Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Hum Mutat ; 42(8): 1030-1041, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082468

RESUMO

PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance. We aimed to determine the best approaches for assessing the disease relevance of missense variants in PCDH19. The application of the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) guidelines was only 50% accurate. Using a training set of 322 known benign or pathogenic missense variants, we identified MutPred2, MutationAssessor, and GPP as the best performing in silico tools. We generated a protein structural model of the extracellular domain and assessed 24 missense variants. We also assessed 24 variants using an in vitro reporter assay. A combination of these tools was 93% accurate in assessing known pathogenic and benign PCDH19 variants. We increased the accuracy of the ACMG-AMP classification of 45 PCDH19 variants from 50% to 94%, using these tools. In summary, we have developed a robust toolbox for the assessment of PCDH19 variant pathogenicity to improve the accuracy of PCDH19-CE variant classification.


Assuntos
Caderinas , Epilepsia , Caderinas/genética , Humanos , Mutação de Sentido Incorreto , Protocaderinas , Análise de Sequência de DNA
2.
Ann Neurol ; 79(1): 120-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26505888

RESUMO

OBJECTIVE: Focal epilepsies are the most common form observed and have not generally been considered to be genetic in origin. Recently, we identified mutations in DEPDC5 as a cause of familial focal epilepsy. In this study, we investigated whether mutations in the mammalian target of rapamycin (mTOR) regulators, NPRL2 and NPRL3, also contribute to cases of focal epilepsy. METHODS: We used targeted capture and next-generation sequencing to analyze 404 unrelated probands with focal epilepsy. We performed exome sequencing on two families with multiple members affected with focal epilepsy and linkage analysis on one of these. RESULTS: In our cohort of 404 unrelated focal epilepsy patients, we identified five mutations in NPRL2 and five in NPRL3. Exome sequencing analysis of two families with focal epilepsy identified NPRL2 and NPRL3 as the top candidate-causative genes. Some patients had focal epilepsy associated with brain malformations. We also identified 18 new mutations in DEPDC5. INTERPRETATION: We have identified NPRL2 and NPRL3 as two new focal epilepsy genes that also play a role in the mTOR-signaling pathway. Our findings show that mutations in GATOR1 complex genes are the most significant cause of familial focal epilepsy identified to date, including cases with brain malformations. It is possible that deregulation of cellular growth control plays a more important role in epilepsy than is currently recognized.


Assuntos
Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética , Exoma , Perfilação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Mutação , Linhagem , Análise de Sequência de DNA
3.
Ann Neurol ; 79(3): 428-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26677014

RESUMO

OBJECTIVE: Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified as the major gene in all 3 conditions, found to be mutated in 80 to 90% of familial and 30 to 35% of sporadic cases. METHODS: We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed cliniconeurophysiological workup. RESULTS: In 3 families with a total of 16 affected members, we identified the same, cosegregating heterozygous missense mutation (c.4447G>A; p.E1483K) in SCN8A, encoding a voltage-gated sodium channel. A founder effect was excluded by linkage analysis. All individuals except 1 had normal cognitive and motor milestones, neuroimaging, and interictal neurological status. Fifteen affected members presented with afebrile focal or generalized tonic-clonic seizures during the first to second year of life; 5 of them experienced single unprovoked seizures later on. One patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal electroencephalogram (EEG) was normal in all cases but 2. Five of 16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered by stretching, motor initiation, or emotional stimuli. In 1 case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION: Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum of combined epileptic and dyskinetic syndromes.


Assuntos
Coreia/genética , Epilepsia Neonatal Benigna/genética , Predisposição Genética para Doença/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Polimorfismo de Nucleotídeo Único/genética , Criança , Pré-Escolar , Coreia/diagnóstico , Epilepsia Neonatal Benigna/diagnóstico , Feminino , Humanos , Masculino , Mutação/genética
4.
J Med Genet ; 53(4): 217-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26740507

RESUMO

Mutations in the sodium-gated potassium channel subunit gene KCNT1 have recently emerged as a cause of several different epileptic disorders. This review describes the mutational and phenotypic spectrum associated with the gene and discusses the comorbidities found in patients, which include intellectual disability and psychiatric features. The gene may also be linked with cardiac disorders. KCNT1 missense mutations have been found in 39% of patients with the epileptic encephalopathy malignant migrating focal seizures of infancy (MMFSI), making it the most significant MMFSI disease-causing gene identified to date. Mutations in KCNT1 have also been described in eight unrelated cases of sporadic and familial autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE). These patients have a high frequency of associated intellectual disability and psychiatric features. Two mutations in KCNT1 have been associated with both ADNFLE and MMFSI, suggesting that the genotype-phenotype relationship for KCNT1 mutations is not straightforward. Mutations have also been described in several patients with infantile epileptic encephalopathies other than MMFSI. Notably, all mutations in KCNT1 described to date are missense mutations, and electrophysiological studies have shown that they result in increased potassium current. Together, these genetic and electrophysiological studies raise the possibility of delivering precision medicine by treating patients with KCNT1 mutations using drugs that alter the action of potassium channels to specifically target the biological effects of their disease-causing mutation. Such trials are now in progress. Better understanding of the mechanisms underlying KCNT1-related disease will produce further improvements in treatment of the associated severe seizure disorders.


Assuntos
Epilepsias Parciais/genética , Epilepsia/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Epilepsias Parciais/patologia , Epilepsia/classificação , Epilepsia/patologia , Humanos , Deficiência Intelectual/patologia , Mutação , Canais de Potássio Ativados por Sódio
5.
Am J Med Genet A ; 170(11): 3033-3038, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27480663

RESUMO

Recessive mutations in BRAT1 cause lethal neonatal rigidity and multifocal seizure syndrome, a phenotype characterized by neonatal microcephaly, hypertonia, and refractory epilepsy with premature death by age 2 years. Recently, attenuated disease variants have been described, suggesting that a wider clinical spectrum of BRAT1-associated neurodegeneration exists than was previously thought. Here, we report two affected siblings with compound heterozygous truncating mutations in BRAT1 and intra-familial phenotypic heterogeneity, with a less severe disease course in the female sibling. This phenotypic variability should be taken into account when treating patients with BRAT1-associated neurodegenerative disease. Mildly affected individuals with BRAT1 mutations show that BRAT1 must be considered as a cause in childhood refractory epilepsy and microcephaly with survival beyond infancy. © 2016 Wiley Periodicals, Inc.


Assuntos
Estudos de Associação Genética , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Fenótipo , Idade de Início , Alelos , Exoma , Evolução Fatal , Feminino , Genes Recessivos , Loci Gênicos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Linhagem , Irmãos
6.
EMBO Rep ; 15(6): 723-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668262

RESUMO

Genetic variation in SLC12A5 which encodes KCC2, the neuron-specific cation-chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an Australian family with febrile seizures. We show that KCC2-R952H reduces neuronal Cl(-) extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2-R952H which likely contributes to the functional deficits. Our data suggest that KCC2-R952H is a bona fide susceptibility variant for febrile seizures.


Assuntos
Espinhas Dendríticas/patologia , Predisposição Genética para Doença/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Convulsões Febris/genética , Simportadores/genética , Sequência de Aminoácidos , Animais , Austrália , Western Blotting , Cloretos/metabolismo , Espinhas Dendríticas/genética , Humanos , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Fluorescência , Dados de Sequência Molecular , Linhagem , Conformação Proteica , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Simportadores/metabolismo , Cotransportadores de K e Cl-
7.
Am J Hum Genet ; 90(1): 152-60, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243967

RESUMO

Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).


Assuntos
Atetose/genética , Coreia/genética , Epilepsia Neonatal Benigna/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Convulsões/genética , Idade de Início , Animais , Sequência de Bases , Encéfalo/patologia , Pré-Escolar , Cromossomos Humanos Par 16/genética , Humanos , Lactente , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem
8.
Ann Neurol ; 75(5): 782-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24585383

RESUMO

We recently identified DEPDC5 as the gene for familial focal epilepsy with variable foci and found mutations in >10% of small families with nonlesional focal epilepsy. Here we show that DEPDC5 mutations are associated with both lesional and nonlesional epilepsies, even within the same family. DEPDC5-associated malformations include bottom-of-the-sulcus dysplasia (3 members from 2 families), and focal band heterotopia (1 individual). DEPDC5 negatively regulates the mammalian target of rapamycin (mTOR) pathway, which plays a key role in cell growth. The clinicoradiological phenotypes associated with DEPDC5 mutations share features with the archetypal mTORopathy, tuberous sclerosis, raising the possibility of therapies targeted to this pathway.


Assuntos
Encéfalo/anormalidades , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Mutação/genética , Proteínas Repressoras/genética , Serina-Treonina Quinases TOR/genética , Adulto , Criança , Feminino , Proteínas Ativadoras de GTPase , Humanos , Masculino , Linhagem , Adulto Jovem
9.
Ann Neurol ; 75(4): 581-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24591078

RESUMO

OBJECTIVE: Mutations in KCNT1 have been implicated in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and epilepsy of infancy with migrating focal seizures (EIMFS). More recently, a whole exome sequencing study of epileptic encephalopathies identified an additional de novo mutation in 1 proband with EIMFS. We aim to investigate the electrophysiological and pharmacological characteristics of hKCNT1 mutations and examine developmental expression levels. METHODS: Here we use a Xenopus laevis oocyte-based automated 2-electrode voltage clamp assay. The effects of quinidine (100 and 300 µM) are also tested. Using quantitative reverse transcriptase polymerase chain reaction, the relative levels of mouse brain mKcnt1 mRNA expression are determined. RESULTS: We demonstrate that KCNT1 mutations implicated in epilepsy cause a marked increase in function. Importantly, there is a significant group difference in gain of function between mutations associated with ADNFLE and EIMFS. Finally, exposure to quinidine significantly reduces this gain of function for all mutations studied. INTERPRETATION: These results establish direction for a targeted therapy and potentially exemplify a translational paradigm for in vitro studies informing novel therapies in a neuropsychiatric disease.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Quinidina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Oócitos , Técnicas de Patch-Clamp , Canais de Potássio Ativados por Sódio , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Xenopus laevis
10.
Epilepsia ; 56(7): 1071-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25982755

RESUMO

OBJECTIVE: We evaluated seizure outcome in a large cohort of familial neonatal seizures (FNS), and examined phenotypic overlap with different molecular lesions. METHODS: Detailed clinical data were collected from 36 families comprising two or more individuals with neonatal seizures. The seizure course and occurrence of seizures later in life were analyzed. Families were screened for KCNQ2, KCNQ3, SCN2A, and PRRT2 mutations, and linkage studies were performed in mutation-negative families to exclude known loci. RESULTS: Thirty-three families fulfilled clinical criteria for benign familial neonatal epilepsy (BFNE); 27 of these families had KCNQ2 mutations, one had a KCNQ3 mutation, and two had SCN2A mutations. Seizures persisting after age 6 months were reported in 31% of individuals with KCNQ2 mutations; later seizures were associated with frequent neonatal seizures. Linkage mapping in two mutation-negative BFNE families excluded linkage to KCNQ2, KCNQ3, and SCN2A, but linkage to KCNQ2 could not be excluded in the third mutation-negative BFNE family. The three remaining families did not fulfill criteria of BFNE due to developmental delay or intellectual disability; a molecular lesion was identified in two; the other family remains unsolved. SIGNIFICANCE: Most families in our cohort of familial neonatal seizures fulfill criteria for BFNE; the molecular cause was identified in 91%. Most had KCNQ2 mutations, but two families had SCN2A mutations, which are normally associated with a mixed picture of neonatal and infantile onset seizures. Seizures later in life are more common in BFNE than previously reported and are associated with a greater number of seizures in the neonatal period. Linkage studies in two families excluded known loci, suggesting a further gene is involved in BFNE.


Assuntos
Epilepsia Neonatal Benigna/diagnóstico , Epilepsia Neonatal Benigna/genética , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Canal de Potássio KCNQ2 , Masculino , Linhagem , Convulsões , Resultado do Tratamento
11.
Epilepsia ; 56(9): e114-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122718

RESUMO

Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype-phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances.


Assuntos
Epilepsias Parciais/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Canais de Potássio Ativados por Sódio , Morte Súbita do Lactente/genética
12.
J Med Genet ; 50(3): 133-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23343561

RESUMO

Mutations in the gene PRRT2 encoding proline-rich transmembrane protein 2 have recently been identified as the cause of three clinical entities: benign familial infantile epilepsy (BFIE), infantile convulsions with choreoathetosis (ICCA) syndrome, and paroxysmal kinesigenic dyskinesia (PKD). Patients with ICCA have both BFIE and PKD and families with ICCA may contain individuals who exhibit all three phenotypes. These three phenotypes were all mapped by linkage analyses to the pericentromeric region of chromosome 16, and were hypothesised to have the same genetic basis due to the co-occurrence of the disorders in some families. Despite considerable effort, the gene or genes for BFIE, ICCA, and PKD were not identified for many years after the linkage region was identified. Mutations in the gene PRRT2 were identified in several Chinese families with PKD, suggesting that the gene may also be responsible for ICCA and BFIE in families linked to the chromosome 16 locus. This was demonstrated to be the case, with the majority of families with ICCA and BFIE found to have PRRT2 mutations. The vast majority of these mutations are truncating and are predicted to lead to haploinsufficiency. PRRT2 is a largely uncharacterised protein. It is expressed in the brain and has been demonstrated to interact with SNAP-25, a component of the molecular machinery involved in the release of neurotransmitters at the presynaptic membrane. Therefore, the PRRT2 protein may play a role in this process. However, the molecular mechanisms underlying the remarkable pleiotropy associated with PRRT2 mutations have still to be determined.


Assuntos
Coreia/genética , Discinesias/genética , Epilepsia Neonatal Benigna/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Convulsões/genética , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Mutação
13.
Ann Neurol ; 71(1): 15-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275249

RESUMO

OBJECTIVE: KCNQ2 and KCNQ3 mutations are known to be responsible for benign familial neonatal seizures (BFNS). A few reports on patients with a KCNQ2 mutation with a more severe outcome exist, but a definite relationship has not been established. In this study we investigated whether KCNQ2/3 mutations are a frequent cause of epileptic encephalopathies with an early onset and whether a recognizable phenotype exists. METHODS: We analyzed 80 patients with unexplained neonatal or early-infantile seizures and associated psychomotor retardation for KCNQ2 and KCNQ3 mutations. Clinical and imaging data were reviewed in detail. RESULTS: We found 7 different heterozygous KCNQ2 mutations in 8 patients (8/80; 10%); 6 mutations arose de novo. One parent with a milder phenotype was mosaic for the mutation. No KCNQ3 mutations were found. The 8 patients had onset of intractable seizures in the first week of life with a prominent tonic component. Seizures generally resolved by age 3 years but the children had profound, or less frequently severe, intellectual disability with motor impairment. Electroencephalography (EEG) at onset showed a burst-suppression pattern or multifocal epileptiform activity. Early magnetic resonance imaging (MRI) of the brain showed characteristic hyperintensities in the basal ganglia and thalamus that later resolved. INTERPRETATION: KCNQ2 mutations are found in a substantial proportion of patients with a neonatal epileptic encephalopathy with a potentially recognizable electroclinical and radiological phenotype. This suggests that KCNQ2 screening should be included in the diagnostic workup of refractory neonatal seizures of unknown origin.


Assuntos
Epilepsia Neonatal Benigna/diagnóstico , Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Mutação/genética , Fenótipo , Criança , Pré-Escolar , Epilepsia Neonatal Benigna/fisiopatologia , Feminino , Humanos , Masculino
14.
Epilepsia ; 54(5): e86-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23566103

RESUMO

Heterozygous mutations in PRRT2 have recently been identified as the major cause of autosomal dominant benign familial infantile epilepsy (BFIE), infantile convulsions with choreoathetosis syndrome (ICCA), and paroxysmal kinesigenic dyskinesia (PKD). Homozygous mutations in PRRT2 have also been reported in two families with intellectual disability (ID) and seizures. Heterozygous mutations in the genes KCNQ2 and SCN2A cause the two other autosomal dominant seizure disorders of infancy: benign familial neonatal epilepsy and benign familial neonatal-infantile epilepsy. Mutations in KCNQ2 and SCN2A also contribute to severe infantile epileptic encephalopathies (IEEs) in which seizures and intellectual disability co-occur. We therefore hypothesized that PRRT2 mutations may also underlie cases of IEE. We examined PRRT2 for heterozygous, compound heterozygous or homozygous mutations to determine their frequency in causing epileptic encephalopathies (EEs). Two hundred twenty patients with EEs with onset by 2 years were phenotyped. An assay for the common PRRT2 c.649-650insC mutation and high resolution-melt analysis for mutations in the remaining exons of PRRT2 were performed. Neither the common mutation nor any other pathogenic variants in PRRT2 were detected in the 220 patients. Our findings suggest that mutations in PRRT2 are not a common cause of IEEs.


Assuntos
Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Espasmos Infantis/genética , Fatores Etários , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Fenótipo
16.
Epilepsia ; 53(8): e151-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22780917

RESUMO

We aimed to refine the phenotypic spectrum and map the causative gene in two families with familial focal epilepsy with variable foci (FFEVF). A new five-generation Australian FFEVF family (A) underwent electroclinical phenotyping, and the original four-generation Australian FFEVF family (B) (Ann Neurol, 44, 1998, 890) was re-analyzed, including new affected individuals. Mapping studies examined segregation at the chromosome 22q12 FFEVF region. In family B, the original whole genome microsatellite data was reviewed. Five subjects in family A and 10 in family B had FFEVF with predominantly awake attacks and active EEG studies with a different phenotypic picture from other families. In family B, reanalysis excluded the tentative 2q locus reported. Both families mapped to chromosome 22q12. Our results confirm chromosome 22q12 as the solitary locus for FFEVF. Both families show a subtly different phenotype to other published families extending the clinical spectrum of FFEVF.


Assuntos
Cromossomos Humanos 21-22 e Y/genética , Epilepsias Parciais/genética , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Eletroencefalografia , Epilepsias Parciais/fisiopatologia , Feminino , Ligação Genética/genética , Genótipo , Humanos , Lactente , Escore Lod , Masculino , Repetições de Microssatélites/genética , Linhagem , Fenótipo , Adulto Jovem
17.
J Med Genet ; 47(2): 137-41, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19589774

RESUMO

BACKGROUND: Dravet syndrome is a severe infantile epileptic encephalopathy caused in approximately 80% of cases by mutations in the voltage gated sodium channel subunit gene SCN1A. The majority of these mutations are de novo. The parental origin of de novo mutations varies widely among genetic disorders and the aim of this study was to determine this for Dravet syndrome. METHODS: 91 patients with de novo SCN1A mutations and their parents were genotyped for single nucleotide polymorphisms (SNPs) in the region surrounding their mutation. Allele specific polymerase chain reaction (PCR) based on informative SNPs was used to separately amplify and sequence the paternal and maternal alleles to determine in which parental chromosome the mutation arose. RESULTS: The parental origin of SCN1A mutations was established in 44 patients for whom both parents were available and SNPs were informative. The mutations were of paternal origin in 33 cases and of maternal origin in the remaining 11 cases. De novo mutation of SCN1A most commonly, but not exclusively, originates from the paternal chromosome. The average age of parents originating mutations did not differ from that of the general population. CONCLUSIONS: The greater frequency of paternally derived mutations in SCN1A is likely to be due to the greater chance of mutational events during the increased number of mitoses which occur during spermatogenesis compared to oogenesis, and the greater susceptibility to mutagenesis of the methylated DNA characteristic of sperm cells.


Assuntos
Epilepsias Mioclônicas/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Adulto , Pai , Feminino , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1 , Linhagem , Síndrome
18.
Neurology ; 96(18): e2251-e2260, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34038384

RESUMO

OBJECTIVE: To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS: We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS: Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION: Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Convulsões Febris/diagnóstico , Convulsões Febris/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem
19.
Epilepsia ; 51(2): 293-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19863579

RESUMO

We identified a patient with electrophysiologically verified neonatal long QT syndrome (LQTS) and neonatal seizures in the presence of a controlled cardiac rhythm. To find a cause for this unusual combination of phenotypes, we tested the patient for mutations in seven ion channel genes associated with either LQTS or benign familial neonatal seizures (BFNS). Comparative genome hybridization (CGH) was done to exclude the possibility of a contiguous gene syndrome. No mutations were found in the genes (KCNQ2, KCNQ3) associated with BFNS, and CGH was negative. A previously described mutation and a known rare variant were found in the LQTS-associated genes SCN5A and KCNE2. Both are expressed in the brain, and although mutations have not been associated with epilepsy, we propose a pathophysiologic mechanism by which the combination of molecular changes may cause seizures.


Assuntos
Canalopatias/diagnóstico , Epilepsia Neonatal Benigna/diagnóstico , Síndrome do QT Longo/diagnóstico , Canalopatias/epidemiologia , Canalopatias/genética , Pré-Escolar , Eletrocardiografia/estatística & dados numéricos , Eletroencefalografia/estatística & dados numéricos , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia Neonatal Benigna/epidemiologia , Epilepsia Neonatal Benigna/genética , Humanos , Recém-Nascido , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Síndrome do QT Longo/epidemiologia , Síndrome do QT Longo/genética , Masculino , Proteínas Musculares/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.5 , Hibridização de Ácido Nucleico/métodos , Fenótipo , Convulsões/genética , Canais de Sódio/genética
20.
Epilepsia ; 51(9): 1865-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20384724

RESUMO

A family with dominantly inherited neonatal seizures and intellectual disability was atypical for neonatal and infantile seizure syndromes associated with potassium (KCNQ2 and KCNQ3) and sodium (SCN2A) channel mutations. Microsatellite markers linked to KCNQ2, KCNQ3, and SCN2A were examined to exclude candidate locations, but instead revealed a duplication detected by observation of three alleles for two markers flanking SCN2A. Characterization revealed a 1.57 Mb duplication at 2q24.3 containing eight genes including SCN2A, SCN3A, and the 3¢ end of SCN1A. The duplication was partially inverted and inserted within or near SCN1A, probably affecting the expression levels of associated genes, including sodium channels. Rare or unique microchromosomal copy number mutations might underlie familial epilepsies that do not fit within the clinical criteria for the established syndromes.


Assuntos
Cromossomos Humanos Par 2/genética , Duplicação Gênica , Deficiência Intelectual/genética , Mutação/genética , Epilepsia/genética , Epilepsia Neonatal Benigna/genética , Família , Feminino , Humanos , Lactente , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Masculino , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.2 , Canal de Sódio Disparado por Voltagem NAV1.3 , Proteínas do Tecido Nervoso , Linhagem , Canais de Sódio/genética , Canais de Sódio/metabolismo , Síndrome
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa