Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.154
Filtrar
1.
Mar Pollut Bull ; 201: 116250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479322

RESUMO

Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.


Assuntos
Toxinas Marinhas , Venenos de Moluscos , Oxocinas , Regiões Antárticas , Ácido Okadáico/análise , Oceano Índico
2.
Toxins (Basel) ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393171

RESUMO

Cone snails are carnivorous marine animals that prey on fish (piscivorous), worms (vermivorous), or other mollusks (molluscivorous). They produce a complex venom mostly made of disulfide-rich conotoxins and conopeptides in a compartmentalized venom gland. The pharmacology of cone snail venom has been increasingly investigated over more than half a century. The rising interest in cone snails was initiated by the surprising high human lethality rate caused by the defensive stings of some species. Although a vast amount of information has been uncovered on their venom composition, pharmacological targets, and mode of action of conotoxins, the venom-ecology relationships are still poorly understood for many lineages. This is especially important given the relatively recent discovery that some species can use different venoms to achieve rapid prey capture and efficient deterrence of aggressors. Indeed, via an unknown mechanism, only a selected subset of conotoxins is injected depending on the intended purpose. Some of these remarkable venom variations have been characterized, often using a combination of mass spectrometry and transcriptomic methods. In this review, we present the current knowledge on such specific predatory and defensive venoms gathered from sixteen different cone snail species that belong to eight subgenera: Pionoconus, Chelyconus, Gastridium, Cylinder, Conus, Stephanoconus, Rhizoconus, and Vituliconus. Further studies are needed to help close the gap in our understanding of the evolved ecological roles of many cone snail venom peptides.


Assuntos
Conotoxinas , Caramujo Conus , Humanos , Animais , Conotoxinas/toxicidade , Conotoxinas/química , Caramujo Conus/química , Venenos de Moluscos/química , Peptídeos , Peçonhas , Caramujos
3.
Environ Monit Assess ; 196(3): 259, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349477

RESUMO

This work focused on assessing of the risk associated with the consumption of bivalve mollusks, potentially contaminated with phycotoxins. The studied phycotoxins are saxitoxin (STX), okadaic acid (OA), dinophysistoxins (DTXs), yessotoxins (YTXs), pectenotoxins (PTX), azaspiracids (AZAs), and domoic acid (DA). These toxins were investigated in three species of bivalve mollusks (Anadara senilis, Crassostrea gasar, and Perna perna), originating from the Ebrié lagoon. Chemical analyses were carried out by LC-MS/MS, HPLC-FLD, and HPLC-UV. The level of OA and DTXs, STX, and DA was 10.92 µg OA eq./kg, 9.6 µg STX eq./kg, and 0.17 mg DA eq./kg, respectively. The level of PTXs and AZAs was 3.3 µg PTX-2 eq./kg and 13.86 µg AZA-1 eq./kg; that of YTXs was 0.01 mg YTX eq./kg. The daily exposure dose (DED) was 0.019 µg OA eq./kg bw for OA and DTXs; 0.285 µg DA eq./kg bw for DA; 0.006 µg PTX-2 eq./kg bw for PTXs; 0.016 µg STX eq./kg bw for STX; 0.01 µg YTX eq./kg bw for YTXs; and 0.024 µg AZA-1 eq./kg bw for AZAs for the oyster Crassostrea gasar. These estimated values are lower than the acute reference dose (ARfD) of each phycotoxin recommended by the European Food Safety Agency (EFSA). The risk of harmful effects is acceptable. The absence of risk is valid only for the study period (11 months) and concerns coastal populations living near the sampling points.


Assuntos
Bivalves , Ecossistema , Furanos , Macrolídeos , Venenos de Moluscos , Oxocinas , Animais , Côte d'Ivoire , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Ácido Okadáico
4.
Mar Pollut Bull ; 199: 116022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211543

RESUMO

The effects of yessotoxins (YTXs) produced by the dinoflagellate Protoceratium reticulatum in the early stages of bivalves have not been studied in detail. The present study evaluates the effects of P. reticulatum and YTXs on the survival and feed ingestion of veliger larvae of Argopecten purpuratus. Larvae were 96 h-exposed to 500, 1000 and 2000 P. reticulatum cells mL-1, and their equivalent YTX extract was prepared in methanol. Results show a survival mean of 82 % at the highest density of dinoflagellate, and 38 % for larvae with the highest amount of YTX extract. Feed ingestion is reduced in the dinoflagellate exposure treatments as a function of cell density. Therefore, the effect of YTXs on A. purpuratus represents a new and important area of study for investigations into the deleterious effects of these toxins in the early stages of the life cycle of this and, potentially, other bivalves.


Assuntos
Bivalves , Dinoflagelados , Venenos de Moluscos , Oxocinas , Pectinidae , Animais , Toxinas Marinhas/metabolismo , Larva , Dinoflagelados/metabolismo , Ingestão de Alimentos
5.
Mar Environ Res ; 194: 106321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159409

RESUMO

The dinoflagellates Protoceratium reticulatum and Lingulodinium polyedra are potential yessotoxin (YTX) producers, which have been associated with blooms responsible for economic, social, and ecological impacts around the world. They occur in Iberian waters, but in this region, little is known of their ecophysiology and toxin profiles. This study investigated the growth and toxin production of two strains of each species, from the Portuguese coast, at 15 °C, 19 °C, and 23 °C. Growth curves showed higher growth rates at 19 °C, for both species. YTX and three analogs (homo YTX; 45-OH YTX; 45-OH homo YTX) were investigated by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), and the presence of other analogs was investigated by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). No evidence of toxin production was found in L. polyedra. By contrast, YTX and 45,55-diOH-YTX were detected in both strains of P. reticulatum. These results confirm P. reticulatum as a source of yessotoxins along the Portuguese coast and add to the observed high intraspecific variability on YTX production of both species, at a global scale.


Assuntos
Dinoflagelados , Toxinas Marinhas , Venenos de Moluscos , Oxocinas , Cromatografia Líquida , Toxinas Marinhas/análise , Temperatura , Portugal , Espectrometria de Massas em Tandem
6.
Toxins (Basel) ; 15(11)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999524

RESUMO

The presence of yessotoxins (YTXs) was analyzed in 10,757 samples of Galician bivalves from 2014 to 2022. Only YTX and 45-OH YTX were found. YTX was detected in 31% of the samples, while 45-OH YTX was found in 11.6% of them. Among the samples containing YTX, 45-OH YTX was detected in 37.3% of cases. The maximum recorded levels were 1.4 and 0.16 mg of YTX-equivalentsg-1, for YTX and 45-OH YTX, respectively, which are well below the regulatory limit of the European Union. The YTX and 45-OH YTX toxicities in the raw extracts and extracts subjected to alkaline hydrolysis were strongly and linearly related. Due to the lack of homo-YTX in Galician samples, the effect of alkaline hydrolysis on homo-YTX and 45OH-Homo-YTX was only checked in 23 additional samples, observing no negative effect but a high correlation between raw and hydrolyzed extracts. Hydrolyzed samples can be used instead of raw ones to carry out YTXs determinations in monitoring systems, which may increase the efficiency of those systems where okadaic acid episodes are very frequent and therefore a higher number of hydrolyzed samples are routinely analyzed. The presence of YTX in the studied bivalves varied with the species, with mussels and cockles having the highest percentages of YTX-detected samples. The presence of 45-OH YTX was clearly related to YTX and was detected only in mussels and cockles. Wild populations of mussels contained proportionally more 45-OH YTX than those that were raft-cultured. Spatially, toxin toxicities varied across the sampling area, with higher levels in raft-cultured mussels except those of Ría de Arousa. Ría de Ares (ARE) was the most affected geographical area, although in other northern locations, lower toxin levels were detected. Seasonally, YTX and 45-OH YTX toxicities showed similar patterns, with higher levels in late summer and autumn but lower toxicities of the 45-OH toxin in August. The relationship between the two toxins also varied seasonally, in general with a minimum proportion of 45-OH YTX in July-August but with different maximum levels for raft-cultured and wild mussel populations. Interannually, the average toxicities of YTX decreased from 2014 to 2017 and newly increased from 2018 to 2021, but decreased slightly in 2022. The relationship between 45-OH YTX and YTX also varied over the years, but neither a clear trend nor a similar trend for wild and raft mussels was observed.


Assuntos
Bivalves , Oxocinas , Animais , Toxinas Marinhas/análise , Hidrólise , Cromatografia Líquida , Venenos de Moluscos/metabolismo , Oxocinas/metabolismo , Bivalves/metabolismo , Biotransformação
7.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494290

RESUMO

The diversity of venomous organisms and the toxins they produce have been increasingly investigated, but taxonomic bias remains important. Neogastropods, a group of marine predators representing almost 22% of the known gastropod diversity, evolved a wide range of feeding strategies, including the production of toxins to subdue their preys. However, whether the diversity of these compounds is at the origin of the hyperdiversification of the group and how genome evolution may correlate with both the compounds and species diversities remain understudied. Among the available gastropods genomes, only eight, with uneven quality assemblies, belong to neogastropods. Here, we generated chromosome-level assemblies of two species belonging to the Tonnoidea and Muricoidea superfamilies (Monoplex corrugatus and Stramonita haemastoma). The two obtained high-quality genomes had 3 and 2.2 Gb, respectively, and 92-89% of the total assembly conformed 35 pseudochromosomes in each species. Through the analysis of syntenic blocks, Hox gene cluster duplication, and synonymous substitutions distribution pattern, we inferred the occurrence of a whole genome duplication event in both genomes. As these species are known to release venom, toxins were annotated in both genomes, but few of them were found in homologous chromosomes. A comparison of the expression of ohnolog genes (using transcriptomes from osphradium and salivary glands in S. haemastoma), where both copies were differentially expressed, showed that most of them had similar expression profiles. The high quality of these genomes makes them valuable reference in their respective taxa, facilitating the identification of genome-level processes at the origin of their evolutionary success.


Assuntos
Evolução Molecular , Gastrópodes , Duplicação Gênica , Genoma , Venenos de Moluscos , Gastrópodes/classificação , Gastrópodes/genética , Genoma/genética , Animais , Cromossomos/genética , Genes Homeobox , Sintenia/genética , Transcriptoma/genética , Venenos de Moluscos/genética
8.
Sci Total Environ ; 892: 164485, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257593

RESUMO

Warming could facilitate the intensification of toxic algal blooms, two important stressors for marine organisms that are predicted to co-occur more frequently in the future. We investigated the immediate and delayed effects of a heatwave and a simulated bloom (3 × 106 cells L-1) of the diarrhetic shellfish toxin (DST)-producing benthic dinoflagellate Prorocentrum lima on the survival, physiology (oxygen consumption rate, condition index, immune parameters), and toxin accumulation in the Pacific rock oyster Magallana (Crassostrea) gigas. Oysters exposed to both stressors contained higher mean DST concentrations (mean ± 1 SE: 173.3 ± 19.78 µg kg-1 soft tissue) than those exposed to P. lima bloom alone (120.4 ± 20.90 µg kg-1) and exceeded the maximum permitted levels for human consumption. Exposure to individual stressors and their combination modified the physiology of M. gigas. Oysters exposed to heatwave alone had significantly higher oxygen consumption rates (0.7 ± 0.06 mg O2 h-1 g-1) than the control (0.3 ± 0.06 mg O2 h-1 g-1). However, this was not observed in oysters exposed to both heatwave and P. lima (0.5 ± 0.06 mg O2 h-1 g-1). This alteration of the metabolic response to warming in the presence of P. lima may affect the ability of rock oysters to adapt to environmental stressors (i.e., a heatwave) to ensure survival. Immunomodulation, through changes in total hemocyte count, was observed in oysters exposed to P. lima alone and in combination with warming. Individual stressors and their combination did not influence the condition index, but one mortality was recorded in oysters exposed to both stressors. The findings of this study highlight the vulnerability of rock oysters to the predicted increased frequency of heatwaves and toxic algal blooms, and the increased likelihood of shellfish containing higher than regulatory levels of DST in warming coasts.


Assuntos
Dinoflagelados , Eutrofização , Calor Extremo , Venenos de Moluscos , Ostreidae , Água do Mar , Calor Extremo/efeitos adversos , Ostreidae/metabolismo , Ostreidae/fisiologia , Hemócitos/citologia , Venenos de Moluscos/análise , Venenos de Moluscos/metabolismo , Água do Mar/química , Oceanos e Mares , Intoxicação por Frutos do Mar , Aquecimento Global , Humanos , Animais , Dinoflagelados/crescimento & desenvolvimento , Dinoflagelados/metabolismo , Aquicultura
9.
Mar Pollut Bull ; 187: 114584, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36642003

RESUMO

The composition, levels, and spatial distribution of dissolved lipophilic marine algal toxins (LMATs) including cyclic imines (CIs), yessotoxins (YTXs), okadaic acid (OA) and its derivatives, pectenotoxins (PTXs), azaspiracids (AZAs), and brevetoxins (BTXs) in the coastal waters of Southeast China (Xiamen) and the South China Sea (Hainan Island and Beibu Gulf) were investigated and compared for the first time. Dissolved AZA3 was firstly detected in the coastal seawater of China. OA and PTX2 were widely distributed in the three areas studied. Gymnodimine (GYM), 13-desmethyl spirolide C (SPX1), YTX, and homo-yessotoxins (h-YTX) were found mainly in the South China Sea. The average ∑LMAT concentrations in the coastal waters of Xiamen, Hainan Island, and Beibu Gulf were 10.02 ng/L, 4.21 ng/L, and 44.27 ng/L, respectively. More groups and much higher concentrations of LMATs occurred in the South China Sea than that in the other sea areas of China.


Assuntos
Dinoflagelados , Ácido Okadáico , Água do Mar , Venenos de Moluscos , China
10.
J Proteomics ; 274: 104805, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587728

RESUMO

Contryphans, peptides containing a single disulfide bond, are found abundantly in cone snail venom. The analysis of a large dataset of available contryphan sequences permits a classification based on the occurrence of proline residues at positions 2 and 5 within the macrocyclic 23-membered disulfide loop. Further sequence diversity is generated by variable proteolytic processing of the contryphan precursor proteins. In the majority of contryphans, presence of Pro at position 2 and a D-residue at position 3 leads to a slow conformational dynamics, manifesting as anomalous chromatographic profiles during LC analysis. LC-MS analysis of diverse contryphans suggests that elution profiles may be used as a rapid diagnostic for the presence of the Pro2-DXxx3 motif. Natural sequences from C.inscriptus and C.frigidus together with synthetic analogs permit the delineation of the features necessary for abnormal chromatographic behaviour. A diagnostic for the presence of Pro at position 5 is obtained by the observation of non-canonical fragment ions, generated by N-Cα bond cleavage at the dehydroalanine residue formed by disulfide cleavage. Anomalous LC profiles supports Pro at position 2, while non-canonical mass spectral fragments established Pro at position 5, providing a rapid method for contryphan analysis from LC-ESI-MS/MS profiles of crude Conus venom. SIGNIFICANCE: Contryphans are peptides, widely distributed in cone snail venom, which display extensive sequence diversity. Heterogeneity of proteolytic processing of contryphan precursor proteins, together with post-translational modifications contributes to contryphan diversity. Contryphans, identified by a combination of mass spectrometry and transcriptomic analysis, are classified on the basis of sequence features, primarily the number of proline residues within the disulfide loop. Conformational diversity arises in contryphans by cis-trans isomerization of Cys-Pro bonds, resulting in characteristic chromatographic profiles, permitting identification even in crude venom mixtures. Rapid identification of contryphans in cone snail peptide libraries is also facilitated by diagnostic mass spectral fragments arising by non-canonical cleavage of the N-Cα bond at Cys(7).


Assuntos
Conotoxinas , Caramujo Conus , Animais , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Peptídeos/química , Venenos de Moluscos/química , Dissulfetos/química , Prolina , Caramujo Conus/química , Conotoxinas/química
11.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235146

RESUMO

Conotoxins constitute a treasury of drug resources and have attracted widespread attention. In order to explore biological candidates from the marine cone snail, we isolated and identified three novel conopeptides named as Vi14b, Vi002, Vi003, three conotoxin variants named as Mr3d.1, Mr3e.1, Tx3a.1, and three known conotoxins (Vi15a, Mr3.8 and TCP) from crude venoms of Conus virgo, Conus marmoreus and Conus texile. Mr3.8 (I-V, II-VI, III-IV) and Tx3a.1 (I-III, II-VI, IV-V) both showed a novel pattern of disulfide connectivity, different from that previously established for the µ- and ψ-conotoxins. Concerning the effect on voltage-gated sodium channels, Mr3e.1, Mr3.8, Tx3a.1, TCP inhibited Nav1.4 or Nav1.8 by 21.51~24.32% of currents at semi-activated state (TP2) at 10 µmol/L. Certain anti-ovarian cancer effects on ID-8 cells were exhibited by Tx3a.1, Mr3e.1 and Vi14b with IC50 values of 24.29 µM, 54.97 µM and 111.6 µM, respectively. This work highlights the role of conotoxin libraries in subsequent drug discovery for ovarian cancer treatment.


Assuntos
Conotoxinas , Caramujo Conus , Neoplasias , Animais , Conotoxinas/farmacologia , Caramujo Conus/genética , DNA Complementar , Dissulfetos , Venenos de Moluscos
12.
Peptides ; 156: 170845, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902005

RESUMO

Distinct differences have been observed between L-tryptophan and D-tryptophan containing contryphan-Ar1131 in oxidative folding, trypsin binding, and photostabilization activity on avobenzone. [W5] contryphan-Ar1131 and [w5] contryphan-Ar1131 were chemically synthesized and characterized using RP-HPLC and mass spectrometry. Structural differences due to the change of configuration of tryptophan were evident from the optimized structures of contryphan-Ar1131 using density functional theory (DFT). The comparison of early events of oxidative folding has revealed the role of D-tryptophan in accelerating the formation of a disulfide bond. The optimized structures of the reduced form of peptides revealed the occurrence of aromatic-aromatic and aromatic-proline interactions in [w5] contryphan-Ar1131 which may be critical in aiding the oxidative folding reaction. The presence of the Lys6-Pro7 peptide bond indicates that contryphan-Ar1131 is resistant but may bind to trypsin allowing to assign the binding affinity of peptides to the protein surface. Competitive binding studies and molecular docking along with molecular dynamic (MD) simulations have revealed that [w5] contryphan-Ar1131 has more affinity for the active site of trypsin. Given tryptophan is a photostabilizer of FDA-approved chemical UV-A filter avobenzone, the report has compared the photostabilization activity of [W5]/ [w5] contryphan-Ar1131 on avobenzone under natural sunlight. [w5] contryphan-Ar1131 has better photostabilization activity than that of [W5] contryphan-Ar1131 and also individual D-tryptophan and L-tryptophan amino acids. These biochemical studies have highlighted the significance of D-tryptophan in contryphan-Ar1131 and its photostabilization activity on avobenzone may find applications in cosmetics.


Assuntos
Caramujo Conus , Animais , Caramujo Conus/metabolismo , Dissulfetos , Simulação de Acoplamento Molecular , Venenos de Moluscos/química , Venenos de Moluscos/metabolismo , Estresse Oxidativo , Peptídeos/química , Peptídeos Cíclicos , Prolina , Propiofenonas , Tripsina , Triptofano/química
13.
Mar Pollut Bull ; 180: 113776, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635885

RESUMO

The distribution characteristics of lipophilic marine biotoxins (LMTs), such as yessotoxins (YTXs) and pectenotoxins (PTXs) in phytoplankton, mussels, and commercial seafood were determined for the southern coast of South Korea. Gonyaulax spinifera and Dinophysis acuminata, which are the causative microalgae of YTXs and PTXs, were recorded during summer. Homo-YTX and PTX-2 were predominantly detected in phytoplankton (max: 5.7 µg g-1 ww), whereas only YTXs were detected in mussels (max: 1.1 µg g-1 ww). LMT concentrations in mussels were positively correlated with those in phytoplankton. However, there was a 1-month time gap in maximum LMT concentrations between mussels and phytoplankton. Homo-YTX was detected in commercial seafood, including red scallop and comb pen shell. However, homo-YTX concentrations in shellfish were below the recommended value of the European Food Safety Authority (3.75 mg YTX equivalents kg-1); thus, the consumption of this seafood was not considered to be a significant risk for human health.


Assuntos
Bivalves , Dinoflagelados , Animais , Cromatografia Líquida , Humanos , Venenos de Moluscos , Oxocinas , Fitoplâncton , Alimentos Marinhos/análise , Frutos do Mar/análise
14.
Peptides ; 153: 170796, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367253

RESUMO

The N-methyl-D-aspartate (NMDA) receptors are heteromeric cation channels involved in memory, learning, and synaptic plasticity. The dysfunction associated with NMDA receptors results in neurodegenerative conditions. The conantokins comprise a family of Conus venom peptides that induce sleep upon intracranial injection into young mice and are known to be NMDA receptor antagonists. This work comprehensibly documents the conantokins that have been characterized to date, focusing on the biochemistry, solution structures in the presence or absence of divalent cations, functions as selective NMDA receptor antagonists, and structure-activity relationships. Furthermore, the applications of conantokins as potential therapeutics for certain neurological conditions, including neuropathic pain, epilepsy, and ischaemia that are linked to NMDA receptor dysfunction are reviewed.


Assuntos
Conotoxinas , Receptores de N-Metil-D-Aspartato , Animais , Conotoxinas/química , Camundongos , Venenos de Moluscos/química , Venenos de Moluscos/farmacologia , Peptídeos/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
15.
Nanomedicine (Lond) ; 17(10): 717-739, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35481356

RESUMO

Background: Yessotoxin (YTX), a marine-derived drug, was encapsulated in PEGylated pH-sensitive nanoliposomes, covalently functionalized (strategy I) with SDF-1α and by nonspecific adsorption (strategy II), to actively target chemokine receptor CXCR-4. Methods: Cytotoxicity to normal human epithelial cells (HK-2) and prostate (PC-3) and breast (MCF-7) adenocarcinoma models, with different expression levels of CXCR-4, were tested. Results: Strategy II exerted the highest cytotoxicity toward cancer cells while protecting normal epithelia. Acid pH-induced fusion of nanoliposomes seemed to serve as a primary route of entry into MCF-7 cells but PC-3 data support an endocytic pathway for their internalization. Conclusion: This work describes an innovative hallmark in the current marine drug clinical pipeline, as the developed nanoliposomes are promising candidates in the design of groundbreaking marine flora-derived anticancer nanoagents.


Assuntos
Neoplasias , Oxocinas , Quimiocina CXCL12/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Masculino , Venenos de Moluscos , Neoplasias/tratamento farmacológico , Receptores CXCR4
16.
Mar Drugs ; 20(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323508

RESUMO

Cone snail venom biodiversity reflects dietary preference and predatory and defensive envenomation strategies across the ≈900 species of Conidae. To better understand the mechanisms of adaptive radiations in closely related species, we investigated the venom of two phylogenetically and spatially related species, C. flavidus and C. frigidus of the Virgiconus clade. Transcriptomic analysis revealed that the major superfamily profiles were conserved between the two species, including 68 shared conotoxin transcripts. These shared transcripts contributed 90% of the conotoxin expression in C. frigidus and only 49% in C. flavidus, which showed greater toxin diversification in the dominant O1, I2, A, O2, O3, and M superfamilies compared to C. frigidus. On the basis of morphology, two additional sub-groups closely resembling C. flavidus were also identified from One Tree Island Reef. Despite the morphological resemblance, the venom duct proteomes of these cryptic sub-groups were distinct from C. flavidus. We suggest rapid conotoxin sequence divergence may have facilitated adaptive radiation and the establishment of new species and the regulatory mechanisms facilitating species-specific venom evolution.


Assuntos
Caramujo Conus , Venenos de Moluscos , Animais , Caramujo Conus/genética , Caramujo Conus/metabolismo , Perfilação da Expressão Gênica , Venenos de Moluscos/genética , Venenos de Moluscos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Filogenia , Proteoma/genética , Proteoma/metabolismo
17.
Toxins (Basel) ; 14(3)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35324723

RESUMO

The defensive use of cone snail venom is hypothesised to have first arisen in ancestral worm-hunting snails and later repurposed in a compartmentalised venom duct to facilitate the dietary shift to molluscivory and piscivory. Consistent with its placement in a basal lineage, we demonstrate that the C. distans venom gland lacked distinct compartmentalisation. Transcriptomics revealed C. distans expressed a wide range of structural classes, with inhibitory cysteine knot (ICK)-containing peptides dominating. To better understand the evolution of the venom gland compartmentalisation, we compared C. distans to C. planorbis, the earliest diverging species from which a defence-evoked venom has been obtained, and fish-hunting C. geographus from the Gastridium subgenus that injects distinct defensive and predatory venoms. These comparisons support the hypothesis that venom gland compartmentalisation arose in worm-hunting species and enabled repurposing of venom peptides to facilitate the dietary shift from vermivory to molluscivory and piscivory in more recently diverged cone snail lineages.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Conotoxinas/química , Conotoxinas/genética , Caramujo Conus/genética , Venenos de Moluscos/química , Peptídeos , Transcriptoma , Peçonhas
18.
Nat Chem Biol ; 18(5): 511-519, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289328

RESUMO

Cone snail venoms contain a wide variety of bioactive peptides, including insulin-like molecules with distinct structural features, binding modes and biochemical properties. Here, we report an active humanized cone snail venom insulin with an elongated A chain and a truncated B chain, and use cryo-electron microscopy (cryo-EM) and protein engineering to elucidate its interactions with the human insulin receptor (IR) ectodomain. We reveal how an extended A chain can compensate for deletion of B-chain residues, which are essential for activity of human insulin but also compromise therapeutic utility by delaying dissolution from the site of subcutaneous injection. This finding suggests approaches to developing improved therapeutic insulins. Curiously, the receptor displays a continuum of conformations from the symmetric state to a highly asymmetric low-abundance structure that displays coordination of a single humanized venom insulin using elements from both of the previously characterized site 1 and site 2 interactions.


Assuntos
Insulina , Venenos de Moluscos , Microscopia Crioeletrônica , Humanos , Insulina/metabolismo , Venenos de Moluscos/química , Venenos de Moluscos/metabolismo , Peptídeos , Conformação Proteica
19.
Mar Drugs ; 20(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35200635

RESUMO

Within the Conidae family, the piscivorous Conus species have been a hotspot target for drug discovery. Here, we assess the relevance of Conus and their other feeding habits, and thus under distinctive evolutionary constraints, to highlight the potential of neglected molluscivorous and vermivorous species in biomedical research and pharmaceutical industry. By singling out the areas with inadequate Conus disquisition, such as the Tamil Nadu Coast and the Andaman Islands, research resources can be expanded and better protected through awareness. In this study, 728 Conus species and 190 species from three other genera (1 from Californiconus, 159 from Conasprella and 30 from Profundiconus) in the Conidae family are assessed. The phylogenetic relationships of the Conidae species are determined and their known feeding habits superimposed. The worm-hunting species appeared first, and later the mollusc- and fish-hunting species were derived independently in the Neogene period (around 23 million years ago). Interestingly, many Conus species in the warm and shallow waters become polyphagous, allowing them to hunt both fish and worms, given the opportunities. Such newly gained trait is multi originated. This is controversial, given the traditional idea that most Conus species are specialized to hunt certain prey categories. However, it shows the functional complexity and great potential of conopeptides from some worm-eating species. Pharmaceutical attempts and relevant omics data have been differentially obtained. Indeed, data from the fish-hunting species receive strong preference over the worm-hunting ones. Expectedly, conopeptides from the fish-hunting species are believed to include the most potential candidates for biomedical research. Our work revisits major findings throughout the Conus evolution and emphasizes the importance of increasing omics surveys complemented with further behavior observation studies. Hence, we claim that Conus species and their feeding habits are equally important, highlighting many places left for Conus exploration worldwide. We also discuss the Conotoxin drug discovery potentials and the urgency of protecting the bioresources of Conus species. In particular, some vermivorous species have demonstrated great potential in malaria therapy, while other conotoxins from several worm- and mollusc-eating species exhibited explicit correlation with SARS-CoV-2. Reclaiming idle data with new perspectives could also promote interdisciplinary studies in both virological and toxicological fields.


Assuntos
Caramujo Conus/fisiologia , Comportamento Alimentar , Venenos de Moluscos/toxicidade , Animais , Antivirais/química , Antivirais/farmacologia , Caramujo Conus/genética , Humanos , Venenos de Moluscos/química , SARS-CoV-2/efeitos dos fármacos
20.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200678

RESUMO

The venom duct transcriptomes and proteomes of the cryptic cone snail species Virroconus ebraeus and Virroconus judaeus were obtained and compared. The most abundant and shared conotoxin precursor superfamilies in both species were M, O1, and O2. Additionally, three new putative conotoxin precursor superfamilies (Virro01-03) with cysteine pattern types VI/VII and XVI were identified. The most expressed conotoxin precursor superfamilies were SF-mi2 and M in V. ebraeus, and Cerm03 and M in V. judaeus. Up to 16 conotoxin precursor superfamilies and hormones were differentially expressed between both species, and clustered into two distinct sets, which could represent adaptations of each species to different diets. Finally, we predicted, with machine learning algorithms, the 3D structure model of selected venom proteins including the differentially expressed Cerm03 and SF-mi2, an insulin type 3, a Gastridium geographus GVIA-like conotoxin, and an ortholog to the Pionoconus magus ω-conotoxin MVIIA (Ziconotide).


Assuntos
Caramujo Conus , Venenos de Moluscos/química , Proteínas/química , Algoritmos , Animais , Aprendizado de Máquina , Proteínas/isolamento & purificação , Proteoma , Especificidade da Espécie , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...