Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Surg Endosc ; 36(6): 4507-4517, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34708296

RESUMO

BACKGROUND: Endoscopic and laparoscopic electrosurgical devices (ED) are of great importance in modern medicine but can cause adverse events such as tissue injuries and burns from residual heat. While laparoscopic tools are well investigated, detailed insights about the temperature profile of endoscopic knives are lacking. Our aim is to investigate the temperature and the residual heat of laparoscopic and endoscopic monopolar instruments to increase the safety in handling ED. METHODS: An infrared camera was used to measure the temperature of laparoscopic and endoscopic instruments during energy application and to determine the cooling time to below 50 °C at a porcine stomach. Different power levels and cutting intervals were studied to investigate their impact on the temperature profile. RESULTS: During activation, the laparoscopic hook exceeded 120 °C regularly for an up to 10 mm shaft length. With regards to endoknives, only the Dual Tip Knife showed a shaft temperature of above 50 °C. The residual heat of the laparoscopic hook remained above 50 °C for at least 15 s after activation. Endoknives cooled to below 50 °C in 4 s. A higher power level and longer cutting duration significantly increased the shaft temperature and prolonged the cooling time (p < 0.001). CONCLUSION: Residual heat and maximum temperature during energy application depend strongly on the chosen effect and cutting duration. To avoid potential injuries, the user should not touch any tissue with the laparoscopic hook for at least 15 s and with the endoknives for at least 4 s after energy application. As the shaft also heats up to over 120 °C, the user should be careful to avoid tissue contact during activation with the shaft. These results should be strongly considered for safety reasons when handling monopolar ED.


Assuntos
Temperatura Alta , Laparoscopia , Animais , Dissecação , Eletrocirurgia , Humanos , Laparoscopia/métodos , Suínos , Temperatura
2.
Micromachines (Basel) ; 14(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985107

RESUMO

Photolithographic patterning of components and integrated circuits based on active polymers for microfluidics is challenging and not always efficient on a laboratory scale using the traditional mask-based fabrication procedures. Here, we present an alternative manufacturing process based on multi-material 3D printing that can be used to print various active polymers in microfluidic structures that act as microvalves on large-area substrates efficiently in terms of processing time and consumption of active materials with a single machine. Based on the examples of two chemofluidic valve types, hydrogel-based closing valves and PEG-based opening valves, the respective printing procedures, essential influencing variables and special features are discussed, and the components are characterized with regard to their properties and tolerances. The functionality of the concept is demonstrated by a specific chemofluidic chip which automates an analysis procedure typical of clinical chemistry and laboratory medicine. Multi-material 3D printing allows active-material devices to be produced on chip substrates with tolerances comparable to photolithography but is faster and very flexible for small quantities of up to about 50 chips.

3.
Micromachines (Basel) ; 11(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370256

RESUMO

The interest in large-scale integrated (LSI) microfluidic systems that perform high-throughput biological and chemical laboratory investigations on a single chip is steadily growing. Such highly integrated Labs-on-a-Chip (LoC) provide fast analysis, high functionality, outstanding reproducibility at low cost per sample, and small demand of reagents. One LoC platform technology capable of LSI relies on specific intrinsically active polymers, the so-called stimuli-responsive hydrogels. Analogous to microelectronics, the active components of the chips can be realized by photolithographic micro-patterning of functional layers. The miniaturization potential and the integration degree of the microfluidic circuits depend on the capability of the photolithographic process to pattern hydrogel layers with high resolution, and they typically require expensive cleanroom equipment. Here, we propose, compare, and discuss a cost-efficient do-it-yourself (DIY) photolithographic set-up suitable to micro-pattern hydrogel-layers with a resolution as needed for very large-scale integrated (VLSI) microfluidics. The achievable structure dimensions are in the lower micrometer scale, down to a feature size of 20 µm with aspect ratios of 1:5 and maximum integration densities of 20,000 hydrogel patterns per cm². Furthermore, we demonstrate the effects of miniaturization on the efficiency of a hydrogel-based microreactor system by increasing the surface area to volume (SA:V) ratio of integrated bioactive hydrogels. We then determine and discuss a correlation between ultraviolet (UV) exposure time, cross-linking density of polymers, and the degree of immobilization of bioactive components.

4.
Lab Chip ; 9(4): 613-8, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19190798

RESUMO

This paper describes two types of polymeric micropumps based on the temperature-sensitive hydrogel poly(N-isopropylacrylamide). The gel actuators are realised as photopolymerised patterns and microgels. They are electrothermically controlled by resistive heating elements. The diffusion-based micropump contains a photopatterned monolithic actuator, which is placed within the pump chamber, and provides a valveless single layer set-up. The diffusion micropump is intended for low performance applications and can operate in two modes: peristaltic or pulsatile. The maximum operating parameters are a flow rate of 2.8 +/- 0.35 microl min(-1) and a back pressure of 1.28 kPa. The second type, a displacement pump, provides a higher performance (maximal 4.5 microl min(-1) and 15 kPa). The pump comprises a microgel-based actuator, which is placed within a separate actuator layer, and active microvalves. The specific features of the design and performance of the pumps are discussed.

5.
Sensors (Basel) ; 8(1): 561-581, 2008 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27879722

RESUMO

Stimuli-responsive hydrogels are materials with great potential for development of active functionalities in fluidics and micro-fluidics. Based on the current state of research on pH sensors, hydrogel sensors are described qualitatively and quantitatively for the first time. The review introduces the physical background of the special properties of stimuli-responsive hydrogels. Following, transducers are described which are able to convert the non-electrical changes of the physical properties of stimuli-responsive hydrogels into an electrical signal. Finally, the specific sensor properties, design rules and general conditions for sensor applications are discussed.

6.
ACS Appl Mater Interfaces ; 9(34): 29193-29202, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28783313

RESUMO

Electrically tunable microcavities are essential elements for tunable laser sources indispensable for modern telecommunication and spectroscopy. However, most device concepts suffer from extensive lithography or etching for membrane processing. Here, we present an electrically and continuously tunable, multi-half-wavelength microcavity with a quality factor > 1000 as an easy-to-fabricate platform with potential use for vertical-cavity surface-emitting lasers. The microcavity has a Fabry-Pérot structure consisting of ultrasoft PDMS gel with a thickness of 14-15 µm and capped by a distributed Bragg reflector on the bottom end and a silver layer serving as top mirror and electrode. Additionally, we have embedded a pyrromethene dye into the PDMS matrix to prove efficient gain medium integration. By means of an integrated dielectric elastomer actuator, the microcavity thickness is varied 1.3 µm (9%) with a driving voltage of 70 V. The subsequent silver mirror deflection achieves a reversible 40 nm tuning of the cavity resonance wavelength. The tuning range is limited by the lateral bending of the electrodes for increasing voltages. This characteristic bending is confirmed by simulations with finite elements method. The dynamic behavior of the microcavity is characterized by capacitance measurements and modeled by viscoelastic theory. Our research provides in-depth examinations of electrically tunable, PDMS gel-based microcavities with the future goal of building simple, miniaturized, and cost-efficient laser sources with high tuning range.

7.
Gels ; 2(1)2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674142

RESUMO

Poly-N-isopropylacrylamide (PNIPAAm) hydrogels, known for their sensor and actuator capabilities, can be photolithographically structured for microsystem applications. For usage in microsystems, the preparation, and hence the characteristics, of these hydrogels (e.g., degree of swelling, size, cooperative diffusion coefficient) are key features, and have to be as reproducible as possible. A common method of hydrogel fabrication is free radical polymerisation using a thermally-initiated system or a photoinitiator system. Due to the reaction quenching by oxygen, the polymer solution has to be rinsed with protective inert gases like nitrogen or argon before the polymerisation process. In this paper, we focus on the preparation reproducibility of PNIPAAm hydrogels under different conditions, and investigate the influence of oxygen and the UV light source during the photopolymerisation process. The flushing of the polymer solution with inert gas is not sufficient for photostructuring approaches, so a glove box preparation resulting in better quality. Moreover, the usage of a wide-band UV light source yields higher reproducibility to the photostructuring process compared to a narrow-band UV source.

8.
PLoS One ; 11(8): e0161024, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27571209

RESUMO

Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.


Assuntos
Microfluídica/instrumentação , Microfluídica/métodos , Membranas , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Pressão , Temperatura
9.
Micromachines (Basel) ; 7(10)2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30404345

RESUMO

Dielectric elastomer actuators (DEA) are special devices which have a simple working and construction principle and outstanding actuation properties. The DEAs consist of a combination of different materials for the dielectric and electrode layers. The combination of these layers causes incompatibilities in their interconnections. Dramatic differences in the mechanical properties and bad adhesion of the layers are the principal causes for the reduction of the actuation displacement and strong reduction of lifetime. Common DEAs achieve actuation displacements of 2% and a durability of some million cycles. The following investigations represent a new approach to solving the problems of common systems. The investigated DEA consists of only one basic raw polymer, which was modified according to the required demands of each layer. The basic raw polymer was modified with single-walled carbon nanotubes or high-k ceramics, for example, lead magnesium niobate-lead titanate. The development of the full polymer DEA comprised the development of materials and technologies to realise a reproducible layer composition. It was proven that the full polymer actuator worked according to the theoretical rules. The investigated system achieved actuation displacements above 20% regarding thickness, outstanding interconnections at each layer without any failures, and durability above 3 million cycles without any indication of an impending malfunction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa