Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48.205
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744280

RESUMEN

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Asunto(s)
Centrómero , Cohesinas , Cinetocoros , Mitosis , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Pollos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
2.
Cell ; 186(21): 4710-4727.e35, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774705

RESUMEN

Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Polaridad Celular , Técnicas Citológicas , Mitosis , Animales , Citoesqueleto/metabolismo , Mamíferos/metabolismo , Microtúbulos/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
Cell ; 186(3): 528-542.e14, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36681079

RESUMEN

Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.


Asunto(s)
Ciclina E , Duplicación de Gen , Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Mitosis , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo
4.
Cell ; 186(21): 4694-4709.e16, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832525

RESUMEN

Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.


Asunto(s)
Citocinesis , Embrión no Mamífero , Animales , Núcleo Celular , Centrosoma , Ciclinas/metabolismo , Drosophila , Mitosis , Huso Acromático/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo
5.
Cell ; 185(17): 3083-3085, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35985286

RESUMEN

In some plants and animals, microtubules attach across the length of the chromosome in mitosis, forming a holocentromere instead of a single centromeric locus. A new study in Cell shows that in the holocentric beak sedge Rhynchospora, holocentromeres also impact genomic architecture, epigenome organization, and karyotype evolution.


Asunto(s)
Centrómero , Cyperaceae , Animales , Centrómero/genética , Cyperaceae/genética , Microtúbulos , Mitosis , Plantas/genética
6.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33964210

RESUMEN

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Aneuploidia , Animales , Bovinos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Segregación Cromosómica/fisiología , Cromosomas/metabolismo , Fertilización/genética , Humanos , Masculino , Microtúbulos/metabolismo , Mitosis , Oocitos/metabolismo , Espermatozoides/metabolismo , Cigoto/metabolismo
7.
Annu Rev Cell Dev Biol ; 38: 49-74, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35512258

RESUMEN

Cilia and mitotic spindles are microtubule (MT)-based, macromolecular machines that consecutively assemble and disassemble during interphase and M phase of the cell cycle, respectively, and play fundamental roles in how eukaryotic cells swim through a fluid, sense their environment, and divide to reproduce themselves. The formation and function of these structures depend on several types of cytoskeletal motors, notably MT-based kinesins and dyneins, supplemented by actin-based myosins, which may function independently or collaboratively during specific steps in the pathway of mitosis or ciliogenesis. System-specific differences in these pathways occur because, instead of conforming to a simple one motor-one function rule, ciliary and mitotic motors can be deployed differently by different cell types. This reflects the well-known influence of natural selection on basic molecular processes, creating diversity at subcellular scales. Here we review our current understanding of motor function and cooperation during the assembly-disassembly, maintenance, and functions of cilia and mitotic spindles.


Asunto(s)
Dineínas , Cinesinas , Actinas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Mitosis , Miosinas/metabolismo , Huso Acromático/metabolismo
8.
Nat Rev Mol Cell Biol ; 24(9): 633-650, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37231112

RESUMEN

Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.


Asunto(s)
Cromatina , Cromosomas , Cromosomas/genética , Cromosomas/metabolismo , Cromatina/genética , ADN/genética , Replicación del ADN/genética , Mitosis , Proteínas de Ciclo Celular/química
9.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125898

RESUMEN

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Asunto(s)
Alelos , Proteína 9 Asociada a CRISPR/metabolismo , Cromosomas Humanos/genética , Embrión de Mamíferos/metabolismo , Animales , Secuencia de Bases , Blastocisto/metabolismo , Ciclo Celular/genética , Línea Celular , Deleción Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Implantación del Embrión/genética , Proteínas del Ojo/genética , Fertilización , Edición Génica , Reordenamiento Génico/genética , Sitios Genéticos , Genoma Humano , Genotipo , Heterocigoto , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mutación INDEL/genética , Ratones , Mitosis , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genética
10.
Annu Rev Biochem ; 88: 691-724, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30601682

RESUMEN

The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.


Asunto(s)
Centriolos/fisiología , Cilios/patología , Biogénesis de Organelos , Animales , Ciclo Celular , Centriolos/metabolismo , Centriolos/ultraestructura , Cilios/metabolismo , Cilios/ultraestructura , Ciliopatías , Eucariontes/citología , Eucariontes/fisiología , Humanos , Mitosis , Transducción de Señal
11.
Cell ; 179(3): 802-802.e1, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626778

RESUMEN

S-phase entry and exit are regulated by hundreds of protein complexes that assemble "just in time," orchestrated by a multitude of distinct events. To help understand their interplay, we have created a tailored visualization based on the Minardo layout, highlighting over 80 essential events. This complements our earlier visualization of M-phase, and both can be displayed together, giving a comprehensive overview of the events regulating the cell division cycle. To view this SnapShot, open or download the PDF.


Asunto(s)
Ciclo Celular/genética , Mitosis/genética , Complejos Multiproteicos/genética , Fase S/genética , División Celular/genética , Ciclina B/genética , Ciclina D/genética , Quinasas Ciclina-Dependientes/genética , Fase G2/genética , Humanos , Fosforilación/genética , Complejo de la Endopetidasa Proteasomal/genética
12.
Cell ; 177(4): 925-941.e17, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982601

RESUMEN

The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , División del Núcleo Celular/fisiología , Proteínas de Drosophila/metabolismo , Actomiosina/metabolismo , Animales , Núcleo Celular/metabolismo , Citocinesis/fisiología , Citoplasma , Citoesqueleto/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Microtúbulos/metabolismo , Mitosis , Miosina Tipo II/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
13.
Cell ; 178(2): 302-315.e23, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31299200

RESUMEN

Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.


Asunto(s)
Apoptosis , ADN/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Factor 3 Regulador del Interferón/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Mitosis , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Nucleosomas/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Tasa de Supervivencia , Activación Transcripcional , Proteína bcl-X/metabolismo
14.
Nat Rev Mol Cell Biol ; 22(10): 691-708, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34158639

RESUMEN

In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.


Asunto(s)
Huso Acromático/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Diferenciación Celular , Polaridad Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Humanos , Mitosis , Transducción de Señal
15.
Cell ; 173(6): 1495-1507.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29706546

RESUMEN

Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.


Asunto(s)
Ciclo Celular , ADN/análisis , Proteoma/análisis , Proteómica/métodos , Ensamble y Desensamble de Cromatina , Análisis por Conglomerados , Células HeLa , Calor , Humanos , Espectrometría de Masas , Mitosis , Fosforilación , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , ARN Polimerasa II/metabolismo , Solubilidad
16.
Cell ; 175(1): 200-211.e13, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30146160

RESUMEN

Much of our understanding of chromosome segregation is based on cell culture systems. Here, we examine the importance of the tissue environment for chromosome segregation by comparing chromosome segregation fidelity across several primary cell types in native and nonnative contexts. We discover that epithelial cells have increased chromosome missegregation outside of their native tissues. Using organoid culture systems, we show that tissue architecture, specifically integrin function, is required for accurate chromosome segregation. We find that tissue architecture enhances the correction of merotelic microtubule-kinetochore attachments, and this is especially important for maintaining chromosome stability in the polyploid liver. We propose that disruption of tissue architecture could underlie the widespread chromosome instability across epithelial cancers. Moreover, our findings highlight the extent to which extracellular context can influence intrinsic cellular processes and the limitations of cell culture systems for studying cells that naturally function within a tissue.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Segregación Cromosómica/fisiología , Epitelio/fisiología , Animales , Agregación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Cromosomas/fisiología , Células Epiteliales/fisiología , Femenino , Cinetocoros/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Mitosis , Organoides/fisiología , Huso Acromático/metabolismo , Huso Acromático/fisiología
17.
Cell ; 175(3): 780-795.e15, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30318142

RESUMEN

During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.


Asunto(s)
Centrómero/genética , Cromosomas Fúngicos/genética , Mitosis , Saccharomyces cerevisiae/genética , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo
18.
Annu Rev Biochem ; 86: 749-775, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28226215

RESUMEN

Peroxiredoxins (Prxs) constitute a major family of peroxidases, with mammalian cells expressing six Prx isoforms (PrxI to PrxVI). Cells produce hydrogen peroxide (H2O2) at various intracellular locations where it can serve as a signaling molecule. Given that Prxs are abundant and possess a structure that renders the cysteine (Cys) residue at the active site highly sensitive to oxidation by H2O2, the signaling function of this oxidant requires extensive and highly localized regulation. Recent findings on the reversible regulation of PrxI through phosphorylation at the centrosome and on the hyperoxidation of the Cys at the active site of PrxIII in mitochondria are described in this review as examples of such local regulation of H2O2 signaling. Moreover, their high affinity for and sensitivity to oxidation by H2O2 confer on Prxs the ability to serve as sensors and transducers of H2O2 signaling through transfer of their oxidation state to bound effector proteins.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Peroxirredoxinas/metabolismo , Animales , Dominio Catalítico , Centrosoma/metabolismo , Centrosoma/ultraestructura , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/ultraestructura , Mitosis , Oxidación-Reducción , Peroxirredoxinas/genética , Fosforilación , Transducción de Señal
19.
Cell ; 169(7): 1358-1358.e1, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622516

RESUMEN

During mitosis, a cell divides its duplicated genome into two identical daughter cells. This process must occur without errors to prevent proliferative diseases (e.g., cancer). A key mechanism controlling mitosis is the precise timing of more than 32,000 phosphorylation and dephosphorylation events by a network of kinases and counterbalancing phosphatases. The identity, magnitude, and temporal regulation of these events have emerged recently, largely from advances in mass spectrometry. Here, we show phosphoevents currently believed to be key regulators of mitosis. For an animated version of this SnapShot, please see http://www.cell.com/cell/enhanced/odonoghue2.


Asunto(s)
Mitosis , Proteínas Quinasas/metabolismo , Animales , Humanos , Fosforilación
20.
Cell ; 171(4): 918-933.e20, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29033132

RESUMEN

Posttranslational modification with ubiquitin chains controls cell fate in all eukaryotes. Depending on the connectivity between subunits, different ubiquitin chain types trigger distinct outputs, as seen with K48- and K63-linked conjugates that drive protein degradation or complex assembly, respectively. Recent biochemical analyses also suggested roles for mixed or branched ubiquitin chains, yet without a method to monitor endogenous conjugates, the physiological significance of heterotypic polymers remained poorly understood. Here, we engineered a bispecific antibody to detect K11/K48-linked chains and identified mitotic regulators, misfolded nascent polypeptides, and pathological Huntingtin variants as their endogenous substrates. We show that K11/K48-linked chains are synthesized and processed by essential ubiquitin ligases and effectors that are mutated across neurodegenerative diseases; accordingly, these conjugates promote rapid proteasomal clearance of aggregation-prone proteins. By revealing key roles of K11/K48-linked chains in cell-cycle and quality control, we establish heterotypic ubiquitin conjugates as important carriers of biological information.


Asunto(s)
Anticuerpos Biespecíficos/análisis , Transducción de Señal , Ubiquitina/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclo Celular , Humanos , Mitosis , Biosíntesis de Proteínas , Ubiquitinación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda