Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044892

RESUMO

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Anomalia de Pelger-Huët , Núcleo Celular/genética , Criança , Cromatina , Humanos , Deficiência Intelectual/genética , Perda de Heterozigosidade , Anomalia de Pelger-Huët/genética
2.
Neurobiol Dis ; 185: 106259, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573958

RESUMO

The vacuolar protein sorting-associated protein 13B (VPS13B) is a large and highly conserved protein. Disruption of VPS13B causes the autosomal recessive Cohen syndrome, a rare disorder characterized by microcephaly and intellectual disability among other features, including developmental delay, hypotonia, and friendly-personality. However, the underlying mechanisms by which VPS13B disruption leads to brain dysfunction still remain unexplained. To gain insights into the neuropathogenesis of Cohen syndrome, we systematically characterized brain changes in Vps13b-mutant mice and compared murine findings to 235 previously published and 17 new patients diagnosed with VPS13B-related Cohen syndrome. We showed that Vps13b is differentially expressed across brain regions with the highest expression in the cerebellum, the hippocampus and the cortex with postnatal peak. Half of the Vps13b-/- mice die during the first week of life. The remaining mice have a normal lifespan and display the core phenotypes of the human disease, including microcephaly, growth delay, hypotonia, altered memory, and enhanced sociability. Systematic 2D and 3D brain histo-morphological analyses reveal specific structural changes in the brain starting after birth. The dentate gyrus is the brain region with the most prominent reduction in size, while the motor cortex is specifically thinner in layer VI. The fornix, the fasciculus retroflexus, and the cingulate cortex remain unaffected. Interestingly, these neuroanatomical changes implicate an increase of neuronal death during infantile stages with no progression in adulthood suggesting that VPS13B promotes neuronal survival early in life. Importantly, whilst both sexes were affected, some neuroanatomical and behavioral phenotypes were less pronounced or even absent in females. We evaluate sex differences in Cohen patients and conclude that females are less affected both in mice and patients. Our findings provide new insights about the neurobiology of VPS13B and highlight previously unreported brain phenotypes while defining Cohen syndrome as a likely new entity of non-progressive infantile neurodegeneration.


Assuntos
Microcefalia , Degeneração Retiniana , Criança , Humanos , Masculino , Feminino , Animais , Camundongos , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Degeneração Retiniana/genética , Deficiências do Desenvolvimento/genética , Fenótipo
3.
Genet Med ; 23(10): 1901-1911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113008

RESUMO

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Assuntos
Epilepsia , Fatores de Troca do Nucleotídeo Guanina , Haploinsuficiência , Deficiência Intelectual , Epilepsia/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Heterozigoto , Humanos , Deficiência Intelectual/genética
4.
Cell Mol Life Sci ; 77(3): 511-529, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31218450

RESUMO

The sperm acrosome is a lysosome-related organelle that develops using membrane trafficking from the Golgi apparatus as well as the endolysosomal compartment. How vesicular trafficking is regulated in spermatids to form the acrosome remains to be elucidated. VPS13B, a RAB6-interactor, was recently shown involved in endomembrane trafficking. Here, we report the generation of the first Vps13b-knockout mouse model and show that male mutant mice are infertile due to oligoasthenoteratozoospermia. This phenotype was explained by a failure of Vps13b deficient spermatids to form an acrosome. In wild-type spermatids, immunostaining of Vps13b and Rab6 revealed that they transiently locate to the acrosomal inner membrane. Spermatids lacking Vps13b did not present with the Golgi structure that characterizes wild-type spermatids and showed abnormal targeting of PNA- and Rab6-positive Golgi-derived vesicles to Eea1- and Lamp2-positive structures. Altogether, our results uncover a function of Vps13b in the regulation of the vesicular transport between Golgi apparatus, acrosome, and endolysosome.


Assuntos
Acrossomo/metabolismo , Transporte Biológico/fisiologia , Complexo de Golgi/metabolismo , Espermatogênese/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico/fisiologia , Espermátides/metabolismo , Espermatozoides/metabolismo
5.
J Med Genet ; 57(12): 808-819, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32409512

RESUMO

INTRODUCTION: Pigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko's lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions. MATERIALS AND METHODS: Subsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM. RESULTS: We describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko's lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants. CONCLUSION: This series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Epilepsia/genética , Deficiência Intelectual/genética , Transtornos da Pigmentação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/complicações , Epilepsia/patologia , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Mosaicismo , Patologia Molecular/normas , Transtornos da Pigmentação/complicações , Transtornos da Pigmentação/patologia , Sequenciamento do Exoma , Adulto Jovem
6.
Biochem Biophys Res Commun ; 530(3): 520-526, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32620236

RESUMO

PIK3CA-related overgrowth spectrum is caused by mosaicism mutations in the PIK3CA gene. These mutations, which are also observed in various types of cancer, lead to a constitutive activation of the PI3K/AKT/mTOR pathway, increasing cell proliferation. Heat shock transcription factor 1 (HSF1) is the major stress-responsive transcription factor. Recent findings indicate that AKT phosphorylates and activates HSF1 independently of heat-shock in breast cancer cells. Here, we aimed to investigate the role of HSF1 in PIK3CA-related overgrowth spectrum. We observed a higher rate of proliferation and increased phosphorylation of AKT and p70S6K in mutant fibroblasts than in control cells. We also found elevated phosphorylation and activation of HSF1, which is directly correlated to AKT activation. Specific AKT inhibitors inhibit HSF1 phosphorylation as well as HSF1-dependent gene transcription. Finally, we demonstrated that targeting HSF1 with specific inhibitors reduced the proliferation of mutant cells. As there is currently no curative treatment for PIK3CA-related overgrowth spectrum, our results identify HSF1 as a new potential therapeutic target.


Assuntos
Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Descoberta de Drogas , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Lipoma/metabolismo , Anormalidades Musculoesqueléticas/metabolismo , Nevo/metabolismo , Malformações Vasculares/metabolismo , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Lipoma/tratamento farmacológico , Lipoma/genética , Lipoma/patologia , Terapia de Alvo Molecular , Anormalidades Musculoesqueléticas/tratamento farmacológico , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/patologia , Mutação , Nevo/tratamento farmacológico , Nevo/genética , Nevo/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Malformações Vasculares/tratamento farmacológico , Malformações Vasculares/genética , Malformações Vasculares/patologia
7.
Clin Genet ; 97(4): 567-575, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997314

RESUMO

Heterozygous microdeletions of chromosome 15q13.3 (MIM: 612001) show incomplete penetrance and are associated with a highly variable phenotype that may include intellectual disability, epilepsy, facial dysmorphism and digit anomalies. Rare patients carrying homozygous deletions show more severe phenotypes including epileptic encephalopathy, hypotonia and poor growth. For years, CHRNA7 (MIM: 118511), was considered the candidate gene that could account for this syndrome. However, recent studies in mouse models have shown that OTUD7A/CEZANNE2 (MIM: 612024), which encodes for an ovarian tumor (OTU) deubiquitinase, should be considered the critical gene responsible for brain dysfunction. In this study, a patient presenting with severe global developmental delay, language impairment and epileptic encephalopathy was referred to our genetics center. Trio exome sequencing (tES) analysis identified a homozygous OTUD7A missense variant (NM_130901.2:c.697C>T), predicted to alter an ultraconserved amino acid, p.(Leu233Phe), lying within the OTU catalytic domain. Its subsequent segregation analysis revealed that the parents, presenting with learning disability, and brother were heterozygous carriers. Biochemical assays demonstrated that proteasome complex formation and function were significantly reduced in patient-derived fibroblasts and in OTUD7A knockout HAP1 cell line. We provide evidence that biallelic pathogenic OTUD7A variation is linked to early-onset epileptic encephalopathy and proteasome dysfunction.


Assuntos
Transtornos Cromossômicos/genética , Enzimas Desubiquitinantes/genética , Epilepsia/genética , Deficiência Intelectual/genética , Convulsões/genética , Animais , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 15/genética , Epilepsia/fisiopatologia , Feminino , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Fenótipo , Convulsões/fisiopatologia , Sequenciamento do Exoma , Receptor Nicotínico de Acetilcolina alfa7/genética
8.
Hum Mol Genet ; 26(23): 4680-4688, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973148

RESUMO

The main identified function of BCL2 protein is to prevent cell death by apoptosis. Mouse knock-out for Bcl2 demonstrates growth retardation, severe polycystic kidney disease (PKD), grey hair and lymphopenia, and die prematurely after birth. Here, we report a 40-year-old male referred to for abdominal and thoracic aortic dissection with associated aortic root aneurysm, PKD, lymphocytopenia with a history of T cell lymphoblastic lymphoma, white hair since the age of 20, and learning difficulties. PKD, which was also detected in the father and sister, was related to an inherited PKD1 mutation. The combination of PKD with grey hair and lymphocytopenia was also reminiscent of Bcl2-/- mouse phenotype. BCL2 gene transcript and protein level were observed to be dramatically decreased in patient peripheral blood T-cells and in his aorta vascular wall cells, which was not detected in parents and sister T-cells, suggesting an autosomal recessive inheritance. Accordingly, spontaneous apoptosis of patient T-cells was increased and could be rescued through stimulation with an anti-CD3 antibody. Direct sequencing of BCL2 gene exons, promoter and 3'UTR region as well as BCL2 mRNA sequencing failed in identifying any pathogenic variant. Array-CGH was also normal and whole exome sequencing of the patient, parents and sister DNA did not detect any significant variant in genes encoding BCL2-interacting proteins. miRNA array identified an up-regulation of miR-181a, which is a known regulator of BCL2 expression. Altogether, miR-181a-mediated decrease in BCL2 gene expression could be a modifying factor that aggravates the phenotype of a PKD1 constitutive variant.


Assuntos
Rim Policístico Autossômico Dominante/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Canais de Cátion TRPP/genética , Adulto , Animais , Apoptose/genética , Regulação para Baixo , Éxons , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Linhagem , Fenótipo , Rim Policístico Autossômico Dominante/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Canais de Cátion TRPP/metabolismo , Regulação para Cima
9.
Hum Mol Genet ; 24(23): 6603-13, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26358774

RESUMO

Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity.


Assuntos
Adipogenia , Distribuição da Gordura Corporal , Diabetes Mellitus Tipo 2/fisiopatologia , Dedos/anormalidades , Insulina/fisiologia , Deficiência Intelectual/fisiopatologia , Microcefalia/fisiopatologia , Hipotonia Muscular/fisiopatologia , Miopia/fisiopatologia , Obesidade/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/fisiopatologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Feminino , Dedos/fisiopatologia , Humanos , Deficiência Intelectual/complicações , Masculino , Microcefalia/complicações , Pessoa de Meia-Idade , Modelos Biológicos , Hipotonia Muscular/complicações , Mutação , Miopia/complicações , Obesidade/complicações , Degeneração Retiniana , Risco , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Adulto Jovem
10.
Hum Mol Genet ; 23(9): 2391-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24334764

RESUMO

Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver-derived proteins, were normal. We also showed that intercellular cell adhesion molecule 1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS-PAGE in peripheral blood mononuclear cells from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal-lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal-lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology.


Assuntos
Dedos/anormalidades , Deficiência Intelectual/metabolismo , Microcefalia/metabolismo , Hipotonia Muscular/metabolismo , Miopia/metabolismo , Obesidade/metabolismo , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Deficiências do Desenvolvimento/metabolismo , Eletroforese em Gel de Poliacrilamida , Fibroblastos/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interferência de RNA , Degeneração Retiniana , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
11.
Am J Hum Genet ; 93(1): 141-9, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23810378

RESUMO

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.


Assuntos
Transtornos do Crescimento/genética , Hipercalcemia/genética , Resistência à Insulina/genética , Doenças Metabólicas/genética , Nefrocalcinose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Análise Mutacional de DNA , Exoma , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Idade Gestacional , Glucose/metabolismo , Glucose/farmacologia , Humanos , Insulina/metabolismo , Insulina/farmacologia , Masculino , Mutação , Linhagem , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
12.
Am J Hum Genet ; 91(5): 950-7, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23103230

RESUMO

Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-ß signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-ß-signaling pathway.


Assuntos
Aracnodactilia/genética , Craniossinostoses/genética , Proteínas de Ligação a DNA/genética , Éxons , Genes Dominantes , Síndrome de Marfan/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Proteínas de Ligação a DNA/química , Fácies , Feminino , Ordem dos Genes , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Fenótipo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Alinhamento de Sequência , Adulto Jovem
13.
Am J Med Genet A ; 164A(2): 522-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311531

RESUMO

Over one hundred VPS13B mutations are reported in Cohen syndrome (CS). Most cases exhibit a homogeneous phenotype that includes intellectual deficiency (ID), microcephaly, facial dysmorphism, slender extremities, truncal obesity, progressive chorioretinal dystrophy, and neutropenia. We report on a patient carrying two VPS13B splicing mutations with an atypical phenotype that included microcephaly, retinopathy, and congenital neutropenia, but neither obesity nor ID. RNA analysis of the IVS34+2T_+3AinsT mutation did not reveal any abnormal splice fragments but mRNA quantification showed a significant decrease in VPS13B expression. RNA sequencing analysis up- and downstream from the IVS57+2T>C mutation showed abnormal splice isoforms. In contrast to patients with typical CS, who express only abnormal VPS13B mRNA and truncated protein, a dose effect of residual normal VPS13B protein possibly explains the incomplete phenotype in the patient. This observation emphasizes that VPS13B analysis should be performed in cases of congenital neutropenia associated with retinopathy, even in the absence of ID, therefore extending the VPS13B phenotype spectrum.


Assuntos
Deficiência Intelectual/genética , Mutação , Neutropenia/congênito , Obesidade/genética , Fenótipo , Doenças Retinianas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Síndrome Congênita de Insuficiência da Medula Óssea , Análise Mutacional de DNA , Fácies , Feminino , Ordem dos Genes , Humanos , Deficiência Intelectual/diagnóstico , Neutropenia/diagnóstico , Neutropenia/genética , Obesidade/diagnóstico , Linhagem , Doenças Retinianas/diagnóstico , Síndrome
14.
Am J Med Genet A ; 164A(12): 3027-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25258245

RESUMO

Distal limb contractures (DLC) represent a heterogeneous clinical and genetic condition. Overall, 20-25% of the DLC are caused by mutations in genes encoding the muscle contractile apparatus. Large interstitial deletions of the 3p have already been diagnosed by standard chromosomal analysis, but not associated with a specific phenotype. We report on four patients with syndromic DLC presenting with a de novo 3p14.1p13 microdeletion. The clinical features associated multiple contractures, feeding problems, developmental delay, and intellectual disability. Facial dysmorphism was constant with low-set posteriorly rotated ears and blepharophimosis. Review of previously reported cases with a precise mapping of the deletions, documented a 250 kb smallest region of overlap (SRO) necessary for DLC. This region contained one gene, EIF4E3, the first three exons of the FOXP1 gene, and an intronic enhancer of FOXP1 named hs1149. Sanger sequencing and locus quantification of hs1149, EIF4E3, and FOXP1 in a cohort of 11 French patients affected by DLC appeared normal. In conclusion, we delineate a new microdeletion syndrome involving the 3p14.1p13 locus and associated with DLC and severe developmental delay.


Assuntos
Artrogripose/epidemiologia , Aberrações Cromossômicas , Cromossomos Humanos Par 3/genética , Contratura/epidemiologia , Contratura/genética , Extremidades/patologia , Animais , Proteínas de Transporte/genética , Hibridização Genômica Comparativa , Contratura/patologia , Feminino , Fatores de Transcrição Forkhead/genética , França/epidemiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Síndrome
15.
J Exp Clin Cancer Res ; 43(1): 148, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773631

RESUMO

BACKGROUND: Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS: To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS: We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS: These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.


Assuntos
Proteína Exportina 1 , Doença de Hodgkin , Carioferinas , Receptores Citoplasmáticos e Nucleares , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Animais , Camundongos , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/patologia , Doença de Hodgkin/metabolismo , Doença de Hodgkin/genética , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma de Células B/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP110/genética , Linhagem Celular Tumoral , Neoplasias do Mediastino/tratamento farmacológico , Neoplasias do Mediastino/metabolismo , Neoplasias do Mediastino/patologia , Neoplasias do Mediastino/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Triazóis/farmacologia , Triazóis/uso terapêutico , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Feminino , Fator de Transcrição STAT6/metabolismo , Terapia de Alvo Molecular
16.
J Med Genet ; 49(12): 731-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23099646

RESUMO

BACKGROUND: DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5' region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID. Because four patients previously reported with intragenic DYRK1A rearrangements or 21q22 microdeletions including only DYRK1A presented with overlapping phenotypes, we hypothesised that DYRK1A mutations could be responsible for syndromic ID with severe microcephaly and epilepsy. METHODS: The DYRK1A gene was studied by direct sequencing and quantitative PCR in a cohort of 105 patients with ID and at least two symptoms from the Angelman syndrome spectrum (microcephaly < -2.5 SD, ataxic gait, seizures and speech delay). RESULTS: We identified a de novo frameshift mutation (c.290_291delCT; p.Ser97Cysfs*98) in a patient with growth retardation, primary severe microcephaly, delayed language, ID, and seizures. CONCLUSION: The identification of a truncating mutation in a patient with ID, severe microcephaly, epilepsy, and growth retardation, combined with its dual function in regulating the neural proliferation/neuronal differentiation, adds DYRK1A to the list of genes responsible for such a phenotype. ID, microcephaly, epilepsy, and language delay are the more specific features associated with DYRK1A abnormalities. DYRK1A studies should be discussed in patients presenting such a phenotype.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/diagnóstico , Fácies , Feminino , Ordem dos Genes , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Microcefalia/diagnóstico , Fenótipo , Síndrome , Quinases Dyrk
17.
J Med Genet ; 49(6): 400-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22693284

RESUMO

BACKGROUND: Non-progressive congenital ataxias (NPCA) with or without intellectual disability (ID) are clinically and genetically heterogeneous conditions. As a consequence, the identification of the genes responsible for these phenotypes remained limited. OBJECTIVE: Identification of a new gene responsible for NPCA and ID. Methods Following the discovery of three familial or sporadic cases with an intragenic calmodulin-binding transcription activator 1 (CAMTA1) rearrangement identified by an array-CGH and recruited from a national collaboration, the authors defined the clinical and molecular characteristics of such rearrangements, and searched for patients with point mutations by direct sequencing. RESULTS: Intragenic copy number variations of CAMTA1 were all located in the CG-1 domain of the gene. It segregated with autosomal dominant ID with non-progressive congenital cerebellar ataxia (NPCA) in two unrelated families, and was de novo deletion located in the same domain in a child presenting with NPCA. In the patients with ID, the deletion led to a frameshift, producing a truncated protein, while this was not the case for the patient with isolated childhood ataxia. Brain MRI of the patients revealed a pattern of progressive atrophy of cerebellum medium lobes and superior vermis, parietal lobes and hippocampi. DNA sequencing of the CG-1 domain in 197 patients with sporadic or familial non-syndromic intellectual deficiency, extended to full DNA sequencing in 50 patients with ID and 47 additional patients with childhood ataxia, identified no pathogenic mutation. CONCLUSION: The authors have evidence that loss-of-function of CAMTA1, a brain-specific calcium responsive transcription factor, is responsible for NPCA with or without ID. Accession numbers CAMTA1 reference sequence used was ENST00000303635. Protein sequence was ENSP00000306522.


Assuntos
Ataxia/genética , Proteínas de Ligação ao Cálcio/genética , Deficiência Intelectual/genética , Transativadores/genética , Adolescente , Adulto , Pré-Escolar , Variações do Número de Cópias de DNA , Feminino , Rearranjo Gênico , Humanos , Lactente , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA
18.
Am J Med Genet A ; 158A(2): 333-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22247066

RESUMO

Floating-Harbor syndrome (FHS) is characterized by characteristic facial dysmorphism, short stature with delayed bone age, and expressive language delay. To date, the gene(s) responsible for FHS is (are) unknown and the diagnosis is only made on the basis of the clinical phenotype. The majority of cases appeared to be sporadic but rare cases following autosomal dominant inheritance have been reported. We identified a 4.7 Mb de novo 12q15-q21.1 microdeletion in a patient with FHS and intellectual deficiency. Pangenomic 244K array-CGH performed in a series of 12 patients with FHS failed to identify overlapping deletions. We hypothesized that FHS is caused by haploinsufficiency of one of the 19 genes or predictions located in the deletion found in our index patient. Since none of them appeared to be good candidate gene by their function, a high-throughput sequencing approach of the region of interest was used in eight FHS patients. No pathogenic mutation was found in these patients. This approach failed to identify the gene responsible for FHS, and this can be explained by at least four reasons: (i) our index patient could be a phenocopy of FHS; (ii) the disease may be clinically heterogeneous (since the diagnosis relies exclusively on clinical features), (iii) these could be genetic heterogeneity of the disease, (iv) the patient could carry a mutation in a gene located elsewhere. Recent descriptions of patients with 12q15-q21.1 microdeletions argue in favor of the phenocopy hypothesis.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cromossomos Humanos Par 12/genética , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Comunicação Interventricular/genética , Comunicação Interventricular/patologia , Deleção de Sequência/genética , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa/métodos , Feminino , Predisposição Genética para Doença , Haploinsuficiência/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo
19.
J Pathol ; 221(1): 77-86, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20191615

RESUMO

Interleukin-34 (IL-34) is a newly discovered regulator of myeloid lineage differentiation, proliferation, and survival, acting via the macrophage-colony stimulating factor receptor (M-CSF receptor, c-fms). M-CSF, the main ligand for c-fms, is required for osteoclastogenesis and has been already identified as a critical contributor of the pathogenesis of giant cell tumours of bone (GCTs), tumours rich in osteoclasts. According to the key role of M-CSF in osteoclastogenesis and GCTs, the expression of IL-34 in human GCTs was first assessed. Quantitative analysis of IL-34 mRNA expression in 14 human GCTs revealed expression of this cytokine in GCTs as well as M-CSF and c-fms. Immunohistochemistry demonstrated that osteoclast-like cells exhibited a huge immunostaining for IL-34 and that mononuclear stromal cells were slightly positive for this protein. In contrast to osteoblasts, bone-resorbing osteoclasts showed very strong staining for IL-34, suggesting its potential role in the pathogenesis of GCTs by facilitating osteoclast formation. The role of IL-34 in osteoclastogenesis was then studied in murine and human models. IL-34 was able to support RANKL-induced osteoclastogenesis in the absence of M-CSF in all models. Multinucleated cells generated in the presence of IL-34 and RANKL expressed specific osteoclastic markers and resorbed dentine. IL-34 induced phosphorylation of ERK 1/2 and Akt through the activation of c-fms, as revealed by the inhibition of signalling by a specific c-fms tyrosine kinase inhibitor. Furthermore, IL-34 stimulated RANKL-induced osteoclastogenesis by promoting the adhesion and proliferation of osteoclast progenitors, and had no effect on osteoclast survival. Overall, these data reveal that IL-34 can be entirely substituted for M-CSF in RANKL-induced osteoclastogenesis, thus identifying a new biological activity for this cytokine and a contribution to the pathogenesis of GCTs.


Assuntos
Neoplasias Ósseas/metabolismo , Carcinoma de Células Gigantes/metabolismo , Interleucinas/biossíntese , Osteoclastos/citologia , Ligante RANK/fisiologia , Adulto , Idoso , Animais , Anisóis/farmacologia , Neoplasias Ósseas/patologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Antígeno CD11b/análise , Carcinoma de Células Gigantes/patologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Interleucinas/genética , Interleucinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Pirimidinas/farmacologia , Ligante RANK/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Adulto Jovem
20.
Spec Care Dentist ; 41(1): 118-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33202072

RESUMO

AIMS: Cohen syndrome (CS) is an uncommon autosomal recessive disorder due to mutations in vacuolar protein sorting 13B, with an intermittent presence of neutropenia. Contrary to other clinical phenotypic features, oral health has been little investigated in CS. We described oral health and dental hygiene in a cohort of CS patients. METHODS AND RESULTS: Twelve CS patients with neutropenia (<1500/mm3 ) were recruited in the dental department of Dijon University Hospital (France). Patients underwent oral examination, and blood samples were collected. Oral health markers were described and compared between patients with moderate and severe neutropenia (<500/mm3 ). In 12 patients (mean age = 21.1 years, SD = 13.7, six females), 45.5% brushed at least twice daily their teeth, and the same percentage annually visited a dentist. Dental plaque index was high (mean = 1.7, SD = 1.4). So was the number of lost teeth per patient, notably among adults (mean = 13.8, SD = 9.8). Elevated markers of periodontitis were noted as percentage of bleeding dental sites (mean = 70.2%, SD = 45.2%) or Gingival Index (mean = 2.2, SD = 1.0). The severity of neutropenia was correlated to the level of tooth-loss (P = .03). CONCLUSION: This study highlighted in CS patients worrisome oral health and dental follow-up in the context of intellectual disability with behavioural anomalies. More attention is needed by care-givers on oral condition in CS.


Assuntos
Deficiência Intelectual , Microcefalia , Doenças Periodontais , Adulto , Deficiências do Desenvolvimento , Feminino , Dedos/anormalidades , França , Humanos , Hipotonia Muscular , Miopia , Obesidade , Degeneração Retiniana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa