RESUMO
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.
Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , National Institutes of Health (U.S.) , Estados UnidosRESUMO
Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.
Assuntos
Inteligência Artificial , Médicos , Animais , Humanos , Reprodutibilidade dos Testes , Descoberta de Drogas , TecnologiaRESUMO
DrugCentral monitors new drug approvals and standardizes drug information. The current update contains 285 drugs (131 for human use). New additions include: (i) the integration of veterinary drugs (154 for animal use only), (ii) the addition of 66 documented off-label uses and iii) the identification of adverse drug events from pharmacovigilance data for pediatric and geriatric patients. Additional enhancements include chemical substructure searching using SMILES and 'Target Cards' based on UniProt accession codes. Statistics of interests include the following: (i) 60% of the covered drugs are on-market drugs with expired patent and exclusivity coverage, 17% are off-market, and 23% are on-market drugs with active patents and exclusivity coverage; (ii) 59% of the drugs are oral, 33% are parenteral and 18% topical, at the level of the active ingredients; (iii) only 3% of all drugs are for animal use only; however, 61% of the veterinary drugs are also approved for human use; (iv) dogs, cats and horses are by far the most represented target species for veterinary drugs; (v) the physicochemical property profile of animal drugs is very similar to that of human drugs. Use cases include azaperone, the only sedative approved for swine, and ruxolitinib, a Janus kinase inhibitor.
Assuntos
Aprovação de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Drogas Veterinárias , Animais , Humanos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/veterinária , Drogas Veterinárias/administração & dosagem , Drogas Veterinárias/efeitos adversos , Uso Off-Label/veterináriaRESUMO
The Illuminating the Druggable Genome (IDG) project aims to improve our understanding of understudied proteins and our ability to study them in the context of disease biology by perturbing them with small molecules, biologics, or other therapeutic modalities. Two main products from the IDG effort are the Target Central Resource Database (TCRD) (http://juniper.health.unm.edu/tcrd/), which curates and aggregates information, and Pharos (https://pharos.nih.gov/), a web interface for fusers to extract and visualize data from TCRD. Since the 2021 release, TCRD/Pharos has focused on developing visualization and analysis tools that help reveal higher-level patterns in the underlying data. The current iterations of TCRD and Pharos enable users to perform enrichment calculations based on subsets of targets, diseases, or ligands and to create interactive heat maps and UpSet charts of many types of annotations. Using several examples, we show how to address disease biology and drug discovery questions through enrichment calculations and UpSet charts.
Assuntos
Bases de Dados Factuais , Terapia de Alvo Molecular , Proteoma , Humanos , Produtos Biológicos , Descoberta de Drogas , Internet , Proteoma/efeitos dos fármacosRESUMO
DrugCentral, accessible at https://drugcentral.org , is an open-access online drug information repository. It covers over 4950 drugs, incorporating structural, physicochemical, and pharmacological details to support drug discovery, development, and repositioning. With around 20,000 bioactivity data points, manual curation enhances information from several major digital sources. Approximately 724 mechanism-of-action (MoA) targets offer updated drug target insights. The platform captures clinical data: over 14,300 on- and off-label uses, 27,000 contraindications, and around 340,000 adverse drug events from pharmacovigilance reports. DrugCentral encompasses information from molecular structures to marketed formulations, providing a comprehensive pharmaceutical reference. Users can easily navigate basic drug information and key features, making DrugCentral a versatile, unique resource. Furthermore, we present a use-case example where we utilize experimentally determined data from DrugCentral to support drug repurposing. A minimum activity threshold t should be considered against novel targets to repurpose a drug. Analyzing 1156 bioactivities for human MoA targets suggests a general threshold of 1 µM: t = 6 when expressed as - log[Activity(M)]). This applies to 87% of the drugs. Moreover, t can be refined empirically based on water solubility (S): t = 3 - logS, for logS < - 3. Alongside the drug repurposing classification scheme, which considers intellectual property rights, market exclusivity protections, and market accessibility, DrugCentral provides valuable data to prioritize candidates for drug repurposing programs efficiently.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Estrutura Molecular , Reposicionamento de Medicamentos , Descoberta de Drogas , Sistemas de Liberação de MedicamentosRESUMO
DrugCentral is a public resource (http://drugcentral.org) that serves the scientific community by providing up-to-date drug information, as described in previous papers. The current release includes 109 newly approved (October 2018 through March 2020) active pharmaceutical ingredients in the US, Europe, Japan and other countries; and two molecular entities (e.g. mefuparib) of interest for COVID19. New additions include a set of pharmacokinetic properties for â¼1000 drugs, and a sex-based separation of side effects, processed from FAERS (FDA Adverse Event Reporting System); as well as a drug repositioning prioritization scheme based on the market availability and intellectual property rights forFDA approved drugs. In the context of the COVID19 pandemic, we also incorporated REDIAL-2020, a machine learning platform that estimates anti-SARS-CoV-2 activities, as well as the 'drugs in news' feature offers a brief enumeration of the most interesting drugs at the present moment. The full database dump and data files are available for download from the DrugCentral web portal.
Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Aprovação de Drogas/estatística & dados numéricos , Descoberta de Drogas/estatística & dados numéricos , Reposicionamento de Medicamentos/estatística & dados numéricos , SARS-CoV-2/efeitos dos fármacos , Antivirais/efeitos adversos , Antivirais/farmacocinética , COVID-19/epidemiologia , COVID-19/virologia , Aprovação de Drogas/métodos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Epidemias , Europa (Continente) , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Japão , SARS-CoV-2/fisiologia , Estados UnidosRESUMO
In 2014, the National Institutes of Health (NIH) initiated the Illuminating the Druggable Genome (IDG) program to identify and improve our understanding of poorly characterized proteins that can potentially be modulated using small molecules or biologics. Two resources produced from these efforts are: The Target Central Resource Database (TCRD) (http://juniper.health.unm.edu/tcrd/) and Pharos (https://pharos.nih.gov/), a web interface to browse the TCRD. The ultimate goal of these resources is to highlight and facilitate research into currently understudied proteins, by aggregating a multitude of data sources, and ranking targets based on the amount of data available, and presenting data in machine learning ready format. Since the 2017 release, both TCRD and Pharos have produced two major releases, which have incorporated or expanded an additional 25 data sources. Recently incorporated data types include human and viral-human protein-protein interactions, protein-disease and protein-phenotype associations, and drug-induced gene signatures, among others. These aggregated data have enabled us to generate new visualizations and content sections in Pharos, in order to empower users to find new areas of study in the druggable genome.
Assuntos
Bases de Dados Factuais , Genoma Humano , Doenças Neurodegenerativas/genética , Proteômica/métodos , Software , Viroses/genética , Animais , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Antivirais/química , Antivirais/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Mineração de Dados/estatística & dados numéricos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Internet , Aprendizado de Máquina/estatística & dados numéricos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Doenças Neurodegenerativas/classificação , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/virologia , Mapeamento de Interação de Proteínas , Proteoma/agonistas , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Viroses/classificação , Viroses/tratamento farmacológico , Viroses/virologiaRESUMO
MOTIVATION: Genome-wide association studies can reveal important genotype-phenotype associations; however, data quality and interpretability issues must be addressed. For drug discovery scientists seeking to prioritize targets based on the available evidence, these issues go beyond the single study. RESULTS: Here, we describe rational ranking, filtering and interpretation of inferred gene-trait associations and data aggregation across studies by leveraging existing curation and harmonization efforts. Each gene-trait association is evaluated for confidence, with scores derived solely from aggregated statistics, linking a protein-coding gene and phenotype. We propose a method for assessing confidence in gene-trait associations from evidence aggregated across studies, including a bibliometric assessment of scientific consensus based on the iCite relative citation ratio, and meanRank scores, to aggregate multivariate evidence.This method, intended for drug target hypothesis generation, scoring and ranking, has been implemented as an analytical pipeline, available as open source, with public datasets of results, and a web application designed for usability by drug discovery scientists. AVAILABILITY AND IMPLEMENTATION: Web application, datasets and source code via https://unmtid-shinyapps.net/tiga/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Estudo de Associação Genômica Ampla , Iluminação , Genótipo , Polimorfismo de Nucleotídeo Único , FenótipoRESUMO
Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in December 2019 in Wuhan, China. It was quickly established that both the symptoms and the disease severity may vary from one case to another and several strains of SARS-CoV-2 have been identified. To gain a better understanding of the wide variety of SARS-CoV-2 strains and their associated symptoms, thousands of SARS-CoV-2 genomes have been sequenced in dozens of countries. In this article, we introduce COVIDomic, a multi-omics online platform designed to facilitate the analysis and interpretation of the large amount of health data collected from patients with COVID-19. The COVIDomic platform provides a comprehensive set of bioinformatic tools for the multi-modal metatranscriptomic data analysis of COVID-19 patients to determine the origin of the coronavirus strain and the expected severity of the disease. An integrative analytical workflow, which includes microbial pathogens community analysis, COVID-19 genetic epidemiology and patient stratification, allows to analyze the presence of the most common microbial organisms, their antibiotic resistance, the severity of the infection and the set of the most probable geographical locations from which the studied strain could have originated. The online platform integrates a user friendly interface which allows easy visualization of the results. We envision this tool will not only have immediate implications for management of the ongoing COVID-19 pandemic, but will also improve our readiness to respond to other infectious outbreaks.
Assuntos
COVID-19/epidemiologia , Computação em Nuvem , Biologia Computacional/métodos , Interface Usuário-Computador , COVID-19/genética , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Fatores de Risco , SARS-CoV-2/genética , Índice de Gravidade de DoençaRESUMO
In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen, and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Here, we describe a workflow we designed for a semiautomated integration of rapidly emerging data sets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 63â¯278 host-host protein, and 1221 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is made publicly accessible via a web interface and via API calls based on the Bolt protocol. Details for accessing the database are provided on a landing page (https://neo4covid19.ncats.io/). We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19.
Assuntos
COVID-19 , Reposicionamento de Medicamentos , Humanos , Farmacologia em Rede , Pandemias , SARS-CoV-2 , Fluxo de TrabalhoRESUMO
COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.
Assuntos
Tratamento Farmacológico da COVID-19 , Simulação por Computador , Desenho de Fármacos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Antivirais/uso terapêutico , COVID-19/virologia , Ensaios Clínicos como Assunto , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacosRESUMO
Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure-activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.
Assuntos
Química Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Preparações Farmacêuticas/química , Algoritmos , Animais , Inteligência Artificial , Bases de Dados Factuais , Desenho de Fármacos , História do Século XX , História do Século XXI , Humanos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Reprodutibilidade dos TestesRESUMO
Correction for 'QSAR without borders' by Eugene N. Muratov et al., Chem. Soc. Rev., 2020, DOI: 10.1039/d0cs00098a.
RESUMO
Drug repositioning aims to reuse "old" drugs to treat diseases outside their approved indication(s). Composition-of-matter patents and FDA exclusivities can hinder the immediate availability of some drugs to be repositioned (repurposed). Here, we analyze data from the FDA Orange Book and use current on-market patent validity and exclusivities to classify drugs into on-patent (ONP), off-patent (OFP), and off-market (OFM) sets. In the absence of an unanimously accepted definition for small molecules, these sets include organic molecules and peptides with molecular weight between 100 and 1250, which resulted in 237 ONP drugs, 320 OFM, and 996 OFP drugs, respectively. We discuss the differences between the three categories in terms of primary molecular properties, chemical diversity, mechanism-of-action target classes, and therapeutic areas and comment on the enrichment of OFP drugs in the near future. Given the intellectual property landscape, and in the absence of specific property rights, we suggest that drugs should be prioritized as follows, to improve the repositioning strategy: (i) OFP, (ii) OFM, and (iii) ONP, respectively.
Assuntos
Reposicionamento de MedicamentosRESUMO
The increase in the number of both patients and healthcare practitioners who grew up using the Internet and computers (so-called "digital natives") is likely to impact the practice of precision medicine, and requires novel platforms for data integration and mining, as well as contextualized information retrieval. The "Illuminating the Druggable Genome Knowledge Management Center" (IDG KMC) quantifies data availability from a wide range of chemical, biological, and clinical resources, and has developed platforms that can be used to navigate understudied proteins (the "dark genome"), and their potential contribution to specific pathologies. Using the "Target Importance and Novelty Explorer" (TIN-X) highlights the role of LRRC10 (a dark gene) in dilated cardiomyopathy. Combining mouse and human phenotype data leads to increased strength of evidence, which is discussed for four additional dark genes: SLX4IP and its role in glucose metabolism, the role of HSF2BP in coronary artery disease, the involvement of ELFN1 in attention-deficit hyperactivity disorder and the role of VPS13D in mouse neural tube development and its confirmed role in childhood onset movement disorders. The workflow and tools described here are aimed at guiding further experimental research, particularly within the context of precision medicine.
Assuntos
Genômica , Medicina de Precisão , Proteínas/genética , Animais , Descoberta de Drogas , Estudo de Associação Genômica Ampla , Humanos , Gestão do Conhecimento , Fenótipo , Proteínas/metabolismo , Fluxo de TrabalhoRESUMO
DrugCentral (http://drugcentral.org) is an open-access online drug compendium. DrugCentral integrates structure, bioactivity, regulatory, pharmacologic actions and indications for active pharmaceutical ingredients approved by FDA and other regulatory agencies. Monitoring of regulatory agencies for new drugs approvals ensures the resource is up-to-date. DrugCentral integrates content for active ingredients with pharmaceutical formulations, indexing drugs and drug label annotations, complementing similar resources available online. Its complementarity with other online resources is facilitated by cross referencing to external resources. At the molecular level, DrugCentral bridges drug-target interactions with pharmacological action and indications. The integration with FDA drug labels enables text mining applications for drug adverse events and clinical trial information. Chemical structure overlap between DrugCentral and five online drug resources, and the overlap between DrugCentral FDA-approved drugs and their presence in four different chemical collections, are discussed. DrugCentral can be accessed via the web application or downloaded in relational database format.
Assuntos
Bases de Dados de Produtos Farmacêuticos , Ferramenta de Busca , Navegador , Aprovação de Drogas , Composição de Medicamentos , Interações Medicamentosas , Rotulagem de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Preparações Farmacêuticas/química , Estados Unidos , United States Food and Drug AdministrationRESUMO
The 'druggable genome' encompasses several protein families, but only a subset of targets within them have attracted significant research attention and thus have information about them publicly available. The Illuminating the Druggable Genome (IDG) program was initiated in 2014, has the goal of developing experimental techniques and a Knowledge Management Center (KMC) that would collect and organize information about protein targets from four families, representing the most common druggable targets with an emphasis on understudied proteins. Here, we describe two resources developed by the KMC: the Target Central Resource Database (TCRD) which collates many heterogeneous gene/protein datasets and Pharos (https://pharos.nih.gov), a multimodal web interface that presents the data from TCRD. We briefly describe the types and sources of data considered by the KMC and then highlight features of the Pharos interface designed to enable intuitive access to the IDG knowledgebase. The aim of Pharos is to encourage 'serendipitous browsing', whereby related, relevant information is made easily discoverable. We conclude by describing two use cases that highlight the utility of Pharos and TCRD.
Assuntos
Bases de Dados Genéticas , Descoberta de Drogas , Genômica , Farmacogenética , Ferramenta de Busca , Análise por Conglomerados , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Genômica/métodos , Humanos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Farmacogenética/métodos , Software , NavegadorRESUMO
MOTIVATION: The increasing amount of peer-reviewed manuscripts requires the development of specific mining tools to facilitate the visual exploration of evidence linking diseases and proteins. RESULTS: We developed TIN-X, the Target Importance and Novelty eXplorer, to visualize the association between proteins and diseases, based on text mining data processed from scientific literature. In the current implementation, TIN-X supports exploration of data for G-protein coupled receptors, kinases, ion channels, and nuclear receptors. TIN-X supports browsing and navigating across proteins and diseases based on ontology classes, and displays a scatter plot with two proposed new bibliometric statistics: Importance and Novelty. AVAILABILITY AND IMPLEMENTATION: http://www.newdrugtargets.org. CONTACT: cbologa@salud.unm.edu.
Assuntos
Mineração de Dados/métodos , Doença/etiologia , Software , Ontologias Biológicas , Gráficos por Computador , Humanos , Canais Iônicos/metabolismo , Fosfotransferases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMO
David Weininger's career, accomplishments, genius, and friendship are warmly remembered by several of his colleagues, friends, and admirers.