Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Immunol ; 19(9): 1037, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29449629

RESUMO

In the version of this article initially published, a source of funding (Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.)) was not included in the Acknowledgments section. The correct statement is as follows: "Supported by Deutsche Forschungsgemeinschaft, (SFB900/B8 to C.K. and I.P.; and PR727/4-1 to I.P.), Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.) and the German Federal Ministry of Education and Research (01EO1302 to C.S.-F., C.K. and I.P.)." The error has been corrected in the HTML and PDF versions of the article.

2.
Nat Immunol ; 18(4): 393-401, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28218745

RESUMO

To investigate how the human γδ T cell pool is shaped during ontogeny and how it is regenerated after transplantation of hematopoietic stem cells (HSCs), we applied an RNA-based next-generation sequencing approach to monitor the dynamics of the repertoires of γδ T cell antigen receptors (TCRs) before and after transplantation in a prospective cohort study. We found that repertoires of rearranged genes encoding γδ TCRs (TRG and TRD) in the peripheral blood of healthy adults were stable over time. Although a large fraction of human TRG repertoires consisted of public sequences, the TRD repertoires were private. In patients undergoing HSC transplantation, γδ T cells were quickly reconstituted; however, they had profoundly altered TCR repertoires. Notably, the clonal proliferation of individual virus-reactive γδ TCR sequences in patients with reactivation of cytomegalovirus revealed strong evidence for adaptive anti-viral γδ T cell immune responses.


Assuntos
Evolução Clonal , Infecções por Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evolução Clonal/genética , Evolução Clonal/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Rearranjo Gênico do Linfócito T , Sobrevivência de Enxerto , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Transplante Homólogo
3.
Eur J Immunol ; 50(4): 494-504, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31834938

RESUMO

NK cells are innate immune cells characterized by their ability to spontaneously lyse tumor and virally infected cells. We have recently demonstrated that IL-15-sufficient DC regulate NK cell effector functions in mice. Here, we established that among ITAM-proximal signaling molecules, the expression levels of the scaffold molecule Linker for Activation of T cells (LAT) and its transcription factor ELF-1 were reduced 4 days after in vivo depletion of DC. Addition of IL-15, a cytokine presented by DC to NK cells, regulates LAT expression in NK cells with a significant effect on the DNAM1+ subset compared to DNAM1- cells. We also found that LAT expression is regulated via interaction of the DNAM1 receptor with its ligand CD155 in both immature and mature NK cells, independently of NK cell education. Finally, we found that LAT expression within DNAM1+ NK cells might be responsible for enhanced calcium mobilization following the triggering of activating receptors on NK cells. Altogether, we found that LAT expression is tightly regulated in DNAM1+ NK cells, via interaction(s) with DC, which express CD155 and IL-15, resulting in rapid activation of the DNAM1+ subset during activating receptor triggering.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Receptores Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos de Diferenciação de Linfócitos T/metabolismo , Sinalização do Cálcio , Células Cultivadas , Citotoxicidade Imunológica , Proteínas de Ligação a DNA/genética , Interleucina-15/genética , Transportador 1 de Aminoácidos Neutros Grandes/genética , Ativação Linfocitária , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Receptores Virais/genética , Fatores de Transcrição/genética , Ativação Transcricional
5.
Eur J Immunol ; 46(4): 993-1003, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689152

RESUMO

The cell surface receptor CD155 influences a variety of immune processes by binding to its ligands CD226, CD96, or TIGIT. Here, we report that the interaction of CD155 with CD226 in the thymus of BALB/c mice has a dual function. It directly influences the dwell time of memory-like CD8(+) T cells, while it is indirectly involved in generating these cells. It was shown earlier that a massive emergence of memory-like CD8 T cells in thymus crucially depends on abundant IL-4, secreted in steady state by iNKT2 (where iNKT is invariant NKT) cells, a subclass of iNKT cells. Here, we show that absence of either CD155 or CD226 in BALB/c mice causes a profound shift in the iNKT subtype composition in thymus, expanding the frequency and numbers of iNKT1 cells at the expense of iNKT2 cells, as well as iNKT17 cells. This shift results in a drop of available IL-4 and creates a scenario similar to that observed in C57BL/6 mice, where iNKT1 cells predominate and iNKT2 cells are much less frequent when compared with BALB/c mice. Yet also in C57BL/6 mice, lack of CD155 or CD226 provokes a further decline in iNKT2 cells, suggesting that the observed effects are not restricted to a particular inbred strain.


Assuntos
Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos T CD8-Positivos/imunologia , Células T Matadoras Naturais/imunologia , Receptores Virais/genética , Timo/citologia , Animais , Antígenos de Diferenciação de Linfócitos T/imunologia , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Feminino , Memória Imunológica/imunologia , Interleucina-4/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/citologia , Receptores Virais/imunologia , Timo/imunologia
6.
EBioMedicine ; 99: 104947, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160529

RESUMO

BACKGROUND: Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown. METHODS: Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses. FINDINGS: We revealed early, transient immunological and molecular signatures that distinguished high from low responders and correlated with B and T cell responses measured 14 days later. High responders featured a distinct transcriptional activity of interferon-driven genes and genes connected to enhanced antigen presentation. This was accompanied by a robust cytokine response related to Th1 differentiation. Both transcriptome and serum cytokine signatures were confirmed in two independent confirmatory cohorts. INTERPRETATION: Collectively, our data contribute to a better understanding of the immunogenicity of mRNA-based COVID-19 vaccines, which might lead to the optimization of vaccine designs for individuals with poor vaccine responses. FUNDING: German Center for Infection Research, German Center for Lung Research, German Research Foundation, Excellence Strategy EXC 2155 "RESIST" and European Regional Development Fund.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Feminino , COVID-19/prevenção & controle , Citocinas/genética , Vacinação , Biologia de Sistemas/métodos , RNA Mensageiro , Anticorpos Antivirais
7.
Antibodies (Basel) ; 12(2)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092449

RESUMO

Neuritin represents a neurotrophic factor that is not only important in neuronal development and plasticity but also impacts endothelial angiogenesis, cell migration, tumor growth and the production of antibodies by B cells. We established monoclonal mouse anti-mouse neuritin antibodies by immunizing knock-out mice with two different neuritin-derived peptides. Because neuritin is well conserved between species, these new monoclonal antibodies recognize the neuritin of a wide variety of species, including human. Moreover, they not only recognize specifically surface-bound neuritin expressed by murine follicular regulatory T cells but also the block binding of recombinant neuritin to germinal center B cells. This suggests that these newly generated tools will be of great use in studying neuritin expression and function.

8.
Front Immunol ; 14: 1166589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215123

RESUMO

Since early 2022, various Omicron variants have dominated the SARS-CoV-2 pandemic in most countries. All Omicron variants are B-cell immune escape variants, and antibodies induced by first-generation COVID-19 vaccines or by infection with earlier SARS-CoV-2 variants largely fail to protect individuals from Omicron infection. In the present study, we investigated the effect of Omicron infections in triple-vaccinated and in antigen-naive individuals. We show that Omicron breakthrough infections occurring 2-3.5 months after the third vaccination restore B-cell and T-cell immune responses to levels similar to or higher than those measured 14 days after the third vaccination, including the induction of Omicron-neutralizing antibodies. Antibody responses in breakthrough infection derived mostly from cross-reacting B cells, initially induced by vaccination, whereas Omicron infections in antigen-naive individuals primarily generated B cells binding to the Omicron but not the Wuhan spike protein. Although antigen-naive individuals mounted considerable T-cell responses after infection, B-cell responses were low, and neutralizing antibodies were frequently below the limit of detection. In summary, the detection of Omicron-associated B-cell responses in primed and in antigen-naive individuals supports the application of Omicron-adapted COVID-19 vaccines, but calls into question their suitability if they also contain/encode antigens of the original Wuhan virus.


Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Infecções Irruptivas
9.
J Biol Chem ; 286(45): 39153-63, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21937446

RESUMO

Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system. Depending on their maturation status, they prime T cells to induce adaptive immunity or tolerance. DCs express CD155, an immunoglobulin-like receptor binding CD226 present on T and natural killer (NK) cells. CD226 represents an important co-stimulator during T cell priming but also serves as an activating receptor on cytotoxic T and NK cells. Here, we report that cells of the T and NK cell lineage of CD155(-/-) mice express markedly elevated protein levels of CD226 compared with wild type (WT). On heterozygous CD155(+/-) T cells, CD226 up-regulation is half-maximal, implying an inverse gene-dosis effect. Moreover, CD226 up-regulation is independent of antigen-driven activation because it occurs already in thymocytes and naïve peripheral T cells. In vivo, neutralizing anti-CD155 antibody elicits up-regulation of CD226 on T cells demonstrating, that the observed modulation can be triggered by interrupting CD155-CD226 contacts. Adoptive transfers of WT or CD155(-/-) T cells into CD155(-/-) or WT recipients, respectively, revealed that CD226 modulation is accomplished in trans. Analysis of bone marrow chimeras showed that regulators in trans are of hematopoietic origin. We demonstrate that DCs are capable of manipulating CD226 levels on T cells in vivo but not in vitro, suggesting that the process of T cells actively scanning antigen-presenting DCs inside secondary lymphoid organs is required for CD226 modulation. Hence, a CD226 level divergent from WT may be exploited as a sensor to detect abnormal DC/T-cell cross-talk as illustrated for T cells in mice lacking CCR7.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/farmacologia , Antígenos de Diferenciação de Linfócitos T/biossíntese , Antígenos de Diferenciação de Linfócitos T/genética , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores CCR7/genética , Receptores CCR7/imunologia , Receptores CCR7/metabolismo , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/imunologia , Receptores Virais/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
10.
J Immunol ; 184(4): 1681-9, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20048123

RESUMO

During their final maturation in the medulla, semimature single-positive (SP) thymocytes downregulate activation markers and subsequently exit into the periphery. Although semimature CD4(+) SP cells are sensitive to negative selection, the timing of when negative selection occurs in the CD8 lineage remains elusive. We show that the abundance of terminally matured CD8(+) SP cells in adult thymus is modulated by the genetic background. Moreover, in BALB/c mice, the frequency of terminally matured CD8(+) SP cells, but not that of CD4(+) SP cells present in thymus, varies depending on age. In mice lacking expression of the adhesion receptor CD155, a selective deficiency of mature CD8(+) SP thymocytes was observed, emerging first in adolescent animals at the age when these cells start to accumulate in wild-type thymus. Evidence is provided that the mature cells emigrate prematurely when CD155 is absent, cutting short their retention time in the medulla. Moreover, in nonmanipulated wild-type mice, semimature CD8(+) SP thymocytes are subjected to negative selection, as reflected by the diverging TCR repertoires present on semimature and mature CD8(+) T cells. In CD155-deficient animals, a shift was found in the TCR repertoire displayed by the pool of CD8(+) SP cells, demonstrating that CD155 is involved in negative selection.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Senescência Celular/imunologia , Receptores Virais/fisiologia , Timo/citologia , Timo/imunologia , Envelhecimento/genética , Envelhecimento/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Senescência Celular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Receptores Virais/deficiência , Receptores Virais/genética , Timo/metabolismo
11.
Nat Commun ; 13(1): 4872, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982040

RESUMO

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine. However, data comparing immunity decline after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. Here we show longitudinal monitoring of ChAd/ChAd (n = 41) and ChAd/BNT (n = 88) vaccinated individuals and the impact of a third vaccination with BNT. The third vaccination greatly augments waning anti-spike IgG but results in only moderate increase in spike-specific CD4 + and CD8 + T cell numbers in both groups, compared to cell frequencies already present after the second vaccination in the ChAd/BNT group. More importantly, the third vaccination efficiently restores neutralizing antibody responses against the Alpha, Beta, Gamma, and Delta variants of the virus, but neutralizing activity against the B.1.1.529 (Omicron) variant remains severely impaired. In summary, inferior SARS-CoV-2 specific immune responses following homologous ChAd/ChAd vaccination can be compensated by heterologous BNT vaccination, which might influence the choice of vaccine type for subsequent vaccination boosts.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
12.
Front Immunol ; 13: 863039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359969

RESUMO

Evaluating long-term protection against SARS-CoV-2 variants of concern in convalescing individuals is of high clinical relevance. In this prospective study of a cohort of 46 SARS-CoV-2 patients infected with the Wuhan strain of SARS-CoV-2 we longitudinally analyzed changes in humoral and cellular immunity upon early and late convalescence. Antibody neutralization capacity was measured by surrogate virus neutralization test and cellular responses were investigated with 31-colour spectral flow cytometry. Spike-specific, isotype-switched B cells developed already during the disease phase, showed a memory phenotype and did not decrease in numbers even during late convalescence. Otherwise, no long-lasting perturbations of the immune compartment following COVID-19 clearance were observed. During convalescence anti-Spike (S1) IgG antibodies strongly decreased in all patients. We detected neutralizing antibodies against the Wuhan strain as well as the Alpha and Delta but not against the Beta, Gamma or Omicron variants for up to 7 months post COVID-19. Furthermore, correlation analysis revealed a strong association between sera anti-S1 IgG titers and their neutralization capacity against the Wuhan strain as well as Alpha and Delta. Overall, our data suggest that even 7 month after the clearance of COVID-19 many patients possess a protective layer of immunity, indicated by the persistence of Spike-specific memory B cells and by the presence of neutralizing antibodies against the Alpha and Delta variants. However, lack of neutralizing antibodies against the Beta, Gamma and Omicron variants even during the peak response is of major concern as this indicates viral evasion of the humoral immune response.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Convalescença , Humanos , Imunidade Humoral , Imunoglobulina G , Estudos Prospectivos , Glicoproteína da Espícula de Coronavírus/genética
13.
Biochem Biophys Rep ; 28: 101163, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34765746

RESUMO

Invariant natural killer T (iNKT) cells develop in thymus before emigrating and settling peripheral tissues and organs. In contrast to regular naïve T cells, most iNKT cells do not continuously recirculate but are rather sessile and can adopt phenotypically as well as functionally to their tissue environment. To explore this in more detail, we focused on the most widely distributed CD4+iNKT1 cells and compared the transcriptome of cells isolated from liver and spleen. Whereas there are only very few genuine differences in the transcriptomes of CD4+iNKT1 cells of these two organs, the mode of cell isolation left clear marks in the transcriptomic signature. In contrast to liver cell isolated in the cold, cells prepared by enzymatic tissue digestion upregulated quickly a series of genes known to respond to stress. Therefore, to avoid erroneous conclusions, a comparison of expression profiles must take into consideration the history of cell preparation.

14.
Nat Med ; 27(9): 1525-1529, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34262158

RESUMO

Currently approved viral vector-based and mRNA-based vaccine approaches against coronavirus disease 2019 (COVID-19) consider only homologous prime-boost vaccination. After reports of thromboembolic events, several European governments recommended using AstraZeneca's ChAdOx1-nCov-19 (ChAd) only in individuals older than 60 years, leaving millions of already ChAd-primed individuals with the decision to receive either a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far. We used Hannover Medical School's COVID-19 Contact Study cohort of healthcare professionals to monitor ChAd-primed immune responses before and 3 weeks after booster with ChAd (n = 32) or BioNTech/Pfizer's BNT162b2 (n = 55). Although both vaccines boosted prime-induced immunity, BNT162b2 induced significantly higher frequencies of spike-specific CD4+ and CD8+ T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and P.1 variants of concern of severe acute respiratory syndrome coronavirus 2.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Vacina BNT162 , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , ChAdOx1 nCoV-19 , Humanos , Imunização Secundária/métodos , Imunogenicidade da Vacina/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
15.
Cell Mol Immunol ; 18(4): 936-944, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33139905

RESUMO

Neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells via surface-expressed angiotensin-converting enzyme 2 (ACE2). We used a surrogate virus neutralization test (sVNT) and SARS-CoV-2 S protein-pseudotyped vesicular stomatitis virus (VSV) vector-based neutralization assay (pVNT) to assess the degree to which serum antibodies from coronavirus disease 2019 (COVID-19) convalescent patients interfere with the binding of SARS-CoV-2 S to ACE2. Both tests revealed neutralizing anti-SARS-CoV-2 S antibodies in the sera of ~90% of mildly and 100% of severely affected COVID-19 convalescent patients. Importantly, sVNT and pVNT results correlated strongly with each other and to the levels of anti-SARS-CoV-2 S1 IgG and IgA antibodies. Moreover, levels of neutralizing antibodies correlated with the duration and severity of clinical symptoms but not with patient age. Compared to pVNT, sVNT is less sophisticated and does not require any biosafety labs. Since this assay is also much faster and cheaper, sVNT will not only be important for evaluating the prevalence of neutralizing antibodies in a population but also for identifying promising plasma donors for successful passive antibody therapy.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/sangue , Linhagem Celular , Convalescença , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos
16.
Eur J Immunol ; 39(11): 3160-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19688744

RESUMO

The secondary humoral immune response is characterized by plasma B cells secreting isotype-switched and affinity-matured antibodies. The efficient generation of plasma B cells in the GC depends on the presence of follicular helper T (T(FH)) cells, a cell type thought to arise from naive CD4-positive T cells by a hitherto unresolved differentiation pathway. Mice deficient for CD155, an adhesion receptor of the immunoglobulin superfamily, are impaired to mount a secondary humoral immune response upon oral administration of antigen, while the primary IgM response is unaffected. Here, we show that mice lacking CD155 harbor significantly reduced numbers of T(FH) cells in their Peyer's patches. This was paralleled by a decreased frequency of T(FH) cells in the GC. Moreover, the CD155 ligand CD226, which is involved in T-cell activation, is down-regulated during T(FH) cell differentiation, resulting in a complete absence of CD226 on those T(FH) cells residing in the GC. Concurrently, the expression of TIGIT/WUCAM, a newly discovered CD155 ligand, is induced in T(FH) cells. Thus, these cells replace an activating by a putative inhibitory CD155-binding partner during their differentiation.


Assuntos
Imunomodulação/imunologia , Ativação Linfocitária/imunologia , Nódulos Linfáticos Agregados/imunologia , Receptores Virais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos de Diferenciação de Linfócitos T/imunologia , Diferenciação Celular/imunologia , Separação Celular , Feminino , Citometria de Fluxo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia , Receptores Imunológicos/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Auxiliares-Indutores/citologia
17.
Front Immunol ; 11: 575764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193368

RESUMO

Invariant natural killer T (iNKT) cells represent a subclass of T cells possessing a restricted repertoire of T cell receptors enabling them to recognize lipid derived ligands. iNKT cells are continuously generated in thymus and differentiate into three main subpopulations: iNKT1, iNKT2, and iNKT17 cells. We investigated the transcriptomes of these subsets comparing cells isolated from young adult (6-10 weeks old) and aged BALB/c mice (25-30 weeks of age) in order to identify genes subject to an age-related regulation of expression. These time points were selected to take into consideration the consequences of thymic involution that radically alter the existing micro-milieu. Significant differences were detected in the expression of histone genes affecting all iNKT subsets. Also the proliferative capacity of iNKT cells decreased substantially upon aging. Several genes were identified as possible candidates causing significant age-dependent changes in iNKT cell generation and/or function such as genes coding for granzyme A, ZO-1, EZH2, SOX4, IGF1 receptor, FLT4, and CD25. Moreover, we provide evidence that IL2 differentially affects homeostasis of iNKT subsets with iNKT17 cells engaging a unique mechanism to respond to IL2 by initiating a slow rate of proliferation.


Assuntos
Envelhecimento/imunologia , Células T Matadoras Naturais/imunologia , Timo/imunologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Senescência Celular , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Imunossenescência , Interleucina-2/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Fenótipo , Timo/efeitos dos fármacos , Timo/metabolismo , Transcriptoma , Quinases da Família src/genética , Quinases da Família src/metabolismo
20.
Front Immunol ; 9: 1072, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868026

RESUMO

CD96 represents a type I transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD96 is expressed mainly by cells of hematopoietic origin, in particular on T and NK cells. Upon interaction with CD155 present on target cells, CD96 was found to inhibit mouse NK cells, and absence of this interaction either by blocking with antibody or knockout of CD96 showed profound beneficial effects in containment of tumors and metastatic spread in murine model systems. However, our knowledge regarding CD96 functions remains fragmentary. In this review, we will discuss structural features of CD96 and their putative impact on function as well as some unresolved issues such as a potential activation that may be conferred by human but not mouse CD96. This is of importance for translation into human cancer therapy. We will also address CD96 activities in the context of the immune regulatory network that consists of CD155, CD96, CD226, and TIGIT.


Assuntos
Antígenos CD/imunologia , Antígenos CD/metabolismo , Imunidade , Imunomodulação , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores Tumorais , Regulação da Expressão Gênica , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Terapia de Alvo Molecular , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa