Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522107

RESUMO

Silicon carbide (SiC) is a wide-band gap semiconductor that exceeds other semiconducting materials (except diamond) in electrical, mechanical, chemical, and radiation stability. In this paper, we report a novel approach to fabrication of SiC nano films on a Si substrate, which is based on the endotaxial growth of a SiC crystalline phase in a graphite-like carbon (GLC) matrix. GLC films were formed by carbonization of rigid rod polyimide (PI) Langmuir-Blodgett (LB) films on a Si substrate at 1000 °C in vacuum. After rapid thermal annealing of GLC films at 1100 °C and 1200 °C, new types of heterostructures SiC(10 nm)/GLC(20 nm)/Si(111) and SiC(20 nm)/GLC(15 nm)/SiC(10 nm)/Si(111) were obtained. The SiC top layer was formed due to the Si-containing gas phase present above the surface of GLC film. An advantage of the proposed method of endotaxy is that the SiC crystalline phase is formed within the volume of the GLC film of a thickness predetermined by using PI LB films with different numbers of monolayers for carbonization. This approach allows growing SiC layers close to the 2D state, which is promising for optoelectronics, photovoltaics, spintronics.

2.
Small ; 19(28): e2301660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178371

RESUMO

Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

3.
Nanotechnology ; 32(21)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33588396

RESUMO

An approach has been developed that allows the synthesis of submicron spherical silica particles with a controlled micro-mesoporous structure possessing a large specific surface area (up to 1300 m2g-1). Particle synthesis is carried out by the hydrolysis of a mixture of various organosilanes mostly associated either with CTAB or with each other. A change in the concentration of CTAB in the reaction mixture apparently leads to a change in the formation mechanism of nuclei for the silica particle growth, which allows for varying the diameter of the synthesized particles in the range from 40-450 nm. The effect of the composition of the silica precursor ([3-(methacryloyloxy)propyl]trimethoxysilane, (3-aminopropyl)triethoxysilane and tetraethoxysilane) on the formation process and porosity of the resulting particles is studied. It was shown that by simply varying the ratio of organosilanes in the composition of the precursor, one can control the pore diameter of the particles in a wide range from 0.6-15 nm. The large-pore (up to 15 nm) silica particles are used as a matrix for the spatial distribution of luminescent carbon dots. The incorporation of carbon dots into SiO2particles prevents their aggregation leading to emission quenching after drying, thus allowing us to obtain highly luminescent composite particles. LEDs based on the obtained composite material show bright visible luminescence with spectral characteristics similar to that of a commercial cold white LED.

4.
Nanotechnology ; 32(33)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33975293

RESUMO

InGaN nanostructures are among the most promising candidates for visible solid-state lighting and renewable energy sources. To date, there is still a lack of information about the influence of the growth conditions on the physical properties of these nanostructures. Here, we extend the study of InGaN nanowires growth directly on Si substrates by plasma-assisted molecular beam epitaxy. The results of the study showed that under appropriate growth conditions a change in the growth temperature of just 10 °C leads to a significant change in the structural and optical properties of the nanowires. InGaN nanowires with the areas containing 4%-10% of In with increasing tendency towards the top are formed at the growth temperature of 665 °C, while at the growth temperatures range of 655 °C-660 °C the spontaneously core-shell NWs are typically presented. In the latter case, the In contents in the core and the shell are about an order of magnitude different (e.g. 35% and 4% for 655 °C, respectively). The photoluminescence study of the NWs demonstrates a shift in the spectra from blue to orange in accordance with an increase of In content. Based on these results, a novel approach to the monolithic growth of InxGa1-xN NWs with multi-colour light emission on Si substrates by setting a temperature gradient over the substrate surface is proposed.

5.
Nanotechnology ; 32(38)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34116523

RESUMO

Young's modulus of tapered mixed composition (zinc-blende with a high density of twins and wurtzite with a high density of stacking faults) gallium phosphide (GaP) nanowires (NWs) was investigated by atomic force microscopy. Experimental measurements were performed by obtaining bending profiles of as-grown inclined GaP NWs deformed by applying a constant force to a series of NW surface locations at various distances from the NW/substrate interface. Numerical modeling of experimental data on bending profiles was done by applying Euler-Bernoulli beam theory. Measurements of the nano-local stiffness at different distances from the NW/substrate interface revealed NWs with a non-ideal mechanical fixation at the NW/substrate interface. Analysis of the NWs with ideally fixed base resulted in experimentally measured Young's modulus of 155 ± 20 GPa for ZB NWs, and 157 ± 20 GPa for WZ NWs, respectively, which are in consistence with a theoretically predicted bulk value of 167 GPa. Thus, impacts of the crystal structure (WZ/ZB) and crystal defects on Young's modulus of GaP NWs were found to be negligible.

6.
Sci Technol Adv Mater ; 22(1): 85-99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185387

RESUMO

In the present paper we discuss correlations between crystal structure and magnetic properties of epitaxial ε-Fe2O3 films grown on GaN. The large magnetocrystalline anisotropy and room temperature multiferroic properties of this exotic iron oxide polymorph, make it a perspective material for the development of low power consumption magnetic media storage devices. Extending our recent progress in PLD growth of ε-Fe2O3 on the surface of technologically important nitride semiconductors, we apply reciprocal space tomography by electron and x-ray diffraction to investigate the break of crystallographic symmetry occurring at the oxide-nitride interface resulting in the appearance of anisotropic crystallographic disorder in the sub-100 nm ε-Fe2O3 films. The orthorhombic-on-hexagonal nucleation scenario is shown responsible for the development of a peculiar columnar structure observed in ε-Fe2O3 by means of HRTEM and AFM. The complementary information on the direct and reciprocal space structure of the columnar ε-Fe2O3 films is obtained by various techniques and correlated to their magnetic properties. The peculiar temperature dependence of magnetization studied by the small-field magnetization derivative method and by neutron diffraction reveals the existence of a magnetic softening below 150 K, similar to the one observed earlier solely in nanoparticles. The magnetization reversal in ε-Fe2O3 films probed by X-ray magnetic circular dichroism is found different from the behavior of the bulk averaged magnetization measured by conventional magnetometry. The presented results fill the gap between the numerous studies performed on randomly oriented ε-Fe2O3 nanoparticles and much less frequent investigations of epitaxial epsilon ferrite films with lattice orientation fixed by the substrate.

7.
Nanotechnology ; 31(5): 055701, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31618715

RESUMO

The realization of GaAs nanowire (NW) high-performance quantum devices operated at room temperatures requires that their diameters have to be less than 10 nm. It is shown, that the GaAs NWs with sub 10 nanometers diameters can be fabricated using the thermal decomposition technique. It is demonstrated, that depending on annealing conditions, the NW lengths, as well as shapes, can be modified significantly. The GaAs NWs with bottle-like and diameter-modulated shapes can be obtained. At the first stage of the thermal annealing in the presence of As flux, an increase in NW length was found.

8.
Nano Lett ; 19(7): 4463-4469, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203633

RESUMO

The electronic properties of semiconductor AIIIBV nanowires (NWs) due to their high surface/volume ratio can be effectively controlled by NW strain and surface electronic states. We study the effect of applied tension on the conductivity of wurtzite InxGa1-xAs (x ∼ 0.8) NWs. Experimentally, conductive atomic force microscopy is used to measure the I-V curves of vertically standing NWs covered by native oxide. To apply tension, the microscope probe touching the NW side is shifted laterally to produce a tensile strain in the NW. The NW strain significantly increases the forward current in the measured I-V curves. When the strain reaches 4%, the I-V curve becomes almost linear, and the forward current increases by 3 orders of magnitude. In the latter case, the tensile strain is supposed to shift the conduction band minima below the Fermi level, whose position, in turn, is fixed by surface states. Consequently, the surface conductivity channel appears. The observed effects confirm that the excess surface arsenic is responsible for the Fermi level pinning at oxidized surfaces of III-As NWs.

9.
Nanotechnology ; 30(47): 475601, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31430740

RESUMO

The treatment of monodisperse carbon nanodots (MCNDs) with a combination of aqueous ammonia and hydrogen peroxide is found to result in a prominent enhancement of their fluorescence efficiency. Depending on the hydrogen peroxide concentration, an increase of the MCNDs quantum yield of up to seven-fold has been achieved. Considering the absence of prominent changes in fluorescence lifetime and fluorescence spectra upon the treatment it is suggested that the observed rise of fluorescence efficiency originates from additional formation of new isolated sp2 domains surrounded by defect sites. The structural modification of MCNDs induced by their treatment with combination of aqueous ammonia and hydrogen peroxide is indicated by both transmission electron microscopy images and infrared spectra. The applied method has insignificant effect on the aggregation properties and size distribution of the studied MCNDs. Taking into account the proposed mechanism, the applied treatment procedure can serve as a basis for a facile approach for modification of emissive properties of various nanocarbon structures.

10.
Nanotechnology ; 29(31): 314003, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29757753

RESUMO

Fermi level pinning at the oxidized (110) surfaces of III-As nanowires (GaAs, InAs, InGaAs, AlGaAs) is studied. Using scanning gradient Kelvin probe microscopy, we show that the Fermi level at oxidized cleavage surfaces of ternary Al x Ga1-x As (0 ≤ x ≤ 0.45) and Ga x In1-x As (0 ≤ x ≤ 1) alloys is pinned at the same position of 4.8 ± 0.1 eV with regard to the vacuum level. The finding implies a unified mechanism of the Fermi level pinning for such surfaces. Further investigation, performed by Raman scattering and photoluminescence spectroscopy, shows that photooxidation of the Al x Ga1-x As and Ga x In1-x As nanowires leads to the accumulation of an excess of arsenic on their crystal surfaces which is accompanied by a strong decrease of the band-edge photoluminescence intensity. We conclude that the surface excess arsenic in crystalline or amorphous forms is responsible for the Fermi level pinning at oxidized (110) surfaces of III-As nanowires.

11.
Nanoscale ; 16(4): 2039-2047, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38204419

RESUMO

The ability to emit narrow exciton lines, preferably with a clearly defined polarization, is one of the key conditions for the use of nanostructures based on III-VI monochalcogenides and other layered crystals in quantum technology to create non-classical light. Currently, the main method of their formation is exfoliation followed by strain and defect engineering. A factor limiting the use of epitaxy is the presence of different phases in the grown films. In this work, we show that control over their formation makes it possible to create structures with the desired properties. We propose Ga2Se3/GaSe nanostructures grown by van der Waals epitaxy with a high VI/III flux ratio as a source of narrow exciton lines. Actually, these nanostructures are a combination of allotropes: GaSe and Ga2Se3, consisting of the same atoms in different arrangements. The energy positions of the narrow lines are determined by the quantum confinement in Ga2Se3 inclusions of different sizes in the GaSe matrix, similar to quantum dots, and their linear polarization is due to the ordering of Ga vacancies in a certain crystalline direction in Ga2Se3. Such nanostructures exhibit single-photon emission with second-order correlation function g(2)(0) ∼ 0.10 at 10 K that makes them promising for quantum technologies.

12.
Nanoscale ; 16(21): 10398-10413, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38741471

RESUMO

This work presents for the first time the possibility of reducing and tuning the work function of field emission cathodes coated with metal oxides by changing the chemical composition of oxide coatings using an example of heat-treated CNT/NiO nanocomposite structures. These cathodes are formulated using carbon nanotube (CNT) arrays that are coated with ultrathin layers of nickel oxide (CNT/NiO) by atomic layer deposition (ALD). It was found that NiO at thicknesses of several nanometers grown on CNTs heat treated at a temperature of 350 °C can change its stoichiometric composition towards the formation of oxygen vacancies, since the Ni3+/Ni2+ peak area ratio increases and the position of the Ni-O peak binding energies shifts as observed using X-ray photoelectron spectroscopy (XPS). According to the secondary electron cut-off, the work function was 4.95 for pristine CNTs and it was found that the work function of deposited NiO layers on CNTs decreased after heat treatment. The decrease in work function occurs as a result of changes in the chemical composition of the oxide film. For the heat-treated CNT/NiO composites, the work function was 4.30 eV with a NiO layer thickness of 7.6 nm, which was less than that for a NiO thin film close to the stoichiometric composition, which had a work function of 4.48 eV. The field emission current-voltage characteristics showed that the fields for producing an emission current density of 10 µA cm-2 were 5.54 V µm-1 for pure nanotubes and 4.32 V µm-1 and 4.19 V µm-1 for NiO-coated CNTs (3.8 and 7.6 nm), respectively. The present study has shown that heat treatment of deposited thin NiO layers on field cathodes is a promising approach to improve the efficiency of field emission cathodes and is a new approach in vacuum nanoelectronics that allows tuning the work function of field emission cathodes.

13.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727329

RESUMO

The rational design of composites based on graphene/metal oxides is one of the pillars for advancing their application in various practical fields, particularly gas sensing. In this study, a uniform distribution of ZnO nanoparticles (NPs) through the graphene layer was achieved, taking advantage of amine functionalization. The beneficial effect of amine groups on the arrangement of ZnO NPs and the efficiency of their immobilization was revealed by core-level spectroscopy, pointing out strong ionic bonding between the aminated graphene (AmG) and ZnO. The stability of the resulting Am-ZnO nanocomposite was confirmed by demonstrating that its morphology remains unchanged even after prolonged heating up to 350 °C, as observed by electron microscopy. On-chip multisensor arrays composed of both AmG and Am-ZnO were fabricated and thoroughly tested, showing almost tenfold enhancement of the chemiresistive response upon decorating the AmG layer with ZnO nanoparticles, due to the formation of p-n heterojunctions. Operating at room temperature, the fabricated multisensor chips exhibited high robustness and a detection limit of 3.6 ppm and 5.1 ppm for ammonia and ethanol, respectively. Precise identification of the studied analytes was achieved by employing the pattern recognition technique based on linear discriminant analysis to process the acquired multisensor response.

14.
Nanomaterials (Basel) ; 13(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947736

RESUMO

We present the results of a temperature-dependent photoluminescence (PL) spectroscopy study on CuInS2 quantum dots (QDs). In order to elucidate the influence of QD size on PL temperature dependence, size-selective precipitation was used to obtain several nanoparticle fractions. Additionally, the nanoparticles' morphology and chemical composition were studied using transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The obtained QDs showed luminescence in the visible-near infrared range. The PL energy, linewidth, and intensity were studied within an 11-300 K interval. For all fractions, a temperature decrease led to a shift in the emission maximum to higher energies and pronounced growth of the PL intensity down to 75-100 K. It was found that for large particle fractions, the PL intensity started to decrease, with temperature decreasing below 75 K, while the PL intensity of small nanoparticles remained stable.

15.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985964

RESUMO

Hybrid nanostructures based on InGaN nanowires with decorated plasmonic silver nanoparticles are investigated in the present study. It is shown that plasmonic nanoparticles induce the redistribution of room temperature photoluminescence between short-wavelength and long-wavelength peaks of InGaN nanowires. It is defined that short-wavelength maxima decreased by 20%, whereas the long-wavelength maxima increased by 19%. We attribute this phenomenon to the energy transfer and enhancement between the coalesced part of the NWs with 10-13% In content and the tips above with an In content of about 20-23%. A proposed Fröhlich resonance model for silver NPs surrounded by a medium with refractive index of 2.45 and spread 0.1 explains the enhancement effect, whereas the decreasing of the short-wavelength peak is associated with the diffusion of charge carriers between the coalesced part of the NWs and the tips above.

16.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299631

RESUMO

The facile synthesis of biografted 2D derivatives complemented by a nuanced understanding of their properties are keystones for advancements in biosensing technologies. Herein, we thoroughly examine the feasibility of aminated graphene as a platform for the covalent conjugation of monoclonal antibodies towards human IgG immunoglobulins. Applying core-level spectroscopy methods, namely X-ray photoelectron and absorption spectroscopies, we delve into the chemistry and its effect on the electronic structure of the aminated graphene prior to and after the immobilization of monoclonal antibodies. Furthermore, the alterations in the morphology of the graphene layers upon the applied derivatization protocols are assessed by electron microscopy techniques. Chemiresistive biosensors composed of the aerosol-deposited layers of the aminated graphene with the conjugated antibodies are fabricated and tested, demonstrating a selective response towards IgM immunoglobulins with a limit of detection as low as 10 pg/mL. Taken together, these findings advance and outline graphene derivatives' application in biosensing as well as hint at the features of the alterations of graphene morphology and physics upon its functionalization and further covalent grafting by biomolecules.

17.
ACS Appl Mater Interfaces ; 15(23): 28370-28386, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253093

RESUMO

The artificial olfaction units (or e-noses) capable of room-temperature operation are highly demanded to meet the requests of society in numerous vital applications and developing Internet-of-Things. Derivatized 2D crystals are considered as sensing elements of choice in this regard, unlocking the potential of the advanced e-nose technologies limited by the current semiconductor technologies. Herein, we consider fabrication and gas-sensing properties of On-chip multisensor arrays based on a hole-matrixed carbonylated (C-ny) graphene film with a gradually changed thickness and concentration of ketone groups of up to 12.5 at.%. The enhanced chemiresistive response of C-ny graphene toward methanol and ethanol, of hundred ppm concentration when mixing with air to match permissible exposure OSHA limits, at room-temperature operation is signified. Following thorough characterization via core-level techniques and density functional theory, the predominant role of the C-ny graphene-perforated structure and abundance of ketone groups in advancing the chemiresistive effect is established. Advancing practice applications, selective discrimination of the studied alcohols is approached by linear discriminant analysis employing a multisensor array's vector signal, and the fabricated chip's long-term performance is shown.

18.
Nanoscale ; 14(3): 993-1000, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989740

RESUMO

Semiconductor nanowires exhibit numerous capabilities to advance the development of future optoelectronic devices. Among the III-V material family, gallium phosphide (GaP) is an attractive platform with low optical absorption and high nonlinear susceptibility, making it especially promising for nanophotonic applications. However, investigation of single nanostructures and their waveguiding properties remains challenging owing to typically planar experimental arrangements. Here we study the linear and nonlinear waveguiding optical properties of a single GaP nanowire in a special experimental layout, where an optically trapped structure is aligned along its major axis. We demonstrate efficient second harmonic generation in individual nanowires and unravel phase matching conditions, linking between linear guiding properties of the structure and its nonlinear tensorial susceptibility. The capability to pick up single nanowires, sort them with the aid of optomechanical manipulation and accurately position pre-tested structures opens a new avenue for the generation of optoelectronic origami-type devices.

19.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363189

RESUMO

AlGaAsSb and AlGaAs films as thick as 1 µm with Al content as high as 60% were successfully grown by low-temperature (200 °C) MBE. To overcome the well-known problem of growth disruption due to a high aluminum content and a low growth temperature, we applied intermittent growth with the temperature elevation to smooth out the emerging roughness of the growth front. Post-growth annealing of the obtained material allowed us to form a developed system of As or AsSb nanoinclusions, which occupy 0.3-0.6% of the material volume. While the As nanoinclusions are optically inactive, the AsSb nanoinclusions provide a strong optical absorption near the band edge of the semiconductor matrix due to the Fröhlich plasmon resonance. Owing to the wider bandgap of the grown Al0.6Ga0.4As0.97Sb0.03 compound, we have expanded the spectral range available for studying the Fröhlich plasmon resonance. The grown metamaterial represents an optically active medium of which the formation process is completely compatible with the epitaxial growth technology of semiconductors.

20.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889581

RESUMO

A synthesis protocol of polyvinylpyrrolidone-capped AgInS2 quantum dots in aqueous solution is reported. Nanoparticle morphology and chemical composition were studied by means of TEM, XRD, XPS, and FTIR. The obtained quantum dots were luminescent in the visible range. The photoluminescence intensity dependence on the polyvinylpyrrolidone amount was demonstrated. The wavelength of the emission maximum varied with changing the [Ag]:[In] molar ratio. The temperature dependence of the photoluminescence intensity of the polyvinylpyrrolidone-capped AgInS2 quantum dots was investigated within the temperature range of 11-294 K.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa