Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 26(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668468

RESUMEN

Nicotinamide-N-methyltransferase (NNMT) is a cytosolic enzyme catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to nicotinamide (Nam). It is expressed in many tissues including the liver, adipose tissue, and skeletal muscle. Its expression in several cancer cell lines has been widely discussed in the literature, and recent work established a link between NNMT expression and metabolic diseases. Here we describe our approach to identify potent small molecule inhibitors of NNMT featuring different binding modes as elucidated by X-ray crystallographic studies.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/enzimología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Animales , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Modelos Moleculares , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/metabolismo , Ratas , Especificidad por Sustrato/efectos de los fármacos
2.
J Obstet Gynaecol ; 41(8): 1240-1245, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33645410

RESUMEN

The anti-proliferative effects of 5-methylquinolinium (5MQ) of nicotinamide N-methyltransferase (NNMT) have not been previously investigated on a cervical cancer cell line. NNMT is a metabolic enzyme that is correlated with tumour progression and metastasis. 5MQ is a small molecule inhibitor of NNMT. 0.1-500 µM of 5MQ was tested on the HeLa epithelial cervical cancer cell line. Cell viability was assessed with the MTT test. TWIST, ZEB1, SERPIN1, SIRT1, CD16, mRNA and various protein expression levels were analysed with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Western Blotting, respectively. 5MQ significantly inhibited HeLa cell proliferation in a concentration and time-dependent manner. Increased cell shrinkage, loss of cellular adhesions and apoptotic bodies were observed in HeLa cells after 5MQ treatment. Following treatment with 5MQ, ZEB1, SIRT1, CD16 mRNA levels were increased while TWIST and SERPIN1 mRNA levels were reduced. Expressions of oncogenic proteins phospho-Akt and SIRT1 were decreased. 5MQ can effectively inhibit HeLa cell proliferation without apparently affecting HEK-293 cell proliferation.IMPACT STATEMENTWhat is already known on this subject? NNMT is a cytosolic enzyme involved in tumour progression, metastasis and treatment resistance. It was overexpressed in many human malignancies. 5-amino-1-methylquinolinium (5MQ) is a novel small molecule inhibitor of NNMT that has shown promising results in the treatment of obesity and in senescent muscle regeneration. 5MQ has not been tested on the HeLa cervical cancer cell line, previously.What do the results of this study add? In this study, 5MQ was tested on the HeLa cervical cancer cell line for the first time and the molecular changes associated with 5MQ treatment were analysed. 5MQ demonstrated significant anti-proliferative activity on HeLa cells, which displayed morphological signs of apoptosis. Treatment of HeLa cells with 5MQ led to an increase in ZEB1, SIRT1 mRNA while TWIST mRNA was decreased. Phospho-Akt and Sirtuin1 protein expressions were decreased.What are the implications of these findings for clinical practice and/or further research? 5MQ can effectively inhibit HeLa cell proliferation without apparently affecting HEK-293 cell proliferation. 5MQ treatment was associated with a decrease in the expression of phospho-Akt and Sirtuin1 proteins, both of which have been reported to maintain tumour progression. 5MQ can further be investigated and modified for anti-cancer therapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Compuestos de Quinolinio/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Compuestos de Quinolinio/química
3.
Anal Biochem ; 604: 113833, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32622979

RESUMEN

Methylation-mediated pathways play important roles in the progression of various diseases. Thus, targeting methyltransferases has proven to be a promising strategy for developing novel therapies. Nicotinamide N-methyltransferase (NNMT) is a major metabolic enzyme involved in epigenetic regulation through catalysis of methyl transfer from the cofactor S-adenosyl-l-methionine onto nicotinamide and other pyridines. Accumulating evidence infers that NNMT is a novel therapeutic target for a variety of diseases such as cancer, diabetes, obesity, cardiovascular and neurodegenerative diseases. Therefore, there is an urgent need to discover potent and specific inhibitors for NNMT to assess its therapeutical potential. Herein, we reported the design and synthesis of a fluorescent probe II138, exhibiting a Kd value of 369 ± 14 nM for NNMT. We also established a fluorescence polarization (FP)-based competition assay for evaluation of NNMT inhibitors. Importantly, the unique feature of this FP competition assay is its capability to identify inhibitors that interfere with the interaction of the NNMT active site directly or allosterically. In addition, this assay performance is robust with a Z'factor of 0.76, indicating its applicability in high-throughput screening for NNMT inhibitors.


Asunto(s)
Técnicas Biosensibles/métodos , Inhibidores Enzimáticos , Polarización de Fluorescencia/métodos , Colorantes Fluorescentes , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Dominio Catalítico , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica
4.
Biochemistry ; 57(38): 5524-5532, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30148963

RESUMEN

Nicotinamide N-methyltransferase (NNMT) catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to nicotinamide, pyridine, and other structural analogues. Aberrantly increased NNMT activity results in the depletion of SAM, nicotinamide (NAM), and nicotinamide adenine dinucleotide (NAD+); NAM is required for NAD+ biosynthesis. SAM depletion impairs the methylation potential of the cell, resulting in hypomethylated histones and an altered epigenetic profile. In addition, decreased NAD+ levels negatively affect energy metabolism by disrupting oxidative phosphorylation. Because of its impact on epigenetic states and NAD+ levels, NNMT is implicated in cancer, neurodegenerative diseases, and metabolic diseases, making it an appealing target for therapeutic intervention. To gain insights that would guide the design of inhibitors and activity-based probes, we performed detailed kinetic studies of human NNMT. Herein, we report the kinetic mechanism of NNMT. Our initial velocity, product inhibition, and dead-end analogue inhibition studies collectively indicate that NNMT uses a rapid equilibrium ordered mechanism, where NNMT first binds SAM, which is followed by NAM. Methyl transfer occurs, and methylated NAM and S-adenosylhomocysteine are released consecutively.


Asunto(s)
NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , S-Adenosilmetionina/metabolismo , Humanos , Cinética , Metilación , Nicotinamida N-Metiltransferasa/metabolismo
5.
Bioorg Med Chem Lett ; 28(16): 2682-2687, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29731364

RESUMEN

Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide using S-adenosyl-L-methionine (SAM) as a methyl donor and, through doing so, can modulate cellular methylation potential to impact diverse epigenetic processes. NNMT has been implicated in a range of diseases, including cancer and metabolic disorders. Potent, selective, and cell-active inhibitors would constitute valuable probes to study the biological functions and therapeutic potential of NNMT. We previously reported the discovery of electrophilic small molecules that inhibit NNMT by reacting with an active-site cysteine residue in the SAM-binding pocket. Here, we have used activity-based protein profiling (ABPP)-guided medicinal chemistry to optimize the potency and selectivity of NNMT inhibitors, culminating in the discovery of multiple alpha-chloroacetamide (αCA) compounds with sub-µM IC50 values in vitro and excellent proteomic selectivity in cell lysates. However, these compounds showed much weaker inhibition of NNMT in cells, a feature that was not shared by off-targets of the αCAs. Our results show the potential for developing potent and selective covalent inhibitors of NNMT, but also highlight challenges that may be faced in targeting this enzyme in cellular systems.


Asunto(s)
Acetamidas/farmacología , Inhibidores Enzimáticos/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Acetamidas/síntesis química , Dominio Catalítico , Línea Celular Tumoral , Cisteína/química , Inhibidores Enzimáticos/síntesis química , Humanos , Nicotinamida N-Metiltransferasa/química
6.
Bioorg Med Chem Lett ; 28(5): 922-925, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29433927

RESUMEN

Nicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ∼80% at 2 h when dosed in mice orally at 50 mg/kg.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Niacinamida/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Niacinamida/síntesis química , Niacinamida/química , Nicotinamida N-Metiltransferasa/metabolismo , Relación Estructura-Actividad
7.
Biochemistry ; 56(6): 824-832, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28121423

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is an important biotransforming enzyme that catalyzes the transfer of a labile methyl group from the ubiquitous cofactor S-5'-adenosyl-l-methionine (SAM) to endogenous and exogenous small molecules to form methylated end products. NNMT has been implicated in a number of chronic disease conditions, including metabolic disorders, cardiovascular disease, cancer, osteoarthritis, kidney disease, and Parkinson's disease. We have developed a novel noncoupled fluorescence-based methyltransferase assay that allows direct ultrasensitive real-time detection of the NNMT reaction product 1-methylquinolinium. This is the first assay reported to date to utilize fluorescence spectroscopy to directly monitor NNMT product formation and activity in real time. This assay provided accurate kinetic data that allowed detailed comparative analysis of the NNMT reaction mechanism and kinetic parameters. A reaction model based on a random bireactant mechanism produced global curve fits that were most consistent with steady-state initial velocity data collected across an array of substrate concentrations. On the basis of the reaction mechanism, each substrate could independently bind to the NNMT apoenzyme; however, both substrates bound to the complementary binary complexes with an affinity ∼20-fold stronger compared to their binding to the apoenzyme. This reaction mechanism implies either substrate-induced conformational changes or bireactant intermolecular interactions may stabilize the binding of the substrate to the binary complex and formation of the ternary complex. Importantly, this assay could rapidly generate concentration response curves for known NNMT inhibitors, suggesting its applicability for high-throughput screening of chemical libraries to identify novel NNMT inhibitors. Furthermore, our novel assay potentially offers a robust detection technology for use in SAM substrate competition assays for the discovery and development of SAM-dependent methyltransferase inhibitors.


Asunto(s)
Modelos Moleculares , Nicotinamida N-Metiltransferasa/metabolismo , Apoenzimas/antagonistas & inhibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Biocatálisis/efectos de los fármacos , Calibración , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Límite de Detección , Metilación/efectos de los fármacos , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/química , Nicotinamida N-Metiltransferasa/genética , Conformación Proteica , Replegamiento Proteico/efectos de los fármacos , Compuestos de Quinolinio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , S-Adenosilmetionina/metabolismo , Espectrometría de Fluorescencia
8.
Biochem Biophys Res Commun ; 491(2): 416-422, 2017 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-28720493

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is a S-adenosyl-l-methionine (SAM)-dependent enzyme that catalyzes N-methylation of nicotinamide (NA) and other pyridines to form N-methyl pyridinium ions. Here we report the first ternary complex X-ray crystal structures of monkey NNMT and mouse NNMT in bound form with the primary endogenous product, 1-methyl nicotinamide (MNA) and demethylated cofactor, S-adenosyl-homocysteine (SAH) determined at 2.30 Å and 1.88 Å respectively. The structural fold of these enzymes is identical to human NNMT. It is known that the primary endogenous product catalyzed by NNMT, MNA is a specific inhibitor of NNMT. Our data clearly indicates that the MNA binds to the active site and it would be trapped in the active site due to the formation of the bridge between the pole (long helix, α3) and long C-terminal loop. This might explain the mechanism of MNA acting as a feedback inhibitor of NNMT.


Asunto(s)
Retroalimentación Fisiológica , Niacinamida/análogos & derivados , Nicotinamida N-Metiltransferasa/química , S-Adenosilmetionina/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Macaca mulatta , Ratones , Modelos Moleculares , Niacinamida/química , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
9.
Org Biomol Chem ; 15(31): 6656-6667, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28758655

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is an enzyme that catalyses the methylation of nicotinamide to form N'-methylnicotinamide. Both NNMT and its methylated product have recently been linked to a variety of diseases, suggesting a role for the enzyme as a therapeutic target beyond its previously ascribed metabolic function in detoxification. We here describe the systematic development of NNMT inhibitors derived from the structures of the substrates involved in the methylation reaction. By covalently linking fragments of the NNMT substrates a diverse library of bisubstrate-like compounds was prepared. The ability of these compounds to inhibit NNMT was evaluated providing valuable insights into the structural tolerances of the enzyme active site. These studies led to the identification of new NNMT inhibitors that mimic the transition state of the methylation reaction and inhibit the enzyme with activity on par with established methyltransferase inhibitors.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Humanos , Modelos Moleculares , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Niacinamida/farmacología , Nicotinamida N-Metiltransferasa/metabolismo
10.
Biochemistry ; 55(37): 5307-15, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27570878

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is one of the most abundant small molecule methyltransferases in the human body and is primarily responsible for the N-methylation of the nicotinamide (vitamin B3). Employing the cofactor S-adenosyl-l-methionine, NNMT transfers a methyl group to the pyridine nitrogen of nicotinamide to generate N-methylnicotinamide. Interestingly, NNMT is also able to N-methylate a variety of other pyridine-containing small molecules, suggesting a secondary role for the enzyme in the detoxification of xenobiotics. A number of recent studies have also revealed links between NNMT overexpression and a variety of diseases, including multiple cancers, Parkinson's disease, diabetes, and obesity. To facilitate further study of both the substrate scope and potential for inhibitor development, we here describe the development of a new NNMT activity assay. The assay makes use of ultra-high-performance hydrophilic interaction chromatography, allowing for rapid separation of the reaction products, coupled with quadrupole time-of-flight mass spectrometric detection, providing for enhanced sensitivity and enabling high-throughput sample analysis. We successfully demonstrated the general applicability of the method by performing kinetic analyses of NNMT-mediated methylation for a range of pyridine-based substrates. These findings also provide new insight into the diversity of substrate recognition by NNMT in a quantitative manner. In addition, we further established the suitability of the assay for the identification and characterization of small molecule inhibitors of NNMT. To do so, we investigated the inhibition of NNMT by the nonspecific methyltransferase inhibitors sinefungin and S-adenosyl-l-homocysteine, revealing IC50 values in the low micromolar range. The results of these inhibition studies are particularly noteworthy as they will permit future efforts toward the development of new NNMT-specific inhibitors.


Asunto(s)
Nicotinamida N-Metiltransferasa/metabolismo , Humanos , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
11.
Sci Rep ; 12(1): 484, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013352

RESUMEN

Treatment with a nicotinamide N-methyltransferase inhibitor (NNMTi; 5-amino-1-methylquinolinium) combined with low-fat diet (LD) promoted dramatic whole-body adiposity and weight loss in diet-induced obese (DIO) mice, rapidly normalizing these measures to age-matched lean animals, while LD switch alone was unable to restore these measures to age-matched controls in the same time frame. Since mouse microbiome profiles often highly correlate with body weight and fat composition, this study was designed to test whether the cecal microbiomes of DIO mice treated with NNMTi and LD were comparable to the microbiomes of age-matched lean counterparts and distinct from microbiomes of DIO mice maintained on a high-fat Western diet (WD) or subjected to LD switch alone. There were minimal microbiome differences between lean and obese controls, suggesting that diet composition and adiposity had limited effects. However, DIO mice switched from an obesity-promoting WD to an LD (regardless of treatment status) displayed several genera and phyla differences compared to obese and lean controls. While alpha diversity measures did not significantly differ between groups, beta diversity principal coordinates analyses suggested that mice from the same treatment group were the most similar. K-means clustering analysis of amplicon sequence variants by animal demonstrated that NNMTi-treated DIO mice switched to LD had a distinct microbiome pattern that was highlighted by decreased Erysipelatoclostridium and increased Lactobacillus relative abundances compared to vehicle counterparts; these genera are tied to body weight and metabolic regulation. Additionally, Parasutterella relative abundance, which was increased in both the vehicle- and NNMTi-treated LD-switched groups relative to the controls, significantly correlated with several adipose tissue metabolites' abundances. Collectively, these results provide a novel foundation for future investigations.


Asunto(s)
Inhibidores Enzimáticos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/metabolismo , Obesidad/dietoterapia , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Adiposidad/efectos de los fármacos , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Peso Corporal/efectos de los fármacos , Terapia Combinada , Dieta con Restricción de Grasas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Nicotinamida N-Metiltransferasa/genética , Obesidad/metabolismo , Obesidad/microbiología , Compuestos de Quinolinio/administración & dosificación
12.
Int J Immunopathol Pharmacol ; 24(1): 69-77, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21496389

RESUMEN

The enzyme Nicotinamide N-methyltransferase (NNMT) catalyzes the methylation of nicotinamide and other pyridines, playing a pivotal role in the biotransformation and detoxification of many drugs and xenobiotic compounds. Several tumours have been associated with abnormal NNMT expression, however its role in tumour development remains largely unknown. In this study we investigated expression levels of Nicotinamide N-methyltransferase in a cancer cell line and we evaluated the effect of shRNA-mediated silencing of NNMT on cell proliferation. Cancer cells were examined for NNMT expression by semiquantitative RT-PCR and Western blot analysis. A HPLC-based catalytic assay was performed to assess enzyme activity. Cells were transfected with four shRNA plasmids against NNMT and control cells were treated with transfection reagent only (mock). The efficiency of gene silencing was detected by Real-Time PCR and Western blot analysis. MTT cell proliferation assay and the soft agar colony formation assay were then applied to investigate the functional changes in cancerous cell. NNMT mRNA was detected in cancer cells, showing a very high expression level. In keeping with the results of RT-PCR analysis, the protein level and NNMT enzyme activity were particularly high in KB cells. ShRNA vectors targeted against NNMT efficiently suppressed gene expression, showing inhibition observed at both the mRNA and protein levels. Down-regulation of NNMT significantly inhibited cell proliferation and decreased colony formation ability on soft agar. The present data support the hypothesis that the enzyme plays a role in tumour expansion and its inhibition could represent a possible molecular approach to the treatment of cancer.


Asunto(s)
Nicotinamida N-Metiltransferasa/fisiología , Interferencia de ARN , Western Blotting , Proliferación Celular , Humanos , Células KB , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Med Chem ; 64(17): 12938-12963, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34424711

RESUMEN

Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide (vitamin B3) to generate 1-methylnicotinamide (MNA). NNMT overexpression has been linked to a variety of diseases, most prominently human cancers, indicating its potential as a therapeutic target. The development of small-molecule NNMT inhibitors has gained interest in recent years, with the most potent inhibitors sharing structural features based on elements of the nicotinamide substrate and the S-adenosyl-l-methionine (SAM) cofactor. We here report the development of new bisubstrate inhibitors that include electron-deficient aromatic groups to mimic the nicotinamide moiety. In addition, a trans-alkene linker was found to be optimal for connecting the substrate and cofactor mimics in these inhibitors. The most potent NNMT inhibitor identified exhibits an IC50 value of 3.7 nM, placing it among the most active NNMT inhibitors reported to date. Complementary analytical techniques, modeling studies, and cell-based assays provide insights into the binding mode, affinity, and selectivity of these inhibitors.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Regulación Enzimológica de la Expresión Génica , Humanos , Estructura Molecular , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Unión Proteica , Relación Estructura-Actividad
14.
Drug Discov Today ; 26(11): 2699-2706, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34029690

RESUMEN

Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide (NA) to generate 1-methyl nicotinamide. Since its discovery 70 years ago, the appreciation of the role of NNMT in human health has evolved from serving only metabolic functions to also being a driving force in diseases, including a variety of cancers. Despite the increasing evidence indicating NNMT as a viable therapeutic target, the development of cell-active inhibitors against this enzyme is lacking. In this review, we provide an overview of the current status of NNMT inhibitor development, relevant in vitro and in vivo studies, and a discussion of the challenges faced in the development of NNMT inhibitors.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Enfermedades Metabólicas/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Nicotinamida N-Metiltransferasa/metabolismo , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , S-Adenosilmetionina/metabolismo
15.
Biomolecules ; 11(9)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34572571

RESUMEN

A recently discovered bisubstrate inhibitor of Nicotinamide N-methyltransferase (NNMT) was found to be highly potent in biochemical assays with a single digit nanomolar IC50 value but lacking in cellular activity. We, here, report a prodrug strategy designed to translate the observed potent biochemical inhibitory activity of this inhibitor into strong cellular activity. This prodrug strategy relies on the temporary protection of the amine and carboxylic acid moieties of the highly polar amino acid side chain present in the bisubstrate inhibitor. The modification of the carboxylic acid into a range of esters in the absence or presence of a trimethyl-lock (TML) amine protecting group yielded a range of candidate prodrugs. Based on the stability in an aqueous buffer, and the confirmed esterase-dependent conversion to the parent compound, the isopropyl ester was selected as the preferred acid prodrug. The isopropyl ester and isopropyl ester-TML prodrugs exhibit improved cell permeability, which also translates to significantly enhanced cellular activity as established using assays designed to measure the enzymatic activity of NNMT in live cells.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Esterasas/metabolismo , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Profármacos/farmacología , Bioensayo , Tampones (Química) , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Nicotinamida N-Metiltransferasa/metabolismo , Profármacos/síntesis química , Profármacos/química , Especificidad por Sustrato/efectos de los fármacos
16.
Oncol Rep ; 45(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33907844

RESUMEN

Chemoresistance is the main cause of poor prognosis in colorectal cancer (CRC). Nicotinamide N­methyltransferase (NNMT) is a metabolic enzyme that is upregulated in various tumor types. It has been reported that NNMT inhibits apoptosis and enhances resistance to 5­fluorouracil (5­Fu) via inhibition of the apoptosis signal regulating kinase 1 (ASK1)­p38 MAPK pathway in CRC cells. A natural product library was screened, and it was found that vanillin, also known as 4­hydroxy­3­methoxybenzaldehyde, a plant secondary metabolite found in several essential plant oils, mainly Vanilla planifolia, Vanilla tahitensis, and Vanilla pompon, may be a promising anticancer compound targeted to NNMT. The aim of the present study was to explore the effect of vanillin on promoting apoptosis and attenuating NNMT­induced resistance to 5­Fu in CRC. Lentiviral vectors of short hairpin RNA and small interfering RNA were transfected into HT­29 cells to construct NNMT­knockdown HT­29 cell lines. Vectors containing an open reading frame of NNMT were stably transfected into SW480 cells to induce NNMT overexpression in SW480 cell lines. Vanillin was found to inhibit the mRNA and protein expression levels of NNMT following the inhibition of NNMT activity in HT­29 cell lines. Vanillin was able to reverse NNMT­induced increased cell proliferation, decreased cell apoptosis and resistance to 5­Fu by inhibiting NNMT expression. Furthermore, it increased cell apoptosis by activating the ASK1­p38 MAPK pathway, which could be inhibited by NNMT. In addition, vanillin increased cell apoptosis by promoting mitochondrial damage and reactive oxygen species. In vivo, the combination of vanillin with 5­Fu yielded a notable synergy in inhibiting tumor growth and inducing apoptosis. Considering that vanillin is an important flavor and aromatic component used in foods worldwide, vanillin is deemed to be a promising anticancer candidate by inhibiting NNMT and may attenuate NNMT­induced resistance to 5­Fu in human CRC therapy with few side effects.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzaldehídos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Benzaldehídos/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/uso terapéutico , Humanos , Nicotinamida N-Metiltransferasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Kaohsiung J Med Sci ; 37(4): 305-313, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33508890

RESUMEN

Peritoneal metastasis (PM) is the major cause of recurrence in patients with gastric cancer (GC) and is associated with poor prognosis. The oncogenic role of Nicotinamide N-methyltransferase (NNMT) in GC has been reported, but the role of secreted NNMT that is transported by exosomes remains unknown. In this study, exosomes were isolated from GC patients with or without PM and from GC cell line, including GC-114, GC-026, MKN45, and SNU-16 cells. The contents of NNMT were significantly enhanced in exosomes isolated from GC patients with PM compared with those from GC patients without PM. Furthermore, the levels of NNMT were significantly enhanced in exosomes from GC cell lines relative to those from normal human gastric epithelial cell line GES-1 cells. These data indicate that NNMT may be involved in intercellular communication for peritoneal dissemination. Moreover, colocalization of GC-derived exosomal NNMT was found in human peritoneal mesothelial cell line HMrSV5 cells. Additionally, relative to GES-1 exosomes, SNU-16 exosomes significantly activated TGF-ß/smad2 signaling in HMrSV5 cells. However, when NNMT was silenced, the activation of TGF-ß/smad2 by SNU-16 exosomes was abolished in HMrSV5 cells. We propose that NNMT-containing exosomes derived from GC cells could promote peritoneal metastasis via TGF-ß/smad2 signaling.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Nicotinamida N-Metiltransferasa/genética , Neoplasias Peritoneales/genética , Proteína Smad2/genética , Neoplasias Gástricas/genética , Factor de Crecimiento Transformador beta1/genética , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Exosomas/metabolismo , Exosomas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/metabolismo , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/cirugía , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía , Factor de Crecimiento Transformador beta1/metabolismo
18.
Sci Rep ; 11(1): 5637, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707534

RESUMEN

Obesity is a large and growing global health problem with few effective therapies. The present study investigated metabolic and physiological benefits of nicotinamide N-methyltransferase inhibitor (NNMTi) treatment combined with a lean diet substitution in diet-induced obese mice. NNMTi treatment combined with lean diet substitution accelerated and improved body weight and fat loss, increased whole-body lean mass to body weight ratio, reduced liver and epididymal white adipose tissue weights, decreased liver adiposity, and improved hepatic steatosis, relative to a lean diet substitution alone. Importantly, combined lean diet and NNMTi treatment normalized body composition and liver adiposity parameters to levels observed in age-matched lean diet control mice. NNMTi treatment produced a unique metabolomic signature in adipose tissue, with predominant increases in ketogenic amino acid abundance and alterations to metabolites linked to energy metabolic pathways. Taken together, NNMTi treatment's modulation of body weight, adiposity, liver physiology, and the adipose tissue metabolome strongly support it as a promising therapeutic for obesity and obesity-driven comorbidities.


Asunto(s)
Composición Corporal , Restricción Calórica , Inhibidores Enzimáticos/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Tejido Adiposo Blanco/patología , Adiposidad/efectos de los fármacos , Animales , Biomarcadores/sangre , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Epidídimo/patología , Hígado Graso/sangre , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Ratones Endogámicos C57BL , Ratones Obesos , Nicotinamida N-Metiltransferasa/metabolismo , Delgadez/patología
19.
Cancer Res ; 80(18): 3775-3785, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32381656

RESUMEN

Ovarian cancer is an aggressive epithelial tumor that remains a major cause of cancer morbidity and mortality in women. Epigenetic alterations including DNA methylation and histone modifications are being characterized in ovarian cancer and have been functionally linked to processes involved in tumor initiation, chemotherapy resistance, cancer stem cell survival, and tumor metastasis. The epigenetic traits of cancer cells and of associated tumor microenvironment components have been shown to promote an immunosuppressive tumor milieu. However, DNA methylation and histone modifications are reversible, and therapies targeting the epigenome have been implicated in potential reinvigoration of the antitumor immunity. In this review, we provide an overview specifically of DNA methylation and histone modifications as "clothes of the ovarian cancer genome" in relationship to their functional effects and highlight recent developments in the field. We also address the clinical implications of therapeutic strategies to remove or alter specific articles of genomic "clothing" and restore normal cellular function. As the clothes of the genome continue to be deciphered, we envision that the epigenome will become an important therapeutic target for cancer.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Histonas/genética , Neoplasias Ováricas/genética , Microambiente Tumoral/genética , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Femenino , Genes BRCA1 , Inhibidores de Histona Desacetilasas/uso terapéutico , Histonas/metabolismo , Humanos , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/terapia
20.
Life Sci ; 248: 117474, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32112869

RESUMEN

BACKGROUND/OBJECTIVES: Nicotinamide N-methyltransferase (NNMT) is a novel regulator of energy homeostasis in adipocytes. NNMT expression in adipose tissue is increased in obesity and diabetes. Knockdown of NNMT prevents mice from developing diet-induced obesity, which is closely linked to insulin resistance. An early sign of systemic insulin resistance is reduced expression of glucose transporter 4 (GLUT4) selectively in adipose tissue. Adipose tissue-specific knockout and overexpression of GLUT4 cause reciprocal changes in NNMT expression. The aim of the current study was to elucidate the mechanism that regulates NNMT expression in adipocytes. METHODS: 3T3-L1 adipocytes were cultured in media with varying glucose concentrations or activators and inhibitors of intracellular pathways. NNMT mRNA and protein levels were measured with quantitative polymerase chain reaction and Western blotting. RESULTS: Glucose deprivation of 3T3-L1 adipocytes induced a 2-fold increase in NNMT mRNA and protein expression. This effect was mimicked by inhibition of glucose transport with phloretin, and by inhibition of glycolysis with the phosphoglucose isomerase inhibitor 2-deoxyglucose. Conversely, inhibition of the pentose phosphate pathway did not affect NNMT expression. Pharmacological activation of the cellular energy sensor AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin (mTOR) pathway caused an increase in NNMT levels that was similar to the effect of glucose deprivation. Activation of mTOR with MHY1485 prevented the effect of glucose deprivation on NNMT expression. Furthermore, upregulation of NNMT levels depended on functional autophagy and protein translation. CONCLUSION: Glucose availability regulates NNMT expression via an mTOR-dependent mechanism.


Asunto(s)
Adipocitos/efectos de los fármacos , Transportador de Glucosa de Tipo 4/genética , Glucosa/farmacología , Nicotinamida N-Metiltransferasa/genética , Serina-Treonina Quinasas TOR/genética , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Transporte Biológico/efectos de los fármacos , Diferenciación Celular , Desoxiglucosa/farmacología , Metabolismo Energético/genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/antagonistas & inhibidores , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Homeostasis/genética , Ratones , Morfolinas/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/metabolismo , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/genética , Floretina/farmacología , Biosíntesis de Proteínas , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Triazinas/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda