Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mov Disord ; 34(5): 708-716, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30575996

RESUMO

BACKGROUND: Pridopidine, in development for Huntington's disease, may modulate aberrant l-dopa-induced effects including l-dopa-induced dyskinesia (LID). OBJECTIVE: This study investigated whether pridopidine could reduce LID in the MPTP macaque model of Parkinson's disease and characterized the observed behavioral effects in terms of receptor occupancy. METHODS: The pharmacokinetic profile and effects of pridopidine (15-30 mg/kg) on parkinsonism, dyskinesia, and quality of on-time, in combination with l-dopa, were assessed in MPTP macaques with LID. Pridopidine receptor occupancy was estimated using known in vitro binding affinities to σ1 and dopamine D2 receptors, in vivo PET imaging, and pharmacokinetic profiling across different species. RESULTS: Pridopidine produced a dose-dependent reduction in dyskinesia (up to 71%, 30 mg/kg) and decreased the duration of on-time with disabling dyskinesia evoked by l-dopa by 37% (20 mg/kg) and 60% (30 mg/kg). Pridopidine did not compromise the anti-parkinsonian benefit of l-dopa. Plasma exposures following the ineffective dose (15 mg/kg) were associated with full σ1 occupancy (>80%), suggesting that σ1 engagement alone is unlikely to account for the antidyskinetic benefits of pridopidine. Exposures following effective doses (20-30 mg/kg), while providing full σ1 occupancy, provide only modest dopamine D2 occupancy (<40%). However, effective pridopidine doses clearly engage a range of receptors (including adrenergic-α2C , dopamine-D3 , and serotoninergic-5-HT1A sites) to a higher degree than D2 and might contribute to the antidyskinetic actions. CONCLUSIONS: In MPTP macaques, pridopidine produced a significant decrease in LID without compromising the antiparkinsonian benefit of l-dopa. Although the actions of pridopidine were associated with full σ1 occupancy, effective exposures are more likely associated with occupancy of additional, non-sigma receptors. This complex pharmacology may underlie the effectiveness of pridopidine against LID. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Intoxicação por MPTP/tratamento farmacológico , Movimento/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Piperidinas/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Discinesia Induzida por Medicamentos/etiologia , Macaca fascicularis , Transtornos Parkinsonianos/induzido quimicamente , Tomografia por Emissão de Pósitrons , Receptor Muscarínico M2/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores Histamínicos H3/metabolismo , Receptores sigma/metabolismo , Receptor Sigma-1
2.
Proc Natl Acad Sci U S A ; 113(41): E6145-E6152, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671624

RESUMO

Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington's disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice. The AhR pathway modulates the differentiation and function of several cell populations, many of which play an important role in neuroinflammation. We therefore tested the consequences of AhR activation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) using AhR knockout mice. We demonstrate that the pronounced effect of laquinimod on clinical score, CNS inflammation, and demyelination in EAE was abolished in AhR-/- mice. Furthermore, using bone marrow chimeras we show that deletion of AhR in the immune system fully abrogates, whereas deletion within the CNS partially abrogates the effect of laquinimod in EAE. These data strongly support the idea that AhR is necessary for the efficacy of laquinimod in EAE and that laquinimod may represent a first-in-class drug targeting AhR for the treatment of multiple sclerosis and other neurodegenerative diseases.


Assuntos
Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Quinolonas/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma
3.
Hum Mol Genet ; 25(18): 3975-3987, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466197

RESUMO

Pridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints in clinical trials. Originally described as a dopamine stabilizer, this mechanism is insufficient to explain the clinical and preclinical effects of pridopidine. This study therefore explored pridopidine's potential mechanisms of action. The effect of pridopidine versus sham treatment on genome-wide expression profiling in the rat striatum was analysed and compared to the pathological expression profile in Q175 knock-in (Q175 KI) vs Q25 WT mouse models. A broad, unbiased pathway analysis was conducted, followed by testing the enrichment of relevant pathways. Pridopidine upregulated the BDNF pathway (P = 1.73E-10), and its effect on BDNF secretion was sigma 1 receptor (S1R) dependent. Many of the same genes were independently found to be downregulated in Q175 KI mice compared to WT (5.2e-7 < P < 0.04). In addition, pridopidine treatment upregulated the glucocorticoid receptor (GR) response, D1R-associated genes and the AKT/PI3K pathway (P = 1E-10, P = 0.001, P = 0.004, respectively). Pridopidine upregulates expression of BDNF, D1R, GR and AKT/PI3K pathways, known to promote neuronal plasticity and survival, as well as reported to demonstrate therapeutic benefit in HD animal models. Activation of S1R, necessary for its effect on the BDNF pathway, represents a core component of the mode of action of pridopidine. Since the newly identified pathways are downregulated in neurodegenerative diseases, including HD, these findings suggest that pridopidine may exert neuroprotective effects beyond its role in alleviating some symptoms of HD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Corpo Estriado/metabolismo , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Piperidinas/administração & dosagem , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Genoma , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Fármacos Neuroprotetores/metabolismo , Ratos , Receptores de Dopamina D5/biossíntese , Receptores de Dopamina D5/genética , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/genética , Transdução de Sinais/efeitos dos fármacos
4.
J Pept Sci ; 20(1): 7-19, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24222478

RESUMO

Neuromedin U (NMU) is an endogenous peptide implicated in the regulation of feeding, energy homeostasis, and glycemic control, which is being considered for the therapy of obesity and diabetes. A key liability of NMU as a therapeutic is its very short half-life in vivo. We show here that conjugation of NMU to human serum albumin (HSA) yields a compound with long circulatory half-life, which maintains full potency at both the peripheral and central NMU receptors. Initial attempts to conjugate NMU via the prevalent strategy of reacting a maleimide derivative of the peptide with the free thiol of Cys34 of HSA met with limited success, because the resulting conjugate was unstable in vivo. Use of a haloacetyl derivative of the peptide led instead to the formation of a metabolically stable conjugate. HSA-NMU displayed long-lasting, potent anorectic, and glucose-normalizing activity. When compared side by side with a previously described PEG conjugate, HSA-NMU proved superior on a molar basis. Collectively, our results reinforce the notion that NMU-based therapeutics are promising candidates for the treatment of obesity and diabetes.


Assuntos
Fármacos Antiobesidade/síntese química , Hipoglicemiantes/síntese química , Neuropeptídeos/síntese química , Neuropeptídeos/farmacologia , Polietilenoglicóis/farmacologia , Albumina Sérica/síntese química , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/farmacologia , Glicemia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/farmacocinética , Polietilenoglicóis/farmacocinética , Receptores de Neurotransmissores/agonistas , Albumina Sérica/farmacocinética , Albumina Sérica/farmacologia , Albumina Sérica Humana , Redução de Peso/efeitos dos fármacos
5.
FEBS J ; 290(13): 3383-3399, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808692

RESUMO

Acid-ß-glucosidase (GCase, EC3.2.1.45), the lysosomal enzyme which hydrolyzes the simple glycosphingolipid, glucosylceramide (GlcCer), is encoded by the GBA1 gene. Biallelic mutations in GBA1 cause the human inherited metabolic disorder, Gaucher disease (GD), in which GlcCer accumulates, while heterozygous GBA1 mutations are the highest genetic risk factor for Parkinson's disease (PD). Recombinant GCase (e.g., Cerezyme® ) is produced for use in enzyme replacement therapy for GD and is largely successful in relieving disease symptoms, except for the neurological symptoms observed in a subset of patients. As a first step toward developing an alternative to the recombinant human enzymes used to treat GD, we applied the PROSS stability-design algorithm to generate GCase variants with enhanced stability. One of the designs, containing 55 mutations compared to wild-type human GCase, exhibits improved secretion and thermal stability. Furthermore, the design has higher enzymatic activity than the clinically used human enzyme when incorporated into an AAV vector, resulting in a larger decrease in the accumulation of lipid substrates in cultured cells. Based on stability-design calculations, we also developed a machine learning-based approach to distinguish benign from deleterious (i.e., disease-causing) GBA1 mutations. This approach gave remarkably accurate predictions of the enzymatic activity of single-nucleotide polymorphisms in the GBA1 gene that are not currently associated with GD or PD. This latter approach could be applied to other diseases to determine risk factors in patients carrying rare mutations.


Assuntos
Celulases , Doença de Gaucher , Doença de Parkinson , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Parkinson/genética , Heterozigoto , Mutação , Celulases/genética
6.
Ann Clin Transl Neurol ; 10(6): 904-917, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165777

RESUMO

OBJECTIVE: Mucopolysaccharidosis type IIIA (MPSIIIA) caused by recessive SGSH variants results in sulfamidase deficiency, leading to neurocognitive decline and death. No disease-modifying therapy is available. The AAVance gene therapy trial investigates AAVrh.10 overexpressing human sulfamidase (LYS-SAF302) delivered by intracerebral injection in children with MPSIIIA. Post-treatment MRI monitoring revealed lesions around injection sites. Investigations were initiated in one patient to determine the cause. METHODS: Clinical and MRI details were reviewed. Stereotactic needle biopsies of a lesion were performed; blood and CSF were sampled. All samples were used for viral studies. Immunohistochemistry, electron microscopy, and transcriptome analysis were performed on brain tissue of the patient and various controls. RESULTS: MRI revealed focal lesions around injection sites with onset from 3 months after therapy, progression until 7 months post therapy with subsequent stabilization and some regression. The patient had transient slight neurological signs and is following near-normal development. No evidence of viral or immunological/inflammatory cause was found. Immunohistochemistry showed immature oligodendrocytes and astrocytes, oligodendrocyte apoptosis, strong intracellular and extracellular sulfamidase expression and hardly detectable intracellular or extracellular heparan sulfate. No activation of the unfolded protein response was found. INTERPRETATION: Results suggest that intracerebral gene therapy with local sulfamidase overexpression leads to dysfunction of transduced cells close to injection sites, with extracellular spilling of lysosomal enzymes. This alters extracellular matrix composition, depletes heparan sulfate, impairs astrocyte and oligodendrocyte function, and causes cystic white matter degeneration at the site of highest gene expression. The AAVance trial results will reveal the potential benefit-risk ratio of this therapy.


Assuntos
Encéfalo , Mucopolissacaridose III , Criança , Humanos , Encéfalo/patologia , Terapia Genética/métodos , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Mucopolissacaridose III/patologia , Imuno-Histoquímica , Heparitina Sulfato/metabolismo , Heparitina Sulfato/uso terapêutico
7.
Bioorg Med Chem ; 20(15): 4751-9, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22771182

RESUMO

Neuromedin U (NMU) is an endogenous peptide, whose role in the regulation of feeding and energy homeostasis is well documented. Two NMU receptors have been identified: NMUR1, expressed primarily in the periphery, and NMUR2, expressed predominantly in the brain. We recently demonstrated that acute peripheral administration of NMU exerts potent but acute anorectic activity and can improve glucose homeostasis, with both actions mediated by NMUR1. Here, we describe the development of a metabolically stable analog of NMU, based on derivatization of the native peptide with high molecular weight poly(ethylene) glycol (PEG) ('PEGylation'). PEG size, site of attachment, and conjugation chemistry were optimized, to yield an analog which displays robust and long-lasting anorectic activity and significant glucose-lowering activity in vivo. Studies in NMU receptor-deficient mice showed that PEG-NMU displays an expanded pharmacological profile, with the ability to engage NMUR2 in addition to NMUR1. In light of these data, PEGylated derivatives of NMU represent promising candidates for the treatment of obesity and diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropeptídeos/farmacologia , Obesidade/tratamento farmacológico , Polietilenoglicóis/química , Receptores de Neurotransmissores/agonistas , Animais , Relação Dose-Resposta a Droga , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/administração & dosagem , Neuropeptídeos/síntese química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacologia , Receptores de Neurotransmissores/deficiência , Relação Estrutura-Atividade
8.
EMBO Mol Med ; 14(5): e14649, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373916

RESUMO

Fragile X syndrome (FXS) is the most frequent form of familial intellectual disability. FXS results from the lack of the RNA-binding protein FMRP and is associated with the deregulation of signaling pathways downstream of mGluRI receptors and upstream of mRNA translation. We previously found that diacylglycerol kinase kappa (DGKk), a main mRNA target of FMRP in cortical neurons and a master regulator of lipid signaling, is downregulated in the absence of FMRP in the brain of Fmr1-KO mouse model. Here we show that adeno-associated viral vector delivery of a modified and FMRP-independent form of DGKk corrects abnormal cerebral diacylglycerol/phosphatidic acid homeostasis and FXS-relevant behavioral phenotypes in the Fmr1-KO mouse. Our data suggest that DGKk is an important factor in FXS pathogenesis and provide preclinical proof of concept that its replacement could be a viable therapeutic strategy in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/terapia , Camundongos , Camundongos Knockout
9.
PLoS One ; 17(3): e0265749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316287

RESUMO

Ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine able to induce appetite reduction, weight loss and antidiabetic effects. However, its susceptibility to neutralizing anti-CNTF antibodies in patients hampered its use for treatment of human obesity and diabetes. In addition, CNTF has a very short plasma half-life, which limits its use as a therapeutic agent. Solutions, directed to prolong its in vivo effects, vary from the implantation of encapsulated secreting cells to identification of more active variants or chemical modification of the protein itself. PEGylation is a widely used modification for shielding proteins from circulating antibodies and for increasing their plasma half-life. Here, we have selected DH-CNTF, a CNTF variant which has a 40-fold higher affinity for the CNTF receptor α accompanied by an increased activity in cellular assays. The PEGylated DH-CNTF retained the biological activity of native protein in vitro and showed a significant improvement of pharmacokinetic parameters. In an acute model of glucose tolerance, the PEG-DH-CNTF was able to reduce the glycemia in diet-induced obese animals, with a performance equaled by a 10-fold higher dose of DH-CNTF. In addition, the PEGylated DH-CNTF analog demonstrated a more potent weight loss effect than the unmodified protein, opening to the use of CNTF as weight reducing agent with treatment regimens that can better meet patient compliance thanks to reduced dosing schedules.


Assuntos
Fator Neurotrófico Ciliar , Obesidade , Animais , Fator Neurotrófico Ciliar/farmacologia , Dieta , Humanos , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Polietilenoglicóis/farmacologia , Proteínas , Receptor do Fator Neutrófico Ciliar/metabolismo , Redução de Peso
10.
Mol Ther Methods Clin Dev ; 27: 281-292, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36320411

RESUMO

GM1 gangliosidosis is a rare, inherited neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes the lysosomal hydrolase acid ß-galactosidase (ß-gal). ß-gal deficiency leads to toxic accumulation of GM1 ganglioside, predominantly in the central nervous system (CNS), resulting in progressive neurodegeneration. LYS-GM101 is an AAVrh.10-based gene therapy vector carrying the human GLB1 cDNA. The efficacy of intra-cerebrospinal fluid injection of LYS-GM101 analogs was demonstrated in GM1 mouse and cat models with widespread diffusion of ß-gal and correction of GM1 ganglioside accumulation in the CNS without observable adverse effects. Clinical dose selection was performed, based on a good-laboratory-practice study, in nonhuman primates (NHPs) using the clinical LYS-GM101 vector. A broadly distributed increase of ß-gal activity was observed in NHP brain 3 months after intra-cisterna magna injection of LYS-GM101 at 1.0 × 1012 vg/mL CSF and 4.0 × 1012 vg/mL CSF, with 20% and 60% increases compared with vehicle-treated animals, respectively. Histopathologic examination revealed asymptomatic adverse changes in the sensory pathways of the spinal cord and dorsal root ganglia in both sexes and at both doses. Taken as a whole, these pre-clinical data support the initiation of a clinical study with LYS-GM101 for the treatment of GM1 gangliosidosis.

11.
Mol Ther Methods Clin Dev ; 17: 174-187, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31909089

RESUMO

Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.

12.
Drug Metab Dispos ; 37(4): 873-83, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19144773

RESUMO

Human HIV integrase inhibitors are a novel class of antiretroviral drugs that act by blocking incorporation of the proviral DNA into the host cell genome, a crucial step in the life cycle of HIV. In the present work, quantitative methods for prediction of human pharmacokinetics were used to guide the selection of development candidates from a series of dihydroxypyrimidine and N-methylpyrimidinone carboxamide inhibitors of HIV integrase, which are cleared mainly by O-glucuronidation. The pharmacokinetics of 10 drugs from this series was determined in several preclinical species, including rats, dogs, rhesus monkeys, and rabbits, and the in vitro turnover, plasma protein binding, and blood/plasma partition ratio were studied using preparations from both preclinical species and humans. Two clearance prediction methods, based on physiologically based scaling or allometric scaling normalized for differences in microsomal turnover, were used to extrapolate human clearance. For three clinical candidates, including the novel AIDS drug raltegravir (MK-0518, Isentress), oral drug exposure was predicted and compared with that observed in healthy human volunteers. Both scaling methods gave a reasonable correspondence between predicted and observed oral exposure. Prediction errors for the physiologically based method were less than 1.7-fold for two drugs, including raltegravir, and less than 3.5-fold for one drug. The exposures predicted using normalized allometric scaling were within 1.1- to 1.5-fold of observed values for all three compounds. The accuracy of prediction by normalized allometric scaling was similar when using data from either four preclinical species or from rats and dogs only. The prediction methods used may be applicable to other drugs cleared predominantly by glucuronidation.


Assuntos
Inibidores de Integrase de HIV/farmacocinética , Pirrolidinonas/farmacocinética , Animais , Área Sob a Curva , Cromatografia Líquida , Inibidores de Integrase de HIV/sangue , Hepatócitos/metabolismo , Humanos , Masculino , Pirrolidinonas/sangue , Raltegravir Potássico , Ratos , Espectrometria de Massas em Tandem
13.
Bioorg Med Chem Lett ; 19(5): 1392-5, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19181520
14.
J Med Chem ; 51(4): 861-74, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18217703

RESUMO

HIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture. An extensive SAR study led to sulfamide (R)- 22b, which inhibited the strand transfer with an IC50 of 7 nM and HIV infection in MT4 cells with a CIC95 of 44 nM, and ketoamide (S)- 28c that inhibited strand transfer with an IC50 of 12 nM and the HIV infection in MT4 cells with a CIC95 of 13 nM and exhibited a good pharmacokinetic profile when dosed orally to preclinical species.


Assuntos
Aminopiridinas/síntese química , Azepinas/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Inibidores de Integrase de HIV/síntese química , Integrase de HIV/metabolismo , Pirimidinonas/síntese química , Administração Oral , Aminopiridinas/farmacocinética , Aminopiridinas/farmacologia , Animais , Azepinas/farmacocinética , Azepinas/farmacologia , Disponibilidade Biológica , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Cães , Integrase de HIV/genética , Inibidores de Integrase de HIV/farmacocinética , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Humanos , Macaca mulatta , Microssomos Hepáticos/metabolismo , Pirimidinonas/farmacocinética , Pirimidinonas/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
16.
J Med Chem ; 50(9): 2225-39, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17428043

RESUMO

Human immunodeficiency virus type-1 (HIV-1) integrase, one of the three constitutive viral enzymes required for replication, is a rational target for chemotherapeutic intervention in the treatment of AIDS that has also recently been confirmed in the clinical setting. We report here on the design and synthesis of N-benzyl-5,6-dihydroxypyrimidine-4-carboxamides as a class of agents which exhibits potent inhibition of the HIV-integrase-catalyzed strand transfer process. In the current study, structural modifications on these molecules were made in order to examine effects on HIV-integrase inhibitory potencies. One of the most interesting compounds for this series is 2-[1-(dimethylamino)-1-methylethyl]-N-(4-fluorobenzyl)-5,6-dihydroxypyrimidine-4-carboxamide 38, with a CIC95 of 78 nM in the cell-based assay in the presence of serum proteins. The compound has favorable pharmacokinetic properties in preclinical species (rats, dogs, and monkeys) and shows no liabilities in several counterscreening assays, highlighting its potential as a clinically useful antiviral agent.


Assuntos
Inibidores de Integrase de HIV/síntese química , HIV-1/efeitos dos fármacos , Piridinas/síntese química , Pirimidinas/síntese química , Animais , Disponibilidade Biológica , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Cães , Inibidores de Integrase de HIV/farmacocinética , Inibidores de Integrase de HIV/farmacologia , Meia-Vida , Humanos , Macaca mulatta , Ligação Proteica , Piridinas/química , Piridinas/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade , Replicação Viral
17.
J Med Chem ; 50(20): 4953-75, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17824681

RESUMO

The human immunodeficiency virus type-1 (HIV-1) encodes three enzymes essential for viral replication: a reverse transcriptase, a protease, and an integrase. The latter is responsible for the integration of the viral genome into the human genome and, therefore, represents an attractive target for chemotherapeutic intervention against AIDS. A drug based on this mechanism has not yet been approved. Benzyl-dihydroxypyrimidine-carboxamides were discovered in our laboratories as a novel and metabolically stable class of agents that exhibits potent inhibition of the HIV integrase strand transfer step. Further efforts led to very potent compounds based on the structurally related N-Me pyrimidone scaffold. One of the more interesting compounds in this series is the 2-N-Me-morpholino derivative 27a, which shows a CIC95 of 65 nM in the cell in the presence of serum. The compound has favorable pharmacokinetic properties in three preclinical species and shows no liabilities in several counterscreening assays.


Assuntos
Inibidores de Integrase de HIV/síntese química , Integrase de HIV/química , HIV-1/efeitos dos fármacos , Morfolinas/síntese química , Pirimidinonas/síntese química , Administração Oral , Animais , Disponibilidade Biológica , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Cães , Inibidores de Integrase de HIV/farmacocinética , Inibidores de Integrase de HIV/farmacologia , HIV-1/enzimologia , HIV-1/fisiologia , Humanos , Macaca mulatta , Morfolinas/farmacocinética , Morfolinas/farmacologia , Ligação Proteica , Pirimidinonas/farmacocinética , Pirimidinonas/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
18.
Prog Neurobiol ; 152: 114-130, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26952809

RESUMO

Multiple sclerosis (MS) is a chronic, progressive, disabling disorder characterized by immune-mediated demyelination, inflammation, and neurodegenerative tissue damage in the central nervous system (CNS), associated with frequent exacerbations and remissions of neurologic symptoms and eventual permanent neurologic disability. While there are several MS therapies that are successful in reducing MS relapses, none have been effective in treating all patients. The specific response of an individual patient to any one of the MS therapies remains largely unpredictable, and physicians and patients are forced to use a trial and error approach when deciding on treatment regimens. A priori markers to predict the optimal benefit-to-risk profile of an individual MS patient would greatly facilitate the decision-making process, thereby helping the patient receive the most optimal treatment early on in the disease process. Pharmacogenomic methods evaluate how a person's genetic and genomic makeup affects their response to therapeutics. This review focuses on how pharmacogenomics studies are being used to identify biologically relevant differences in MS treatments and provide characterization of the predictive clinical response patterns. As pharmacogenomics research is dependent on the availability of longitudinal clinical research, studies concerning glatiramer acetate and the interferon beta products which have the majority of published long term data to date are described in detail. These studies have provided considerable insight in the prognostic markers associated with MS disease and potential predictive markers of safety and beneficial response.


Assuntos
Pesquisa Biomédica/tendências , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Farmacogenética/tendências , Testes Farmacogenômicos/tendências , Medicina de Precisão/tendências , Medicina Baseada em Evidências/tendências , Humanos , Resultado do Tratamento
19.
J Med Chem ; 49(23): 6646-9, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17154493

RESUMO

The dihydroxypyrimidine carboxamide 4a was discovered as a potent and selective HIV integrase strand transfer inhibitor. The optimization of physicochemical properties, pharmacokinetic profiles, and potency led to the identification of 13 in the dihydroxypyrimidine series and 18 in the N-methylpyrimidinone series having low nanomolar activity in the cellular HIV spread assay in the presence of 50% normal human serum and very good pharmacokinetics in preclinical species.


Assuntos
Amidas/síntese química , Inibidores de Integrase de HIV/síntese química , Pirimidinas/síntese química , Administração Oral , Amidas/química , Amidas/farmacologia , Animais , Disponibilidade Biológica , Cães , Inibidores de Integrase de HIV/farmacocinética , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Humanos , Técnicas In Vitro , Macaca mulatta , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Pirimidinonas/farmacologia , Ratos , Soro , Relação Estrutura-Atividade , Replicação Viral
20.
J Med Chem ; 49(18): 5404-7, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16942012

RESUMO

A strategy to obtain a fully orthogonal estrogen-receptor-based gene switch responsive to molecules with acceptable pharmacological properties is presented. From a series of tetrahydrofluorenones active on the wild-type estrogen receptor (ER) an inactive analogue is chosen as a new lead compound. Coevolution of receptor mutants and ligands leads to an ER-based gene switch suitable for studies in animal models.


Assuntos
Fluorenos/síntese química , Receptores de Estrogênio/efeitos dos fármacos , Sítios de Ligação , Estradiol/química , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/genética , Fluorenos/química , Fluorenos/farmacologia , Células HeLa , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Mutação , Receptores de Estrogênio/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa