Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Sci Food Agric ; 101(6): 2534-2541, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33063346

RESUMEN

BACKGROUND: Current dietary guidelines recommend five or more fruit, vegetable, and legume servings per day. Often, these products are eaten cooked, resulting in organoleptic and nutritional changes. Vacuum cooking is gaining attention as an alternative cooking technique, due to its ability to preserve or even enhance sensory and healthy properties of food. Its household application is, however, poorly explored. In this work, the effect of vacuum cooking, performed with a new patented system, was studied for the first time on pumpkin cubes and compared to sous vide and traditional steam cooking, through a multidisciplinary approach. RESULTS: All the cooking treatments damaged pumpkin microstructure, leading to cell separation and plasmolysis; vacuum cooking was the most aggressive method, as confirmed by texture softening. Vacuum cooking was also the method with less impact on pumpkin color, in relation to the largest extraction of some classes of carotenoids from the broken cells. Significant polyphenol extraction, especially of gallic acid and naringenin, was instead observed for sous vide and steamed pumpkins. The total antioxidant activity, ascribable to the effect of both carotenoids and polyphenols, resulted enhanced after cooking compared to raw one mainly for cook vide samples, followed by steamed and sous vide ones. CONCLUSIONS: Vacuum cooking, followed by sous vide, has often shown better performance than traditional steam cooking for pumpkin cubes. The implementation of sous vide and vacuum cooking at domestic level or in professional kitchens, and in the food industry, would allow the consumption of vegetables with improved nutritional and sensorial characteristics. © 2020 Society of Chemical Industry.


Asunto(s)
Antioxidantes/química , Culinaria/métodos , Cucurbita/química , Carotenoides/química , Color , Culinaria/instrumentación , Frutas/química , Ácido Gálico/química , Vapor , Vacio
2.
J Sci Food Agric ; 98(6): 2267-2276, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28984926

RESUMEN

BACKGROUND: Several studies investigated the impact of different cooking techniques on the quality of vegetables. However, the use of the combined air-steam cooking is still scarcely debated, despite the advantages informally referred by professional catering workers. In this study, its optimisation was studied on Brussels sprouts and pumpkin cubes to obtain the best physical (texture, colour) and antioxidant (FRAP, total phenols) response, in comparison to a conventional steaming treatment. RESULTS: Increasing the strength of the air-steam treatment, Brussels sprouts resulted to be softer, less green (higher a* value), richer in phenols and exhibited lower FRAP values than the steamed ones. The air-steamed pumpkin cubes exhibited an equivalent softening degree to that of steamed ones and, under the strongest cooking conditions, a higher antioxidant quality and a yellow darkening (lower b* value). Varying the cooking time and/or temperature, a linear change of force/compression hardness and a* (negative a*: greenness) for Brussels sprouts, b* (yellowness) and total phenol content for pumpkin cubes was observed. A predictive model for these variables was obtained by response surface methodology. The best process conditions to achieve the optimal desirability were also identified. CONCLUSION: The application of air-steam cooking under suitable time/temperature conditions could be proposed as an alternative method to a traditional steam cooking on Brussels sprouts and pumpkin cubes, being able to preserve or improve their quality. The best air-steam cooking conditions were 25 min at 90 °C for Brussels sprouts and 10 min at 110 °C for pumpkin. © 2017 Society of Chemical Industry.


Asunto(s)
Antioxidantes/química , Culinaria/métodos , Cucurbita/química , Verduras/química , Brassica/química , Culinaria/instrumentación , Calor , Fenoles/química , Extractos Vegetales/química , Vapor/análisis
3.
J Food Sci Technol ; 54(11): 3433-3442, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29051638

RESUMEN

The lack of updated knowledge about the physical properties of milk powders aimed us to evaluate selected physical properties (water activity, particle size, density, flowability, solubility and colour) of eleven skim and whole milk powders produced in Europe. These physical properties are crucial both for the management of milk powder during the final steps of the drying process, and for their use as food ingredients. In general, except for the values of water activity, the physical properties of skim and whole milk powders are very different. Particle sizes of the spray-dried skim milk powders, measured as volume and surface mean diameter were significantly lower than that of the whole milk powders, while the roller dried sample showed the largest particle size. For all the samples the size distribution was quite narrow, with a span value less than 2. The loose density of skim milk powders was significantly higher than whole milk powders (541.36 vs 449.75 kg/m3). Flowability, measured by Hausner ratio and Carr's index indicators, ranged from passable to poor when evaluated according to pharmaceutical criteria. The insolubility index of the spray-dried skim and whole milk powders, measured as weight of the sediment (from 0.5 to 34.8 mg), allowed a good discrimination of the samples. Colour analysis underlined the relevant contribution of fat content and particle size, resulted in higher lightness (L*) for skim milk powder than whole milk powder, which, on the other hand, showed higher yellowness (b*) and lower greenness (-a*). In conclusion a detailed knowledge of functional properties of milk powders may allow the dairy to tailor the products to the user and help the food processor to perform a targeted choice according to the intended use.

4.
J Food Sci Technol ; 53(5): 2443-51, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27407211

RESUMEN

The effect of boiling, steaming and microwaving on microstructure, texture and colour of raw and industrially frozen carrots was investigated. The raw carrots, after cooking, showed dehydrated and separated cells with swollen walls. The carrots subjected to blanching, freezing and followed by frozen storage exhibited marked tissue damages indicating deep oriented fissures. Cooking caused cellular dehydration and separation in the tissue, with the same intensity between raw and frozen carrots and independently from the cooking treatment applied. Among different cooking methods, microwaving showed better retention of the initial texture and colour quality for both raw and frozen carrots. On the other hand, the steamed carrots revealed the highest degree of softening and colour differences from the control for both raw and frozen carrots, despite the worst tissue conditions were observed for the boiled carrots.

5.
J Sci Food Agric ; 95(1): 59-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25060963

RESUMEN

BACKGROUND: Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). RESULTS: Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. CONCLUSION: Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life.


Asunto(s)
Antioxidantes/análisis , Pan/análisis , Fagaceae , Conservación de Alimentos , Calidad de los Alimentos , Triticum , Fenómenos Químicos , Suplementos Dietéticos , Harina , Manipulación de Alimentos/métodos , Depuradores de Radicales Libres/análisis , Semillas , Agua/análisis
6.
J Sci Food Agric ; 95(11): 2185-91, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25410476

RESUMEN

BACKGROUND: Raman spectroscopy, in its confocal micro-Raman variation, has been recently proposed as a spatially resolved method to identify carotenoids in various food matrices, being faster, non-destructive, and avoiding sample extraction, but no data are present in the literature concerning its application to the evaluation of carotenoid pattern changes after thermal treatment of carrots. RESULTS: The effect of three cooking methods (i.e. boiling, steaming and microwaving) was evaluated on frozen carrot, comparing changes on carotenoid profiles measured by means of Raman spectroscopy with their high-performance liquid chromatographic determination and colour. A more pronounced detrimental effect on carotenoids was detected in steamed carrots, in accordance with colour data. Conversely, boiling and, to a lesser extent, microwaving caused an increase in carotenoid concentration. Cooking procedures affected the Raman spectral features of carotenoids, causing a shift of vibration frequencies towards a higher energy, increase in the spectral baseline and peak intensities as well as a broadening of their width, probably in relation to the thermal degradation of longer carotenoids (i.e. the all-trans form) and the isomerization process. In particular, steamed samples showed a significantly higher increase of centre frequency, in accordance with a more pronounced isomerization and changes in colour parameters. CONCLUSION: This work showed that the evolution of Raman spectral parameters could provide information on carotenoid bioaccessibility for carrots cooked using various methods. This paves the way for a future use of this technique to monitor and optimize cooking processes aimed at maximizing carotenoid bioaccessibility and bioavailability.


Asunto(s)
Carotenoides/análisis , Culinaria/métodos , Daucus carota/química , Calor , Espectrometría Raman/métodos , Verduras/química , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión/métodos , Humanos , Microondas , Vapor
7.
J Food Sci Technol ; 52(10): 6254-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26396371

RESUMEN

In the present work, the bread-making performance of durum wheat flour under straight-dough and sourdough procedures were compared to those offered by soft wheat flour by means of selected physical properties (colour, texture, water dynamics, crumb grain characteristic, bulk volume) immediately after baking and during a 5-day shelf-life. The use of sourdough process better preserved both crumb grain characteristic and moisture content of the breads during shelf-life, independently of the wheat flour used. The flour seemed to significantly affect the water dynamics in sourdough breads, being the dehydration process of crust and under-crust faster in durum wheat breads. On the other hand, increasing trend of crumb firmness during the shelf-life was slower in durum wheat breads than in those obtained with soft wheat flour. Initial colour parameters of crust and crumb appeared to less change during shelf-life if durum wheat flour was used. Thus, the final quality of breads after baking and along the shelf-life was significantly affected by both the type of flours and the bread-making process. The results reported herein showed that technological performances of durum wheat flour, especially when combined with sourdough processes, could be successfully exploited for the production of innovative products in the bread-making industry.

8.
Foods ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123547

RESUMEN

Brewer's spent grain (BSG) was used as a sustainable and healthy ingredient in two cereal bar formulations, with honey (H) and chocolate (C) used as the binding systems' characterizing ingredients. The two bars, formulated using three levels of BSG (H1: 8.5%; H2: 12.7%; H3: 21.2%; C1: 3.9%; C2: 7.7%; C3: 15.5%) and stored for 20 days, were studied from a physicochemical perspective and compared to non-enriched control bars. The analysis showed that BSG enriched the bars with minerals, B vitamins, proteins, and fibers, meeting the required contents for the "high fiber" nutritional claim. Moisture content and water activity decreased with increasing BSG quantity and storage time. Higher BSG content increased flexibility in H bars after 7 days, while decreasing water content and increasing hardness in C bars at 1 storage day. Higher BSG levels darkened the samples' color with little change during storage. In addition, a consumer sensory test was conducted. The results showed that providing information on BSG had little impact on liking, purchase intent, and sensory perception. In addition, under blind conditions, H bars were considered more natural and healthier than the C bars; however, these differences were not significant in the informed conditions. This study shows the potential use of upcycled ingredients in cereal bars and highlights the central role of the sensory experience on consumer appreciation, considering also information provision.

9.
J Sci Food Agric ; 93(12): 2909-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23580481

RESUMEN

BACKGROUND: The nature of the relationship between differential scanning calorimetry thermal properties and the oxidation and hydrolysis compounds formed during a real auto-oxidation process in virgin olive oils has not been evaluated so far, as these samples are difficult to find. In this work, 21 samples of virgin olive oil, stored under ideal conditions since their years of production (production range 1991-2005) to develop the natural auto-oxidation process, were analysed in order to evaluate this relationship. RESULTS: Oils stored the longest time showed the highest hydrolytic degradation while the others exhibited higher contents of oxidised fatty acids and triacylglycerols, instead. Thermal properties of transitions were differently influenced by degradation compounds with the onset of both the cooling and heating profiles particularly influenced by diacylglycerols and oxidised lipids. Chemical data and thermal properties were correlated by using principal component analysis. Twenty-three variables were selected for the analysis with the first component fully segregating samples into two groups according to the year of storage and the level of hydrolysis and/or oxidation, on the basis of selected thermal properties obtained by cooling and heating transitions. CONCLUSIONS: These preliminary findings showed that differential scanning calorimetry could be considered an useful tool to evaluate lipid degradation in virgin olive oils, indicating its value as a support to chemical techniques.


Asunto(s)
Grasas Insaturadas en la Dieta/análisis , Análisis de los Alimentos/métodos , Calidad de los Alimentos , Almacenamiento de Alimentos , Frutas/química , Olea/química , Aceites de Plantas/química , Rastreo Diferencial de Calorimetría , Frío/efectos adversos , Diglicéridos/análisis , Diglicéridos/química , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/química , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/química , Calor/efectos adversos , Hidrólisis , Italia , Aceite de Oliva , Oxidación-Reducción , Aceites de Plantas/normas , Análisis de Componente Principal , Especificidad de la Especie , Triglicéridos/análisis , Triglicéridos/química
10.
Foods ; 12(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444185

RESUMEN

Emulsion gels are gaining interest as fat replacers due to their benefits associated with calorie reduction and their versatility in a wide range of products. Their production process needs to be tailored to obtain the desired stability and physicochemical properties. This study investigated the effect of heat (70, 80, and 90 °C) and pressure (5, 10, and 15 MPa) to produce whey protein emulsion gels using a pilot-scale tubular heat exchanger equipped with a homogenization valve. Both temperature and pressure determined a significant effect (p < 0.05) on the rheological moduli, with the treated samples displaying a predominant elastic behavior. The treatments also showed an improved pseudoplasticity due to the significant reduction in the flow behavior index (p < 0.05). All the samples showed a bimodal particle size distribution; by increasing the temperature up to 80 °C, a reduction in Dv50 (50th percentile) values compared to the control samples was observed. At 90 °C, the Dv50 value increased because of coalescence and flocculation phenomena occurring during or immediately after processing. The greater aggregation and structural development obtained with stronger process conditions improved the stability of the emulsions. The results show the capability to produce gel emulsions with good physical properties that could be proposed as food ingredients to substitute fats in food products.

11.
Foods ; 12(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37107432

RESUMEN

This study aimed to develop high-quality flatbreads for low-income countries by using composite flours from climate-resilient crops, i.e., sprouted sorghum, tapioca, and cowpea, as partial alternatives to imported wheat. Through the experimental design, several flatbread prototypes were developed that maximized the content of sprouted sorghum and cowpea flours and minimized the content of wholewheat flour. Three of them were chosen based on the best textural, nutritional (highest intake of energy, proteins, and micronutrients-iron, zinc and vitamin A), and economic (cheapest in Sierra Leone, Tanzania, Burundi, and Togo) features. The physicochemical properties, in vitro starch digestibility, total phenolic content, antioxidant capacity, and sensory acceptability were also measured for the samples. The experimental flatbreads showed lower rapidly digestible starch and higher resistant starch contents than the control (100% wholewheat based), and were also richer in phenolic content and higher in antioxidant activity. Moreover, one of the prototypes was perceived to be as acceptable as the control for texture and flavour properties. The ranking test, performed after explaining the nature of the samples, revealed that the flatbread meeting the nutritional criteria was the preferred one. Overall, the use of composite flour from climate-resilient crops was proven to be an efficient strategy to obtain high-quality flatbread.

12.
Foods ; 11(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35885286

RESUMEN

Rising challenges for food innovation and environmental issues have led to an increased interest in bio-economy and more sustainable food production [...].

13.
J Food Sci ; 86(2): 531-539, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33462803

RESUMEN

This work focuses on the reuse of brewery spent grains (BSGs), the most abundant by-product of the beer industry, today mainly used as animal feed. BSGs are rich in fibers and proteins as well as phenolic compounds, all of which are beneficial for human nutrition. Cereal bars containing 12% BSG were formulated and characterized instrumentally. Moreover, 159 panelists representative of young Italian consumers evaluated the bars in a central location test, along with a commercial cereal bar. Products were first evaluated blind, and then in an informed condition where additional product-specific nutritional and sustainability information was revealed, thus the purchase intent was determined. While the control product outperformed the BSG bar in most of the hedonic and sensory measures, the BSG sample was perceived as "natural/made with natural ingredients" by a significantly higher number of panelists (49%) compared to the control (30%). Additionally, even in the lower performing formulation, a significant positive effect on purchase intent was observed when providing either nutrition (fiber content) or sustainability (use of upcycled ingredients) information. The acceptable price range for the BSG and the commercial bar was very similar, whereas the optimal pricing point for the BSG was lower than the control. For the BSG product, sustainability information had significantly higher impact on purchase intent than nutrition-based information. Results highlight the importance of understanding consumer attitudes toward upcycling and the use of byproducts as ingredients in new food formulations. PRACTICAL APPLICATION: Results show how providing information on product nutrition and sustainability can increase purchase intent in the context of a cereal bar containing upcycled ingredients. The findings of this study can help food and consumer researchers to develop acceptable products that include BSG as an ingredient, potentially replacing other cereals in the recipe. The use of this brewery by-product could add value to the beer supply chain and to the final product as well, being also aligned with the current market trend of sustainability and functional health benefits.


Asunto(s)
Comportamiento del Consumidor , Grano Comestible/química , Alimentos Formulados , Animales , Cerveza , Comercio , Fibras de la Dieta/análisis , Etiquetado de Alimentos , Humanos , Italia
14.
Foods ; 10(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064430

RESUMEN

Authentication of extra virgin olive oils is a key strategy for their valorization and a way to preserve olive biodiversity. Physical and thermal analysis have been proposed in this study as fast and green techniques to reach this goal. Thirteen extra virgin olive oils (EVOOs) obtained from minor olive cultivars, harvested at three different ripening stages, in four Italian regions (Abruzzo, Apulia, Sardinia, and Calabria) have been studied. Thermal properties, viscosity and color, as influenced by fatty acid composition and chlorophyll content, have been investigated. The thermal curves of EVOOs, obtained by differential scanning calorimetry, were mostly influenced by the oleic acid content: a direct correlation with the cooling and heating enthalpy and an indirect correlation with the cooling transition range were observed. The minor fatty acids, and particularly arachidic acid, showed an influence, mostly on the heating thermograms. Viscosity and color showed respectively a correlation with fatty acids composition and chlorophyll content, however they didn't result able to discriminate between the samples. Thanks to the principal component analysis, the most influencing thermal parameters and fatty acids were used to cluster the samples, based on their botanical and geographical origin, resulting instead the harvesting time a less influential variable.

15.
Curr Res Food Sci ; 4: 698-706, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34661168

RESUMEN

Encapsulation of olive leaves extracts (OLE), rich of healthy components like Oleuropein, Hydroxytyrosol and Verbascoside, represents a new challenge to improve stability and nutritional value of food as well as a way to recover value added compounds from by-products, contributing to a more sustainable food system. In this context, OLE-loaded microbeads of Na alginate alone or in combination with Pectin, Na Caseinate or Whey protein isolates, were produced by emulsification internal ionotropic gelation. Encapsulation efficiency of the main phenolic compounds (Oleuropein, Hydroxytyrosol, Verbascoside) was carried out along with microparticles morphological characterization by scanning electron microscopy (SEM), thermal properties by differential scanning calorimetry (DSC) and color. Encapsulation efficiency resulted higher for Alginate/Pectin, whilst Alginate/Caseinate was the less performing system, probably due to the lower interaction with polyphenols. SEM revealed collapsed structures and continuous smooth surfaces for Alginate and Alginate/Pectin microbeads while more regular structures and porous surfaces were observed for Alginate/Caseinate and Alginate/Whey proteins. Higher hue angle and lower chroma values were observed for all the beads with respect to the pure extract, indicating a reduction of the yellow/brown color. DSC highlighted higher thermal stability for the microbeads in comparison to the original ingredients, showing also new thermal transitions related to bonds formation between polymers and OLE.

16.
Foods ; 10(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947075

RESUMEN

Reducing food waste as well as converting waste products into second-life products are global challenges to promote the circular economy business model. In this context, the aim of this study is to quantify the environmental impact of lab-scale food preparations enriched with phenolic extracts from olive oil mill waste, i.e., wastewater and olive leaves. Technological (oxidation induction time) and nutritional (total phenols content) parameters were considered to assess the environmental performance based on benefits deriving by adding the extracts in vegan mayonnaise, salad dressing, biscuits, and gluten-free breadsticks. Phenolic extraction, encapsulation, and addiction to the four food preparations were analyzed, and the input and output processes were identified in order to apply the life cycle assessment to quantify the potential environmental impact of the system analyzed. Extraction and encapsulation processes characterized by low production yields, energy-intensive and complex operations, and the partial use of chemical reagents have a non-negligible environmental impact contribution on the food preparation, ranging from 0.71% to 73.51%. Considering technological and nutritional aspects, the extraction/encapsulation process contributions tend to cancel out. Impacts could be reduced approaching to a scale-up process.

17.
J Food Sci ; 85(3): 727-735, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31999367

RESUMEN

Phycocyanin, a natural blue colorant, is typically extracted from liquid biomass of Arthrospira platensis, a blue-green algae called spirulina. In this study, we developed a scalable process to extract phycocyanin from dried spirulina biomass. First, we established the optimal ionic strength and pH for the extraction buffer. The results showed that a minimum ionic strength (>5 g/L NaCl) must be maintained to minimize the co-extraction of the green chlorophyll. The optimal pH of the phosphate buffer (100 mM) for phycocyanin extraction is 7.5; however, the pH should be immediately adjusted to 6.0 to 6.5 after the extraction to keep phycocyanin stable. Second, we also investigated three processing techniques, that is, high-pressure processing (HPP), pulsed electric field (PEF), and ultrasonication, to break the cell walls of spirulina and facilitate the release of phycocyanins into extraction buffers. HPP and PEF do not lead to the release of phycocyanin into the extraction buffer. However, ultrasonication breaks down the spirulina into fine particles and releases most of the phycocyanin, along with other impurities, immediately after the treatment. Last, it has been revealed that most of the phycocyanin can be extracted from biomass within 3 hr by phosphate buffer only (pH 7.5, 100 mM) at room temperature. It is concluded that there is no need to treat the rehydrated biomass solution by HPP, PEF, or ultrasonication due to the minimal benefits they brought for the extraction. Based on these results, we proposed an extraction process for the plant production of phycocyanin starting from dried spirulina biomass. PRACTICAL APPLICATIONS: Limited information can be found on the extraction of phycocyanin from dried spirulina biomass, especially how to better preserve the natural blue color of phycocyanin during extraction. We have investigated the method and presented a different view from previous processes. Pulsed electric field, high-pressure processing, and ultrasonication were employed to accelerate the extraction of phycocyanin from dried biomass. However, it was found that, unlike the extraction from live wet biomass, these techniques do not help with the extraction from dried biomass. Based on investigations, we have proposed a process that can be easily scaled up for the commercial production of phycocyanin from dried spirulina biomass.


Asunto(s)
Fraccionamiento Químico/métodos , Colorantes de Alimentos/aislamiento & purificación , Manipulación de Alimentos/métodos , Ficocianina/aislamiento & purificación , Spirulina/química , Biomasa , Fraccionamiento Químico/instrumentación , Clorofila/análisis , Clorofila/aislamiento & purificación , Colorantes de Alimentos/análisis , Manipulación de Alimentos/instrumentación , Concentración de Iones de Hidrógeno , Ficocianina/análisis , Spirulina/crecimiento & desarrollo
18.
Foods ; 9(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796512

RESUMEN

Stabilization of ohmic pretreated peach cubes (ohm) in syrup, representative of semifinished fruit products, was finalized by ohmic heating (OHM) and high pressure processing (HPP), proposed respectively as thermal and nonthermal pasteurization, in comparison to a conventional pasteurization treatment (DIM). The samples were then studied in terms of histological, physical (dimensional distribution, tenderometry, texture, viscosity of syrup and colour), chemical (total phenolic and ascorbic acid content), and sensorial (triangle test) properties. Severe modifications of the cell walls were observed in ohm-DIM and ohm-OHM samples, with swelling and electroporation, respectively. From chemical analyses, significant reduction of ascorbic acid and simultaneous increase of total phenolics content were observed for ohm-DIM and ohm-OHM, probably in relation to the cell wall damages. ohm-HPP showed the best preservation of the dimensional characteristics and hardness, followed by ohm-OHM and ohm-DIM. In addition, textural and colour parameters evidenced similar results, with ohm-HPP as the less different from ohm. Finally, the sensorial analysis confirmed ohm-HPP and ohm-OHM samples as the most similar to ohm as well as the most appreciated in terms of colour and consistency.

19.
Food Chem ; 274: 281-290, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372940

RESUMEN

The effects of high pressure treatments (200, 400, 600 MPa for 5 min) and a thermal treatment (85 °C for 5 min) were evaluated on cubes of two pumpkin species (Cucurbita maxima L. var. Delica and Cucurbita moschata Duchesne var. Butternut) up to 2 months of refrigerated storage. Increasing the pressure, small parenchyma cells from the pumpkin tissue exhibited collapses and separations, especially for Butternut. This species showed a lower hardness than Delica at time 0. For both species, 400 MPa and thermal treatment were the most effective in the inactivation of pectinmethylesterase, which reactivated after 2 months, especially for Butternut. Colorimetric parameters decreased after all treatments. Antioxidant activity resulted affected by pressure, showing a significant increase during storage especially for the samples treated at 200 MPa after 2 months, comparable to the thermal treated ones. Among the tested treatments, 400 MPa may be considered as the best option for the quality retention during storage.


Asunto(s)
Cucurbita/química , Almacenamiento de Alimentos/métodos , Antioxidantes/química , Antioxidantes/farmacología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Colorimetría , Calidad de los Alimentos , Presión Hidrostática , Especificidad de la Especie , Factores de Tiempo
20.
Foods ; 8(7)2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31330884

RESUMEN

The use of high pressure on fruits and vegetables is today widely studied as an alternative to the traditional thermal preservation techniques, with the aim of better preserving nutritional and organoleptic properties. The use of high hydrostatic pressures (400-600 MPa; 1-5 min; room temperature) was tested on the physicochemical and structural properties of blueberries, in comparison to raw and blanched samples. High hydrostatic pressures led to higher tissue damages than blanching, related to the intensity of the treatment. The cellular damages resulted in leakage of intracellular components, such as bioactive molecules and enzymes. As a consequence, among the high pressure treatments, the resulting antioxidant activity was higher for samples treated for longer times (5 min). Pectinmethyl esterase (PME), deactivated by blanching, but strongly barotolerant, was more active in blueberries treated with the more intense high pressure conditions. Blueberry texture was better retained after high pressure than blanching, probably because of the PME effect. Blueberry color shifted towards purple tones after all of the treatments, which was more affected by blanching. Principal component analysis revealed the mild impact of high pressure treatments on the organoleptic properties of blueberries.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda