, γ-terpinene, α-terpinene, linalool, carvone, citral, and α-phellandrene over a 48 h period. Our study indicates that the lengthened reaction period enhanced activity from several dozen to several hundred percent. The obtained results also revealed an explicit high correlation of the increase in the activity of compounds with the increase in monoterpene concentration. Due to the hydrophobic character of monoterpenes, the FRAP method was modified by the addition of Tween 20. The highest activity was obtained for α-terpinene and γ-terpinene.


Assuntos
Monoterpenos Cicloexânicos , Compostos Férricos , Monoterpenos , Monoterpenos/farmacologia , Antioxidantes/química , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA