Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Br J Nutr ; 126(2): 183-190, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33059793

RESUMO

Lipid metabolism and inflammation contribute to CVD development. This study investigated whether the consumption of cranberries (CR; Vaccinium macrocarpon) can alter HDL metabolism and prevent inflammation in mice expressing human apo A-I transgene (hApoAITg), which have similar HDL profiles to those of humans. Male hApoAITg mice were fed a modified American Institute of Nutrition-93M high-fat/high-cholesterol diet (16 % fat, 0·25 % cholesterol, w/w; n 15) or the high-fat/high-cholesterol diet containing CR (5 % dried CR powder, w/w, n 16) for 8 weeks. There were no significant differences in body weight between the groups. Serum total cholesterol, non-HDL-cholesterol and TAG concentrations were significantly lower in the control than CR group with no significant differences in serum HDL-cholesterol and apoA-I. Mice fed CR showed significantly lower serum lecithin-cholesterol acyltransferase activity than the control. Liver weight and steatosis were not significantly different between the groups, but hepatic expression of genes involved in cholesterol metabolism was significantly lower in the CR group. In the epididymal white adipose tissue (eWAT), the CR group showed higher weights with decreased expression of genes for lipogenesis and fatty acid oxidation. The mRNA abundance of F4/80, a macrophage marker and the numbers of crown-like structures were less in the CR group. In the soleus muscle, the CR group also demonstrated higher expression of genes for fatty acid ß-oxidation and mitochondrial biogenesis than those of the control. In conclusion, although CR consumption elicited minor effects on HDL metabolism, it prevented obesity-induced inflammation in eWAT with concomitant alterations in soleus muscle energy metabolism.


Assuntos
Frutas , Hipercolesterolemia , Hiperlipidemias , Metabolismo dos Lipídeos , Vaccinium macrocarpon , Animais , Apolipoproteína A-I/genética , Colesterol na Dieta/administração & dosagem , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Extratos Vegetais/metabolismo
2.
Eur J Nutr ; 57(1): 405-415, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28718016

RESUMO

PURPOSES: We previously showed that polyphenol-rich blackcurrant extract (BCE) showed a hypocholesterolemic effect in mice fed a high fat diet. As direct cholesterol removal from the body via the intestine has been recently appreciated, we investigated the effect of BCE on the modulation of genes involved in intestinal cholesterol transport using Caco-2 cells as an in vitro model. METHODS: Caco-2 cells were treated with BCE to determine its effects on mRNA and protein expression of genes important for intestinal cholesterol transport, low-density lipoprotein (LDL) uptake, cellular cholesterol content, and cholesterol transport from basolateral to apical membrane of Caco-2 cell monolayers. Cells were also treated with anthocyanin-rich or -poor fraction of BCE to determine the role of anthocyanin on BCE effects. RESULTS: BCE significantly increased protein levels of LDL receptor (LDLR) without altering its mRNA, which consequently increased LDL uptake into Caco-2 cells. This post-transcriptional induction of LDLR by BCE was markedly attenuated in the presence of rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). In addition, BCE altered genes involved in cholesterol transport in the enterocytes, including apical and basolateral cholesterol transporters, in such a way that could enhance cholesterol flux from the basolateral to apical side of the enterocytes. Indeed, BCE significantly increased the flux of LDL-derived cholesterol from the basolateral to the apical chamber of Caco-2 monolayer. LDLR protein levels were markedly increased by anthocyanin-rich fraction, but not by anthocyanin-free fraction. CONCLUSION: mTORC1-dependent post-transcriptional induction of LDLR by BCE anthocyanins drove the transport of LDL-derived cholesterol to the apical side of the enterocytes. This may represent a potential mechanism for the hypocholesterolemic effect of BCE.


Assuntos
Antocianinas/farmacologia , Colesterol/metabolismo , Frutas/química , Extratos Vegetais/farmacologia , Receptores de LDL/genética , Ribes , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células CACO-2 , LDL-Colesterol/metabolismo , Enterócitos/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , RNA Mensageiro/análise , Receptores de LDL/análise , Receptores de LDL/efeitos dos fármacos , Sirolimo/farmacologia , Transcrição Gênica/efeitos dos fármacos
3.
Hepatology ; 63(4): 1190-204, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26404765

RESUMO

UNLABELLED: With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD(+) ) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD(+) repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD(+) biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1- and SIRT3-dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic ß-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 knockout mice (Sirt1(hep-/-) ), whereas apolipoprotein E-deficient mice (Apoe(-/-) ) challenged with a high-fat high-cholesterol diet affirmed the use of NR in other independent models of NAFLD. CONCLUSION: Our data warrant the future evaluation of NAD(+) boosting strategies to manage the development or progression of NAFLD.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , NAD/metabolismo , Niacinamida/análogos & derivados , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Análise de Variância , Animais , Área Sob a Curva , Biópsia por Agulha , Dieta Hiperlipídica/métodos , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Imuno-Histoquímica , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/efeitos dos fármacos , Niacinamida/farmacologia , Compostos de Piridínio , Distribuição Aleatória , Sensibilidade e Especificidade , Resultado do Tratamento
4.
Biochim Biophys Acta ; 1850(1): 178-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450180

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease, the most common chronic liver disease in the U.S. Fibrosis, a common feature of NASH, results from the dysregulation of fibrogenesis in hepatic stellate cells (HSCs). In this study, we investigated whether astaxanthin (ASTX), a xanthophyll carotenoid, can inhibit fibrogenic effects of transforming growth factor ß1 (TGFß1), a key fibrogenic cytokine, in HSCs. METHODS: Reactive oxygen species (ROS) accumulation was measured in LX-2, an immortalized human HSC cell line. Quantitative realtime PCR, Western blot, immunocytochemical analysis, and in-cell Western blot were performed to determine mRNA and protein of fibrogenic genes, and the activation of Smad3 in TGFß1-activated LX-2 cells and primary mouse HSCs. RESULTS: In LX-2 cells, ROS accumulation induced by tert-butyl hydrogen peroxide and TGFß1 was abolished by ASTX. ASTX significantly decreased TGFß1-induced α-smooth muscle actin (α-SMA) and procollagen type 1, alpha 1 (Col1A1) mRNA as well as α-SMA protein levels. Knockdown of Smad3 showed the significant role of Smad3 in the expression of α-SMA and Col1A1, but not TGFß1, in LX-2 cells. ASTX attenuated TGFß1-induced Smad3 phosphorylation and nuclear translocation with a concomitant inhibition of Smad3, Smad7, TGFß receptor I (TßRI), and TßRII expression. The inhibitory effect of ASTX on HSC activation was confirmed in primary mouse HSCs as evidenced by decreased mRNA and protein levels of α-SMA during activation. CONCLUSION: Taken together, ASTX exerted anti-fibrogenic effects by blocking TGFß1-signaling, consequently inhibiting the activation of Smad3 pathway in HSCs. GENERAL SIGNIFICANCE: This study suggests that ASTX may be used as a preventive/therapeutic agent to prevent hepatic fibrosis.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Actinas/genética , Actinas/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Relação Dose-Resposta a Droga , Fibrinolíticos/farmacologia , Fibrose/genética , Células Estreladas do Fígado/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Músculo Liso/química , Fosforilação/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad3/genética , Xantofilas/farmacologia
5.
Br J Nutr ; 113(11): 1697-703, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25899149

RESUMO

Obesity is associated with an increased risk of metabolic abnormalities, such as hyperlipidaemia and hyperglycaemia. We investigated whether polyphenol-rich blackcurrant extract (BCE) can prevent high fat/high cholesterol (HF/HC) diet-induced metabolic disturbances in mice. Male C57BL/6J mice were fed a modified AIN-93M diet containing HF/HC (16% fat, 0·25% cholesterol, w/w) or the same diet supplemented with 0·1% BCE (w/w) for 12 weeks. There were no differences in total body weight and liver weight between groups. Plasma total cholesterol (TC) and glucose levels were significantly lower in BCE group than in controls, while plasma TAG levels were not significantly different. There was a decreasing trend in hepatic TAG levels, and histological evaluation of steatosis grade was markedly lower in the livers of mice fed BCE. Although the mRNA levels of major regulators of hepatic cholesterol metabolism, i.e. 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) and LDL receptor (LDLR), were not significantly altered by BCE supplementation, protein expression of mature sterol-regulatory element-binding protein and LDLR was significantly increased with no change in HMGR protein. The expression of proprotein convertase subtilisin/kexin type 9 that facilitates LDLR protein degradation, as well as one of its transcriptional regulators, i.e. hepatocyte nuclear factor 4α, was significantly decreased in the livers of mice fed BCE. Taken together, BCE supplementation decreased plasma TC and glucose, and inhibited liver steatosis, suggesting that this berry may be consumed to prevent metabolic dysfunctions induced by diets high in fat and cholesterol.


Assuntos
Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Ribes/química , Animais , Glicemia , Peso Corporal , Colesterol na Dieta/administração & dosagem , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Suplementos Nutricionais , Fígado Gorduroso/complicações , Fígado Gorduroso/prevenção & controle , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Hiperglicemia/complicações , Hiperglicemia/prevenção & controle , Hiperlipidemias/complicações , Hiperlipidemias/prevenção & controle , Hipoglicemiantes/análise , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Tamanho do Órgão , Extratos Vegetais/análise , Polifenóis/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Triglicerídeos/sangue
6.
Biochim Biophys Acta ; 1830(4): 2981-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23357040

RESUMO

BACKGROUND: Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. METHODS: Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE(-/-)) mice fed BGA. RESULTS: When macrophages pretreated with 100µg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1ß (IL-1ß), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1ß in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE(-/-) fed an atherogenic diet containing 5% NO or SP for 12weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1ß and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. CONCLUSION: NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. GENERAL SIGNIFICANCE: This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation.


Assuntos
Cianobactérias/fisiologia , Citocinas/biossíntese , Macrófagos/imunologia , NF-kappa B/antagonistas & inibidores , Baço/citologia , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Histona Desacetilases/fisiologia , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
7.
Br J Nutr ; 112(11): 1797-804, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25328157

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is significantly associated with hyperlipidaemia and oxidative stress. We have previously reported that astaxanthin (ASTX), a xanthophyll carotenoid, lowers plasma total cholesterol and TAG concentrations in apoE knockout mice. To investigate whether ASTX supplementation can prevent the development of NAFLD in obesity, male C57BL/6J mice (n 8 per group) were fed a high-fat diet (35%, w/w) supplemented with 0, 0.003, 0.01 or 0.03% of ASTX (w/w) for 12 weeks. The 0.03% ASTX-supplemented group, but not the other groups, exhibited a significant decrease in plasma TAG concentrations, suggesting that ASTX at a 0.03% supplementation dosage exerts a hypotriacylglycerolaemic effect. Although there was an increase in the mRNA expression of fatty acid synthase and diglyceride acyltransferase 2, the mRNA levels of acyl-CoA oxidase 1, a critical enzyme in peroxisomal fatty acid ß-oxidation, exhibited an increase in the 0.03% ASTX-supplemented group. There was a decrease in plasma alanine transaminase (ALT) and aspartate transaminase (AST) concentrations in the 0.03% ASTX-supplemented group. There was a significant increase in the hepatic mRNA expression of nuclear factor erythroid 2-related factor 2 and its downstream genes, which are critical for endogenous antioxidant mechanism, in the 0.03% ASTX-supplemented group. Furthermore, there was a significant decrease in the mRNA abundance of IL-6 in the primary splenocytes isolated from the 0.03% ASTX-supplemented group upon lipopolysaccharide (LPS) stimulation when compared with that in the splenocytes isolated from the control group. In conclusion, ASTX supplementation lowered the plasma concentrations of TAG, ALT and AST, increased the hepatic expression of endogenous antioxidant genes, and rendered splenocytes less sensitive to LPS stimulation. Therefore, ASTX may prevent obesity-associated metabolic disturbances and inflammation.


Assuntos
Fígado/efeitos dos fármacos , Obesidade/sangue , Obesidade/tratamento farmacológico , Triglicerídeos/sangue , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Dieta Hiperlipídica , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Xantofilas/administração & dosagem , Xantofilas/farmacologia
8.
Foods ; 12(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36900446

RESUMO

Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs.

9.
Nutrients ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049466

RESUMO

Inflammation, an innate immune response mediated by macrophages, has been a hallmark leading to the pathophysiology of diseases. In this study, we examined the inhibitory effects of ginsenoside compound K (CK) on lipopolysaccharide (LPS)-induced inflammation and metabolic alteration in RAW 264.7 macrophages by regulating sirtuin 1 (SIRT1) and histone deacetylase 4 (HDAC4). LPS suppressed SIRT1 while promoting HDAC4 expression, accompanied by increases in cellular reactive oxygen species accumulation and pro-inflammatory gene expression; however, the addition of CK elicited the opposite effects. CK ameliorated the LPS-induced increase in glycolytic genes and abrogated the LPS-altered genes engaged in the NAD+ salvage pathway. LPS decreased basal, maximal, and non-mitochondrial respiration, reducing ATP production and proton leak in macrophages, which were abolished by CK. SIRT1 inhibition augmented Hdac4 expression along with increased LPS-induced inflammatory and glycolytic gene expression, while decreasing genes that regulate mitochondrial biogenesis; however, its activation resulted in the opposite effects. Inhibition of HDAC4 enhanced Sirt1 expression and attenuated the LPS-induced inflammatory gene expression. In conclusion, CK exerted anti-inflammatory and antioxidant properties with the potential to counteract the alterations of energy metabolism, including glycolysis and mitochondrial respiration, through activating SIRT1 and repressing HDAC4 in LPS-stimulated macrophages.


Assuntos
Lipopolissacarídeos , Sirtuína 1 , Humanos , Lipopolissacarídeos/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Macrófagos/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
10.
Cell Rep Med ; 4(1): 100880, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36603576

RESUMO

Glioblastoma (GBM) currently has a dismal prognosis. GBM cells that survive radiotherapy contribute to tumor progression and recurrence with metabolic advantages. Here, we show that diacylglycerol kinase B (DGKB), a regulator of the intracellular concentration of diacylglycerol (DAG), is significantly downregulated in radioresistant GBM cells. The downregulation of DGKB increases DAG accumulation and decreases fatty acid oxidation, contributing to radioresistance by reducing mitochondrial lipotoxicity. Diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the formation of triglycerides from DAG, is increased after ionizing radiation. Genetic inhibition of DGAT1 using short hairpin RNA (shRNA) or microRNA-3918 (miR-3918) mimic suppresses radioresistance. We discover that cladribine, a clinical drug, activates DGKB, inhibits DGAT1, and sensitizes GBM cells to radiotherapy in vitro and in vivo. Together, our study demonstrates that DGKB downregulation and DGAT1 upregulation confer radioresistance by reducing mitochondrial lipotoxicity and suggests DGKB and DGAT1 as therapeutic targets to overcome GBM radioresistance.


Assuntos
Diacilglicerol Quinase , Glioblastoma , Humanos , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Lipídeos/toxicidade , Triglicerídeos/metabolismo , Regulação para Cima
11.
Nutr Res Pract ; 16(1): 46-59, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35116127

RESUMO

BACKGROUND/OBJECTIVES: Aster yomena (Kitam.) Honda (AY) has remarkable bioactivities, such as antioxidant, anti-inflammation, and anti-cancer activities. On the other hand, the effects of AY against obesity-induced insulin resistance have not been reported. Therefore, this study examined the potential of AY against obesity-associated insulin resistance in high-fat diet (HFD)-fed mice. MATERIALS/METHODS: An obesity model was established by feeding C57BL/6J mice a 60% HFD for 16 weeks. The C57BL6/When ethyl acetate fraction from AY (EFAY) at doses of 100 and 200 mg/kg/day was administered orally to mice fed a HFD for the last 4 weeks. Normal and control groups were administered water orally. The body weight and fasting blood glucose were measured every week. Dietary intake was measured every other day. After dissection, blood and tissues were collected from the mice. RESULTS: The administration of EFAY reduced body and organ weights significantly compared to HFD-fed control mice. The EFAY-administered groups also improved the serum lipid profile by decreasing the triglyceride, total cholesterol, and low-density lipoprotein compared to the control group. In addition, EFAY ameliorated the insulin resistance-related metabolic dysfunctions, including the fasting blood glucose and serum insulin level, compared to the HFD-fed control mice. The EFAY inhibited lipid synthesis and insulin resistance by down-regulation of hepatic fatty acid synthase and up-regulation of the AMP-activated protein kinase pathway. EFAY also reduced lipid peroxidation in the liver, indicating that EFAY protected hepatic injury induced by obesity. CONCLUSIONS: These results suggest that EFAY improved obesity-associated insulin resistance by regulating the lipid and glucose metabolism, suggesting that AY could be used as a functional food to prevent obesity and insulin resistance.

12.
J Nutr ; 141(9): 1611-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21734060

RESUMO

Dyslipidemia and oxidative stress contribute to atherogenesis. Astaxanthin (ASTX) is a red-colored carotenoid well known for its high antioxidant capacity. However, its effects on lipid metabolism and antioxidant defense mechanisms have received only limited investigation. We fed male apoE knockout (apoE)(-/-) mice, a mouse model for atherosclerosis, a high-fat (15%)/high-cholesterol (0.2%) diet alone (control) or supplemented with ASTX-rich Hematococcus pluvialis extract (0.03% ASTX by weight) for 4 wk. ASTX-fed apoE(-/-) mice had significantly lower plasma total cholesterol and TG concentrations than controls, but body weight and plasma alanine aminotransferase and aspartate aminotransferase did not differ between the groups. qRT-PCR analysis demonstrated significantly greater mRNA levels of LDL receptor (LDLR), 3-hydroxy-3-methylglutaryl CoA reductase, and sterol regulatory element binding protein 2 (SREBP-2) and greater mature SREBP-2 protein in the livers of ASTX-fed mice, indicating that increased LDLR expression may be responsible for the hypocholesterolemic effect of ASTX. Hepatic lipogenic gene expression was not altered, but carnitine palmitoyl transferase 1, acetyl-CoA carboxylase ß, and acyl-CoA oxidase mRNA abundance were significantly increased by ASTX supplementation, suggesting the TG-lowering effect of ASTX may be due to increased fatty acid ß-oxidation in the liver. Expression of the nuclear factor E2 related factor 2-responsive endogenous antioxidant gene also was induced with concomitantly lower glutathione disulfide levels in the livers of ASTX-fed apoE(-/-) mice compared to controls. In conclusion, these results suggest that supplementation of ASTX-rich H. pluvialis extract improves cholesterol and lipid metabolism as well as antioxidant defense mechanisms, all of which could help mitigate the progression of atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Clorófitas/química , Lipídeos/sangue , Animais , Antioxidantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Xantofilas/química , Xantofilas/farmacologia
13.
Foods ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829135

RESUMO

Hypercholesterolemia is one of the modifiable and primary risk factors for cardiovascular diseases (CVD). Emerging evidence suggests the stimulation of transintestinal cholesterol excretion (TICE), the nonbiliary cholesterol excretion, using natural products can be an effective way to reduce CVD. Bilberry (Vaccinium myrtillus L.) has been reported to have cardioprotective effects by ameliorating oxidative stress, inflammation, and dyslipidemia. However, the role of bilberry in intestinal cholesterol metabolism is not well understood. To examine the effects of bilberry in intestinal cholesterol metabolism, we measured the genes for cholesterol flux and de novo synthesis in anthocyanin-rich bilberry extract (BE)-treated Caco-2 cells. BE significantly decreased the genes for cholesterol absorption, i.e., Niemann-Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, BE significantly upregulated ABCG8, the apical transporter for cholesterol. There was a significant induction of low-density lipoprotein receptors, with a concomitant increase in cellular uptake of cholesterol in BE-treated cells. The expression of genes for lipogenesis and sirtuins was altered by BE treatment. In the present study, BE altered the genes for cholesterol flux from basolateral to the apical membrane of enterocytes, potentially stimulating TICE. These results support the potential of BE in the prevention of hypercholesterolemia.

14.
Nutr Res Pract ; 15(3): 279-293, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34093970

RESUMO

BACKGROUND/OBJECTIVES: The steamed ginger has been shown to have antioxidative effects and a protective effect against obesity. In the present study, we investigated the effects of ethanolic extract of steamed ginger (SGE) on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity (DIO) mouse model. MATERIALS/METHODS: The protective effects of SGE on adipogenesis were examined in 3T3-L1 adipocytes by measuring lipid accumulations and genes involved in adipogenesis. Male C57BL/6J mice were fed a normal diet (ND, 10% fat w/w), a high-fat diet (HFD, 60% fat w/w), and HFD supplemented with either 40 mg/kg or 80 mg/kg of SGE for 12 weeks. Serum chemistry was measured, and the expression of genes involved in lipid metabolism was determined in the adipose tissue. Histological analysis and micro-computed tomography were performed to identify lipid accumulations in epididymal fat pads. RESULTS: In 3T3-L1 cells, SGE significantly decreased lipid accumulation, with concomitant decreases in the expression of adipogenesis-related genes. SGE significantly attenuated the increase in body, liver, and epididymal adipose tissue weights by HFD. Serum total cholesterol and triglyceride levels were significantly lower in SGE fed groups compared to HFD. In adipose tissue, SGE significantly decreased adipocyte size than that of HFD and altered adipogenesis-related genes. CONCLUSIONS: In conclusion, steamed ginger exerted anti-obesity effects by regulating genes involved in adipogenesis and lipogenesis in 3T3-L1 cell and epididymal adipose tissue of DIO mice.

15.
J Obes Metab Syndr ; 28(4): 216-224, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31909364

RESUMO

Obesity is abnormal or excessive fat accumulation that is associated with progression of metabolic diseases including type 2 diabetes mellitus, cardiovascular disease, nonalcoholic fatty liver disease, and cancer. Gut microbiota (GM) have received much attention as essential factors in development and progression of obesity. The diversity, composition, and metabolic activity of GM are closely associated with nutrient intake and dietary pattern. Scientific evidence supports the idea that dietary pattern directly changes the GM profile; therefore, diet is a crucial component related to interactions between GM and obesity progression. A literature review showed that dietary factors such as probiotics, prebiotics, fat, fatty acids, and fiber dramatically alter the GM profile related to obesity. Furthermore, different dietary patterns result in different GM composition and activity that can contribute to amelioration of obesity.

16.
Nutr Res Pract ; 13(3): 268, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31214296

RESUMO

[This corrects the article on p. 503 in vol. 12, PMID: 30515278.].

17.
Nutr Res Pract ; 12(6): 503-511, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30515278

RESUMO

BACKGROUND/OBJECTIVES: Ginger, a root vegetable, is known to have antioxidant and antiobesity effects. Preparation, such as by steaming, can affect the chemical composition of prepared root vegetables or herbs and can change their functional activities. In the present study, we investigated the protective effects of steamed ginger against oxidative stress and steatosis in C57BL/6J mice fed a high-fat diet. MATERIALS/METHODS: The levels of polyphenols and flavonoids in two different extracts of steamed ginger, i.e., water extract (SGW) and ethanolic extract (SGE); as well, their antioxidant activities were examined. Forty male C57BL/6J mice were fed a normal diet (ND, n = 10), high-fat diet (HFD, 60% fat, w/w, n = 10), HFD supplemented with 200 mg/kg of SGE or garcinia (GAR) by weight (SGED or GARD, respectively, n = 10) for 12 weeks. Serum chemistry was examined, and the expressions of genes involved in lipid metabolism were determined in the liver. Histological analysis was performed to identify lipid accumulations in epididymal fat pads and liver. RESULTS: The SGE had higher contents of polyphenols and flavonoids and higher DPPH and ABTS+ free radical scavenging activities compared to those of SGW. Treatment with SGE or GAR significantly decreased the HFD-induced weight gain. Both SGE and GAR significantly reduced the high serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein levels induced by HFD. Compared to ND, HFD significantly increased hepatic TC and TG levels. SGE or GAR supplementation significantly decreased the increase of hepatic lipids by HFD. Interestingly, SGE had a more significant effect in reducing hepatic TC and TG levels than GAR. Furthermore, hepatic genes involved in lipogenesis and lipolysis were altered in both the SGED and GARD groups. CONCLUSIONS: The present study indicates that steamed ginger supplementation can decrease plasma TC and TG and can inhibit liver steatosis by regulating the expressions of hepatic genes.

18.
Nutr Res ; 37: 67-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28215316

RESUMO

Former smokers are at increased risk for cardiovascular disease. We hypothesized that dietary aronia polyphenols would reduce biomarkers of cardiovascular disease risk, inflammation, and oxidative stress in former smokers. We also determined the extent these effects were associated with polyphenol bioavailability. A 12-week, randomized, placebo-controlled trial was conducted in 49 healthy adult former smokers (n = 24/placebo, n = 25/aronia) to evaluate if daily consumption of 500 mg aronia extract modulated plasma lipids, blood pressure, biomarkers of inflammation and oxidative stress, and lipid transport genes of peripheral blood mononuclear cells. The primary outcome was change in low-density lipoprotein cholesterol (LDL-C) from baseline, and multivariate correlation analysis was performed to determine if changes in lipids were associated with urinary polyphenol excretion. Aronia consumption reduced fasting plasma total cholesterol by 8% (P = .0140), LDL-C by 11% (P = .0285), and LDL receptor protein in peripheral blood mononuclear cells (P = .0036) at 12 weeks compared with the placebo group. Positive changes in the urinary polyphenol metabolites peonidin-3-O-galactoside, 3-(4-hydroxyphenyl) propionic acid, and unmetabolized anthocyanin cyanidin-3-O-galactoside were associated with lower plasma total cholesterol and LDL-C in the aronia group. Aronia consumption did not change blood pressure or biomarkers of inflammation and oxidative stress. Aronia polyphenols reduced total and LDL-C in former smokers but did not improve biomarkers of oxidative stress and chronic inflammation. The cholesterol-lowering activity of aronia extract was most closely associated with urinary levels of cyanidin-3-O-galactoside and peonidin-3-O-galactoside, its methylated metabolite. This trial was registered at ClinicalTrials.gov as NCT01541826.


Assuntos
LDL-Colesterol/sangue , Inflamação , Estresse Oxidativo/efeitos dos fármacos , Photinia/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Fumar , Adulto , Antocianinas/farmacologia , Antioxidantes/farmacologia , Disponibilidade Biológica , Biomarcadores/sangue , Pressão Sanguínea , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Colesterol/sangue , Feminino , Frutas/química , Galactosídeos/farmacologia , Humanos , Inflamação/etiologia , Masculino , Fumantes , Fumar/efeitos adversos
19.
J Nutr Biochem ; 43: 27-35, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193580

RESUMO

The objective of this study was to determine if astaxanthin (ASTX), a xanthophyll carotenoid, can prevent obesity-associated metabolic abnormalities, inflammation and fibrosis in diet-induced obesity (DIO) and nonalcoholic steatohepatitis (NASH) mouse models. Male C57BL/6J mice were fed a low-fat (6% fat, w/w), a high-fat/high-sucrose control (HF/HS; 35% fat, 35% sucrose, w/w), or a HF/HS containing ASTX (AHF/HS; 0.03% ASTX, w/w) for 30 weeks. To induce NASH, another set of mice was fed a HF/HS diet containing 2% cholesterol (HF/HS/HC) a HF/HS/HC with 0.015% ASTX (AHF/HS/HC) for 18 weeks. Compared to LF, HF/HS significantly increased plasma total cholesterol, triglyceride and glucose, which were lowered by ASTX. ASTX decreased hepatic mRNA levels of markers of macrophages and fibrosis in both models. The effect of ASTX was more prominent in NASH than DIO mice. In epididymal fat, ASTX also decreased macrophage infiltration and M1 macrophage marker expression, and inhibited hypoxia-inducible factor 1-α and its downstream fibrogenic genes in both mouse models. ASTX significantly decreased tumor necrosis factor α mRNA in the splenocytes from DIO mice upon lipopolysaccharides stimulation compared with those from control mice fed an HF/HS diet. Additionally, ASTX significantly elevated the levels of genes that regulate fatty acid ß-oxidation and mitochondrial biogenesis in the skeletal muscle compared with control obese mice, whereas no differences were noted in adipose lipogenic genes. Our results indicate that ASTX inhibits inflammation and fibrosis in the liver and adipose tissue and enhances the skeletal muscle's capacity for mitochondrial fatty acid oxidation in obese mice.


Assuntos
Tecido Adiposo/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Fibrose/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Lipídeos/sangue , Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/prevenção & controle , Paniculite/metabolismo , Paniculite/patologia , Paniculite/prevenção & controle , Xantofilas/farmacologia
20.
Autophagy ; 13(10): 1767-1781, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28933629

RESUMO

Impairment in macroautophagy/autophagy flux and inflammasome activation are common characteristics of nonalcoholic steatohepatitis (NASH). Considering the lack of approved agents for treating NASH, drugs that can enhance autophagy and modulate inflammasome pathways may be beneficial. Here, we investigated the novel mechanism of ezetimibe, a widely prescribed drug for hypercholesterolemia, as a therapeutic option for ameliorating NASH. Human liver samples with steatosis and NASH were analyzed. For in vitro studies of autophagy and inflammasomes, primary mouse hepatocytes, human hepatoma cells, mouse embryonic fibroblasts with Ampk or Tsc2 knockout, and human or primary mouse macrophages were treated with ezetimibe and palmitate. Steatohepatitis and fibrosis were induced by feeding Atg7 wild-type, haploinsufficient, and knockout mice a methionine- and choline-deficient diet with ezetimibe (10 mg/kg) for 4 wk. Human livers with steatosis or NASH presented impaired autophagy with decreased nuclear TFEB and increased SQSTM1, MAP1LC3-II, and NLRP3 expression. Ezetimibe increased autophagy flux and concomitantly ameliorated lipid accumulation and apoptosis in palmitate-exposed hepatocytes. Ezetimibe induced AMPK phosphorylation and subsequent TFEB nuclear translocation, related to MAPK/ERK. In macrophages, ezetimibe blocked the NLRP3 inflammasome-IL1B pathway in an autophagy-dependent manner and modulated hepatocyte-macrophage interaction via extracellular vesicles. Ezetimibe attenuated lipid accumulation, inflammation, and fibrosis in liver-specific Atg7 wild-type and haploinsufficient mice, but not in knockout mice. Ezetimibe ameliorates steatohepatitis by autophagy induction through AMPK activation and TFEB nuclear translocation, related to an independent MTOR ameliorative effect and the MAPK/ERK pathway. Ezetimibe dampens NLRP3 inflammasome activation in macrophages by modulating autophagy and a hepatocyte-driven exosome pathway.


Assuntos
Autofagia/efeitos dos fármacos , Ezetimiba/farmacologia , Fígado Gorduroso/tratamento farmacológico , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Ezetimiba/uso terapêutico , Fígado Gorduroso/metabolismo , Feminino , Células Hep G2 , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa