Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38037533

RESUMO

BACKGROUND AND HYPOTHESIS: Glucocorticoids are the treatment of choice for proteinuric patients with minimal-change disease (MCD) and primary focal and segmental glomerulosclerosis (FSGS). Immunosuppressive as well as direct effects on podocytes are believed to mediate their actions. In this study, we analyzed the anti-proteinuric effects of inhibition of the glucocorticoid receptor (GR) in glomerular epithelial cells, including podocytes. METHODS: We employed genetic and pharmacological approaches to inhibit the GR. Genetically, we used Pax8-Cre/GRfl/fl mice to specifically inactivate the GR in kidney epithelial cells. Pharmacologically, we utilized a glucocorticoid antagonist called mifepristone. RESULTS: Genetic inactivation of GR, specifically in kidney epithelial cells, using Pax8-Cre/GRfl/fl mice, ameliorated proteinuria following protein overload. We further tested the effects of pharmacological GR inhibition in three models and species: the puromycin-aminonucleoside-induced nephrosis model in rats, the protein overload model in mice and the inducible transgenic NTR/MTZ zebrafish larvae with specific and reversible podocyte injury. In all three models, both pharmacological GR activation and inhibition consistently and significantly ameliorated proteinuria. Additionally, we translated our findings to humans, where three nephrotic adult patients with MCD or primary FSGS with contraindications or insufficient responses to corticosteroids, were treated with mifepristone. This treatment resulted in a clinically relevant reduction of proteinuria. CONCLUSIONS: Thus, across multiple species and proteinuria models, both genetic and pharmacological GR inhibition was at least as effective as pronounced GR activation. While, the mechanism remains perplexing, GR inhibition may be a novel and targeted therapeutic approach to treat glomerular proteinuria potentially bypassing adverse actions of steroids.

2.
Semin Cell Dev Biol ; 91: 147-152, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31178004

RESUMO

Chronic kidney disease can be understood as a pathological reduction in the number of functional glomeruli. It is a frequent medical problem and one of the major independent risk factors for cardiovascular morbidity and mortality. In humans, glomeruli/nephrons are generated during the prenatal period (glomerular endowment), which may be impaired by multiple conditions. After birth, glomeruli are progressively lost - mostly due to glomerular scarring (focal segmental glomerulosclerosis; FSGS). Multiple independent studies have shown that significant loss of glomerular visceral epithelial cells (podocytes) is sufficient to induce FSGS. It is generally believed that podocytes cannot renew themselves and it has been generally assumed that their number is determined at birth (podocyte endowment). However, there are several lines of experimental evidence showing that podocytes can be replenished in the postnatal period. First, a limited reserve of podocytes has been reported on Bowman's capsule, which may be associated with body growth and increases in glomerular size between childhood and adulthood. Second, two intrinsic progenitor cell niches have been proposed to replenish podocytes throughout adult life and in association with glomerular injury and podocyte loss: parietal epithelial cells and/or cells of the renin lineage. While there is increasing evidence supporting postnatal podocyte gain, controversy remains about the involved signalling pathways and the efficiency of these sources to prevent nephron loss.


Assuntos
Células Epiteliais/citologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Glomérulos Renais/citologia , Néfrons/citologia , Podócitos/citologia , Animais , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Glomérulos Renais/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Nicho de Células-Tronco , Células-Tronco/citologia
3.
Cell Physiol Biochem ; 55(S4): 1-12, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33851800

RESUMO

BACKGROUND/AIMS: Podocytes are lost in most glomerular diseases, leading to glomerulosclerosis and progressive kidney disease. It is generally assumed, that podocytes are exposed to the filtration flow and thus to significant shear forces driving their detachment from the glomerular basement membrane (GBM). In this context, foot process effacement has been proposed as potential adaptive response to increase adhesion of podocytes to the GBM. METHODS: We have tested these hypotheses using optical clearing and high-resolution 3-dimensional morphometric analysis in the isolated perfused murine kidney. We investigated the dynamics of podocyte detachment at different perfusion pressures (50, 300 and more than 450 mmHg) in healthy young or old mice (20 vs. 71 weeks of age), or mice injected with anti-GBM serum to induce global foot process effacement. RESULTS: Results show that healthy podocytes in young mice are tightly attached onto the GBM and even supramaximal pressures did not cause significant detachment. Compared to young mice, in aged mice and mice with anti-GBM nephritis and foot process effacement, gradual progressive loss of podocytes had occurred already before perfusion. High perfusion pressures resulted in a relatively minor additional loss of podocytes in aged mice. In mice with anti-GBM nephritis significant additional podocyte loss occurred at this early time point when increasing perfusion pressures to 300 mmHg or higher. CONCLUSION: This work provides the first experimental evidence that podocytes are extraordinarily resistant to acutely increased perfusion pressures in an ex vivo isolated kidney perfusion model. Only in glomerular disease, significant numbers of injured podocytes detached following acute increases in perfusion pressure.


Assuntos
Membrana Basal Glomerular/patologia , Nefropatias/patologia , Podócitos/patologia , Envelhecimento , Animais , Adesão Celular , Sobrevivência Celular , Feminino , Membrana Basal Glomerular/citologia , Masculino , Camundongos , Perfusão , Podócitos/citologia , Pressão
4.
Nephrol Dial Transplant ; 36(11): 1968-1975, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666119

RESUMO

Acute tubular injury accounts for the most common intrinsic cause for acute kidney injury. Normally, the tubular epithelium is mitotically quiescent. However, upon injury, it can show a brisk capacity to regenerate and repair. The scattered tubular cell (STC) phenotype was discovered as a uniform reaction of tubule cells triggered by injury. The STC phenotype is characterized by a unique protein expression profile, increased robustness during tubular damage and increased proliferation. Nevertheless, the exact origin and identity of these cells have been unveiled only in part. Here, we discuss the classical concept of renal regeneration. According to this model, surviving cells dedifferentiate and divide to replace neighbouring lost tubular cells. However, this view has been challenged by the concept of a pre-existing and fixed population of intratubular progenitor cells. This review presents a significant body of previous work and animal studies using lineage-tracing methods that have investigated the regeneration of tubular cells. We review the experimental findings and discuss whether they support the progenitor hypothesis or the classical concept of renal tubular regeneration. We come to the conclusion that any proximal tubular cell may differentiate into the regenerative STC phenotype upon injury thus contributing to regeneration, and these cells differentiate back into tubular cells once regeneration is finished.


Assuntos
Injúria Renal Aguda , Regeneração , Animais , Células Epiteliais , Rim , Túbulos Renais
5.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32709711

RESUMO

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Integrina beta3/fisiologia , Podócitos/fisiologia , Proteína C/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Citoproteção , Receptor de Proteína C Endotelial/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-1/fisiologia
6.
Am J Physiol Renal Physiol ; 317(5): F1375-F1382, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588799

RESUMO

Here, we show that inducible overexpression of Cre recombinase in glomerular podocytes but not in parietal epithelial cells may trigger focal segmental glomerulosclerosis (FSGS) in juvenile transgenic homocygous Pod-rtTA/LC1 mice. Administration of doxycycline shortly after birth, but not at any other time point later in life, resulted in podocyte injury and development of classical FSGS lesions in these mice. Sclerotic lesions were formed as soon as 3 wk of age, and FSGS progressed with low variability until 13 wk of age. In addition, our experiments identified Cre toxicity as a potentially relevant limitation for studies in podocytes of transgenic animals. In summary, our study establishes a novel genetic model for FSGS in mice, which exhibits low variability and manifests already at a young age.


Assuntos
Envelhecimento , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/genética , Integrases/metabolismo , Podócitos/metabolismo , Animais , Antibacterianos/farmacologia , Anticorpos , Doxiciclina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Integrases/genética , Camundongos , Camundongos Transgênicos
7.
Kidney Int ; 96(3): 542-544, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31445579

RESUMO

The study by Kaverina et al. in this issue addresses an important question: can podocytes be replenished by parietal epithelial cells (PECs)? The authors use a complex transgenic mouse model in which podocytes are labeled with GFP and PECs are simultaneously labeled with tdTomato. When Kaverina and colleagues induce focal segmental glomerulosclerosis (FSGS), they find that individual PECs are doubly labeled, coexpress podocyte markers, and form structures similar to foot processes, suggesting that these PECs may have transdifferentiated into podocytes.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Células Epiteliais , Glomérulos Renais , Camundongos , Regeneração
8.
Kidney Int ; 95(2): 281-295, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30665569

RESUMO

In November 2017, the Kidney Disease: Improving Global Outcomes (KDIGO) initiative brought a diverse panel of experts in glomerular diseases together to discuss the 2012 KDIGO glomerulonephritis guideline in the context of new developments and insights that had occurred over the years since its publication. During this KDIGO Controversies Conference on Glomerular Diseases, the group examined data on disease pathogenesis, biomarkers, and treatments to identify areas of consensus and areas of controversy. This report summarizes the discussions on primary podocytopathies, lupus nephritis, anti-neutrophil cytoplasmic antibody-associated nephritis, complement-mediated kidney diseases, and monoclonal gammopathies of renal significance.


Assuntos
Glomerulonefrite/terapia , Nefrose Lipoide/terapia , Guias de Prática Clínica como Assunto , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Biomarcadores/análise , Conferências de Consenso como Assunto , Progressão da Doença , Testes Genéticos , Taxa de Filtração Glomerular , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Humanos , Nefrologia/métodos , Nefrologia/normas , Nefrose Lipoide/etiologia , Nefrose Lipoide/patologia , Paraproteinemias/complicações , Paraproteinemias/diagnóstico , Paraproteinemias/genética , Podócitos/imunologia , Podócitos/patologia , Fatores de Risco , Resultado do Tratamento
9.
Kidney Int ; 96(2): 505-516, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31155155

RESUMO

Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.


Assuntos
Glomerulonefrite/patologia , Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional , Podócitos/fisiologia , Análise de Célula Única/métodos , Animais , Capilares , Modelos Animais de Doenças , Progressão da Doença , Fluorescência , Corantes Fluorescentes/química , Genes Reporter/genética , Glomerulonefrite/imunologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Podócitos/ultraestrutura
10.
J Cell Mol Med ; 22(5): 2656-2669, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29498212

RESUMO

Dedifferentiation and loss of podocytes are the major cause of chronic kidney disease. Dach1, a transcription factor that is essential for cell fate, was found in genome-wide association studies to be associated with the glomerular filtration rate. We found that podocytes express high levels of Dach1 in vivo and to a much lower extent in vitro. Parietal epithelial cells (PECs) that are still under debate to be a type of progenitor cell for podocytes expressed Dach1 only at low levels. The transfection of PECs with a plasmid encoding for Dach1 induced the expression of synaptopodin, a podocyte-specific protein, demonstrated by immunocytochemistry and Western blot. Furthermore, synaptopodin was located along actin fibres in a punctate pattern in Dach1-expressing PECs comparable with differentiated podocytes. Moreover, dedifferentiating podocytes of isolated glomeruli showed a significant reduction in the expression of Dach1 together with synaptopodin after 9 days in cell culture. To study the role of Dach1 in vivo, we used the zebrafish larva as an animal model. Knockdown of the zebrafish ortholog Dachd by morpholino injection into fertilized eggs resulted in a severe renal phenotype. The glomeruli of the zebrafish larvae showed morphological changes of the glomerulus accompanied by down-regulation of nephrin and leakage of the filtration barrier. Interestingly, glomeruli of biopsies from patients suffering from diabetic nephropathy showed also a significant reduction of Dach1 and synaptopodin in contrast to control biopsies. Taken together, Dach1 is a transcription factor that is important for podocyte differentiation and proper kidney function.


Assuntos
Podócitos/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Humanos , Larva/ultraestrutura , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Podócitos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
11.
Kidney Int ; 93(3): 626-642, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29276101

RESUMO

A key feature of glomerular diseases such as crescentic glomerulonephritis and focal segmental glomerulosclerosis is the activation, migration and proliferation of parietal epithelial cells. CD44-positive activated parietal epithelial cells have been identified in proliferative cellular lesions in glomerular disease. However, it remains unknown whether CD44-positive parietal epithelial cells contribute to the pathogenesis of scarring glomerular diseases. Here, we evaluated this in experimental crescentic glomerulonephritis and the transgenic anti-Thy1.1 model for collapsing focal segmental glomerulosclerosis in CD44-deficient (cd44-/-) and wild type mice. For both models albuminuria was significantly lower in cd44-/- compared to wild type mice. The number of glomerular Ki67-positive proliferating cells was significantly reduced in cd44-/- compared to wild type mice, which was associated with a reduced number of glomerular lesions in crescentic glomerulonephritis. In collapsing focal segmental glomerulosclerosis, the extracapillary proliferative cellular lesions were smaller in cd44-/- mice, but the number of glomerular lesions was not different compared to wild type mice. For crescentic glomerulonephritis the influx of granulocytes and macrophages into the glomerulus was similar. In vitro, the growth of CD44-deficient murine parietal epithelial cells was reduced compared to wild type parietal epithelial cells, and human parietal epithelial cell migration could be inhibited using antibodies directed against CD44. Thus, CD44-positive proliferating glomerular cells, most likely parietal epithelial cells, are essential in the pathogenesis of scarring glomerular disease.


Assuntos
Doença Antimembrana Basal Glomerular/imunologia , Células Epiteliais/imunologia , Glomerulosclerose Segmentar e Focal/imunologia , Receptores de Hialuronatos/imunologia , Glomérulos Renais/imunologia , Albuminúria/genética , Albuminúria/imunologia , Albuminúria/metabolismo , Animais , Doença Antimembrana Basal Glomerular/genética , Doença Antimembrana Basal Glomerular/metabolismo , Doença Antimembrana Basal Glomerular/patologia , Autoanticorpos/imunologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas da Matriz Extracelular/metabolismo , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Granulócitos/imunologia , Granulócitos/metabolismo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais , Antígenos Thy-1/genética , Antígenos Thy-1/imunologia , Antígenos Thy-1/metabolismo
12.
J Transl Med ; 16(1): 148, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859097

RESUMO

BACKGROUND: Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis. METHODS: The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN). Detailed DDR1 expression was first characterized in detail in human GN biopsies using a novel selective anti-DDR1 antibody using immunohistochemistry. Subsequently the protective role of DDR1 was investigated using a highly selective, novel, small molecule inhibitor in a nephrotoxic serum (NTS) GN model in a prophylactic regime and in the NEP25 GN mouse model using a therapeutic intervention regime. RESULTS: DDR1 expression was shown to be mainly limited to renal epithelium. In humans, DDR1 is highly induced in injured podocytes, in bridging cells expressing both parietal epithelial cell (PEC) and podocyte markers and in a subset of PECs forming the cellular crescents in human GN. Pharmacological inhibition of DDR1 in NTS improved both renal function and histological parameters. These results, obtained using a prophylactic regime, were confirmed in the NEP25 GN mouse model using a therapeutic intervention regime. Gene expression analysis of NTS showed that pharmacological blockade of DDR1 specifically reverted fibrotic and inflammatory gene networks and modulated expression of the glomerular cell gene signature, further validating DDR1 as a major mediator of cell fate in podocytes and PECs. CONCLUSIONS: Together, these results suggest that DDR1 inhibition might be an attractive and promising pharmacological intervention for the treatment of GN, predominantly by targeting the renal epithelium.


Assuntos
Receptor com Domínio Discoidina 1/antagonistas & inibidores , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Glomerulonefrite/genética , Glomerulonefrite/patologia , Humanos , Inflamação/patologia , Rim/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo
13.
Nephrol Dial Transplant ; 33(9): 1514-1525, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635428

RESUMO

Background: Vascular endothelial growth factor A (VEGF) is an essential growth factor during glomerular development and postnatal homeostasis. VEGF is secreted in high amounts by podocytes into the primary urine, back-filtered across the glomerular capillary wall to act on endothelial cells. So far it has been assumed that VEGF back-filtration is driven at a constant rate exclusively by diffusion. Methods: In the present work, glomerular VEGF back-filtration was investigated in vivo using a novel extended model based on endothelial fenestrations as surrogate marker for local VEGF concentrations. Single nephron glomerular filtration rate (SNGFR) and/or local filtration flux were manipulated by partial renal mass ablation, tubular ablation, and in transgenic mouse models of systemic or podocytic VEGF overexpression or reduction. Results: Our study shows positive correlations between VEGF back-filtration and SNGFR as well as effective filtration rate under physiological conditions along individual glomerular capillaries in rodents and humans. Conclusion: Our results suggest that an additional force drives VEGF back-filtration, potentially regulated by SNGFR.


Assuntos
Capilares/fisiopatologia , Taxa de Filtração Glomerular/fisiologia , Glomérulos Renais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Modelos Animais de Doenças , Glomérulos Renais/fisiopatologia , Camundongos , Camundongos Knockout , Nefrectomia
14.
J Am Soc Nephrol ; 28(5): 1408-1420, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27895155

RESUMO

For several decades, glucocorticoids have been used empirically to treat rapid progressive GN. It is commonly assumed that glucocorticoids act primarily by dampening the immune response, but the mechanisms remain incompletely understood. In this study, we inactivated the glucocorticoid receptor (GR) specifically in kidney epithelial cells using Pax8-Cre/GRfl/fl mice. Pax8-Cre/GRfl/fl mice did not exhibit an overt spontaneous phenotype. In mice treated with nephrotoxic serum to induce crescentic nephritis (rapidly progressive GN), this genetic inactivation of the GR in kidney epithelial cells exerted renal benefits, including inhibition of albuminuria and cellular crescent formation, similar to the renal benefits observed with high-dose prednisolone in control mice. However, genetic inactivation of the GR in kidney epithelial cells did not induce the immunosuppressive effects observed with prednisolone. In vitro, prednisolone and the pharmacologic GR antagonist mifepristone each acted directly on primary cultures of parietal epithelial cells, inhibiting cellular outgrowth and proliferation. In wild-type mice, pharmacologic treatment with the GR antagonist mifepristone also attenuated disease as effectively as high-dose prednisolone without the systemic immunosuppressive effects. Collectively, these data show that glucocorticoids act directly on activated glomerular parietal epithelial cells in crescentic nephritis. Furthermore, we identified a novel therapeutic approach in crescentic nephritis, that of glucocorticoid antagonism, which was at least as effective as high-dose prednisolone with potentially fewer adverse effects.


Assuntos
Glomerulonefrite/tratamento farmacológico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Animais , Epitélio , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/fisiopatologia , Camundongos , Prednisolona , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/fisiologia
15.
Kidney Int ; 92(6): 1444-1457, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28756872

RESUMO

Proliferation of glomerular epithelial cells, including podocytes, is a key histologic feature of crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was mediated by podocyte RARα. RA treatment markedly improved renal function and reduced the number of crescentic lesions in nephritic wild-type mice, while this protection was largely lost in mice with podocyte-specific ablation of Rara (Pod-Rara knockout). At a cellular level, RA significantly restored the expression of podocyte differentiation markers in nephritic wild-type mice, but not in nephritic Pod-Rara knockout mice. Furthermore, RA suppressed the expression of cell injury, proliferation, and parietal epithelial cell markers in nephritic wild-type mice, all of which were significantly dampened in nephritic Pod-Rara knockout mice. Interestingly, RA treatment led to the coexpression of podocyte and parietal epithelial cell markers in a small subset of glomerular cells in nephritic mice, suggesting that RA may induce transdifferentiation of parietal epithelial cells toward a podocyte phenotype. In vitro, RA directly inhibited the proliferation of parietal epithelial cells and enhanced the expression of podocyte markers. In vivo lineage tracing of labeled parietal epithelial cells confirmed that RA increased the number of parietal epithelial cells expressing podocyte markers in nephritic glomeruli. Thus, RA attenuates crescentic glomerulonephritis primarily through RARα-mediated protection of podocytes and in part through the inhibition of parietal epithelial cell proliferation and induction of their transdifferentiation into podocytes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glomerulonefrite/tratamento farmacológico , Podócitos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/farmacologia , Animais , Autoanticorpos/administração & dosagem , Autoanticorpos/imunologia , Biomarcadores/metabolismo , Biópsia , Cápsula Glomerular/citologia , Cápsula Glomerular/efeitos dos fármacos , Cápsula Glomerular/fisiologia , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/patologia , Podócitos/fisiologia , Substâncias Protetoras/uso terapêutico , Receptor alfa de Ácido Retinoico/genética , Tretinoína/uso terapêutico
16.
Curr Opin Nephrol Hypertens ; 26(3): 179-186, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28198736

RESUMO

PURPOSE OF REVIEW: For more than a century, kidney microscopic imaging was driven by the need for greater and greater resolution. This was in part provided by the analysis of thinner tissue sections. As a result, most kidney morphometry was performed in 'two' dimensions, largely ignoring the three-dimensionality of kidney tissue and cells. Although stereological techniques address this issue, they have generally been considered laborious and expensive and thereby unattractive for routine use. RECENT FINDINGS: The past 2 decades have witnessed the development of optical clearing techniques, which enables visualization of thick slices of kidney tissue and even whole kidneys. This review describes the three main optical clearing strategies (solvent-based, aqueous-based and hydrogel embedding) with their respective advantages and disadvantages. We also describe how optical clearing provides new approaches to kidney morphometrics, including general kidney morphology (i.e. identification and quantitation of atubular glomeruli), glomerular numbers and volumes, numbers of specific glomerular cells (i.e. podocytes) and cell-specific stress-related changes (i.e. foot process effacement). SUMMARY: The new clearing and morphometric approaches described in this review provide a new toolbox for imaging and quantification of kidney microanatomy. These approaches will make it easier to visualize the three-dimensional microanatomy of the kidney and decrease our reliance on biased two-dimensional morphometric techniques and time-consuming stereological approaches. They will also accelerate our research of structure-function relations in the healthy and diseased kidney.


Assuntos
Imageamento Tridimensional/métodos , Rim/anatomia & histologia , Rim/diagnóstico por imagem , Microscopia/métodos , Animais , Contagem de Células , Humanos , Hidrogéis , Glomérulos Renais/citologia , Glomérulos Renais/diagnóstico por imagem , Podócitos/citologia , Soluções , Solventes , Água
17.
Cell Tissue Res ; 369(1): 229-236, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28560693

RESUMO

Podocyte depletion is a central event in the pathogenesis of many glomerular diseases. For this reason, methods to quantify podocyte depletion have become increasingly important. Here, we review currently available methods for quantifying podocyte depletion, including the analysis of glomerular cross-sections, the most important and common stereological methods and newer techniques such as whole glomerular analysis in optically cleared samples. Each method has advantages and limitations. We therefore discuss theoretical and practical considerations to assist the selection of the most appropriate method for an individual study.


Assuntos
Nefropatias/metabolismo , Modelos Biológicos , Podócitos/metabolismo , Animais , Humanos , Nefropatias/patologia , Podócitos/patologia
18.
J Am Soc Nephrol ; 27(6): 1650-64, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26453615

RESUMO

Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN.


Assuntos
Antígenos de Diferenciação de Linfócitos B/fisiologia , Glomerulonefrite/etiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Glomerulonefrite/patologia , Glomérulos Renais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Kidney Int ; 89(1): 113-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26398497

RESUMO

Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin ß receptor (LTßR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTßR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTßR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTß ligands, as well as LTßR. The LTßR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTß was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTß mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTßR signaling. Importantly, in a murine lupus model, LTßR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTßR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases.


Assuntos
Glomerulonefrite por IGA/metabolismo , Nefrite Lúpica/metabolismo , Receptor beta de Linfotoxina/antagonistas & inibidores , Receptor beta de Linfotoxina/metabolismo , RNA Mensageiro/análise , Transdução de Sinais , Adulto , Animais , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/química , Células Epiteliais/metabolismo , Feminino , Glomerulonefrite por IGA/genética , Humanos , Imunoglobulinas/farmacologia , Glomérulos Renais/química , Glomérulos Renais/patologia , Túbulos Renais/química , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Ligantes , Nefrite Lúpica/genética , Linfócitos/química , Receptor beta de Linfotoxina/análise , Receptor beta de Linfotoxina/genética , Linfotoxina-alfa/análise , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Linfotoxina-beta/análise , Linfotoxina-beta/genética , Linfotoxina-beta/metabolismo , Masculino , Células Mesangiais/metabolismo , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
20.
Biochem Biophys Res Commun ; 472(1): 88-94, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26903299

RESUMO

Mammalian Fat1 is a giant atypical cadherin/tumor suppressor involved in the regulation of cellular orientation, migration, and growth. Fat1 is implicated in the development of the brain, eye, and kidney. Altered expression or mutations of FAT1 are also associated with cancer and facioscapulohumeral muscular dystrophy (FSHD). Yet, the mechanistic functions of this pathway remain incompletely understood. Here, we report the identification of Sorbin-homology (SoHo) proteins as novel interaction partners of Fat1 by virtue of a yeast-two-hybrid screen. SoHo proteins play diverse roles as adaptor proteins in cell signaling, cell adhesion and sarcomere architecture, including altered expression in cancer and FSHD. Specifically, we found SoHo proteins CAP/ponsin-1 and -2 (Sorbs1) and ArgBP2 (Sorbs2) to interact with the cytoplasmic domain of Fat1. We mapped the interaction to a prolin-rich classic type II PXXP motif within Fat1 and to the three Src-homology (SH3) domains within SoHo proteins using mutant expression in yeast, pulldown assays, and cell culture. Functionally, endogenous ponsin-2 expression of NRK-52E cells at cellular leading edges was lost upon knockdown of Fat1. In summary, our data point to an interaction of Fat1 with SoHo proteins that is able to recruit SoHo proteins to sites of Fat1 expression.


Assuntos
Caderinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Células COS , Caderinas/química , Caderinas/genética , Linhagem Celular , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa