Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Clin Immunol ; 265: 110266, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851519

RESUMO

The genes mapping at the HLA region show high density, strong linkage disequilibrium and high polymorphism, which affect the association of HLA class I and class II genes with autoimmunity. We focused on the HLA haplotypes, genomic structures consisting of an array of specific alleles showing some degrees of genetic association with different autoimmune disorders. GWASs in many pathologies have identified variants in either the coding loci or the flanking regulatory regions, both in linkage disequilibrium in haplotypes, that are frequently associated with increased risk and may influence gene expression. We discuss the relevance of the HLA gene expression because the level of surface heterodimers determines the number of complexes presenting self-antigen and, thus, the strength of pathogenic autoreactive T cells immune response.

2.
Muscle Nerve ; 60(5): 586-590, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31443116

RESUMO

BACKGROUND: Several viruses have been described as causes of acquired inflammatory myopathies; however, the mechanisms by which they cause muscle disease are still unclear. The aim of this study was to describe the laboratory features of benign acute myositis in a small case series. METHODS: A detailed pathological and serological analysis was performed in five African migrants who developed an acute viral myositis complicated by rhabdomyolysis. RESULTS: Muscle biopsies clearly documented an inflammatory myopathy with histological features similar to polymyositis including CD8+ T cells surrounding and invading nonnecrotic muscle fibers, CD68+ macrophages and major histocompatibility complex class I antigen upregulation. In addition, positivity for myositis-specific antibodies (MSA), in particular anti-aminoacyl tRNA synthetases, was found in the serum of two patients. CONCLUSIONS: Our study demonstrated that T-cell mediated injury occurs in muscle of patients with acute viral myositis, and that MSA may be present in the serum of these patients.


Assuntos
Autoanticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Macrófagos/imunologia , Miosite/imunologia , Viroses/imunologia , Adolescente , Aminoacil-tRNA Sintetases/imunologia , Anticorpos Antivirais/imunologia , Camarões/etnologia , Côte d'Ivoire/etnologia , Creatina Quinase/sangue , Emigrantes e Imigrantes , Gana/etnologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Itália , Masculino , Miosite/complicações , Miosite/patologia , Miosite/fisiopatologia , Nigéria/etnologia , Rabdomiólise/sangue , Rabdomiólise/etiologia , Partícula de Reconhecimento de Sinal/imunologia , Viroses/complicações , Viroses/patologia
3.
Immunology ; 146(1): 33-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959091

RESUMO

In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL)-mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 L(d). Increase of H-2 L(d) expression by cDNA transfection (Sp6/B7/L(d)) raised tumour immune protection and shifted most CTL responses towards H-2 L(d)-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 L(d)-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/L(d) cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Antígenos H-2/imunologia , Plasmocitoma/imunologia , Animais , Antígenos de Neoplasias/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Feminino , Antígenos H-2/biossíntese , Antígenos H-2/genética , Proteína HMGB1/metabolismo , Vírus da Leucemia Murina/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Depleção Linfocítica , Subpopulações de Linfócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmocitoma/terapia , Linfócitos T Citotóxicos/imunologia , Vacinação
4.
Front Immunol ; 14: 1130060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911674

RESUMO

Pattern recognition receptors are primitive sensors that arouse a preconfigured immune response to broad stimuli, including nonself pathogen-associated and autologous damage-associated molecular pattern molecules. These receptors are mainly expressed by innate myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Recent investigations have revealed new insights into these receptors as key players not only in triggering inflammation processes against pathogen invasion but also in mediating immune suppression in specific pathological states, including cancer. Myeloid-derived suppressor cells are preferentially expanded in many pathological conditions. This heterogeneous cell population includes immunosuppressive myeloid cells that are thought to be associated with poor prognosis and impaired response to immune therapies in various cancers. Identification of pattern recognition receptors and their ligands increases the understanding of immune-activating and immune-suppressive myeloid cell functions and sheds light on myeloid-derived suppressor cell differences from cognate granulocytes and monocytes in healthy conditions. This review summarizes the different expression, ligand recognition, signaling pathways, and cancer relations and identifies Toll-like receptors as potential new targets on myeloid-derived suppressor cells in cancer, which might help us to decipher the instruction codes for reverting suppressive myeloid cells toward an antitumor phenotype.


Assuntos
Células Supressoras Mieloides , Neoplasias , Sesamum , Células Mieloides , Receptores de Reconhecimento de Padrão
5.
Oncoimmunology ; 12(1): 2253644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720688

RESUMO

Cancer cells favor the generation of myeloid cells with immunosuppressive and inflammatory features, including myeloid-derived suppressor cells (MDSCs), which support tumor progression. The anti-apoptotic molecule, cellular FLICE (FADD-like interleukin-1ß-converting enzyme)-inhibitory protein (c-FLIP), which acts as an important modulator of caspase-8, is required for the development and function of monocytic (M)-MDSCs. Here, we assessed the effect of immune checkpoint inhibitor (ICI) therapy on systemic immunological landscape, including FLIP-expressing MDSCs, in non-small cell lung cancer (NSCLC) patients. Longitudinal changes in peripheral immunological parameters were correlated with patients' outcome. In detail, 34 NSCLC patients were enrolled and classified as progressors (P) or non-progressors (NP), according to the RECIST evaluation. We demonstrated a reduction in pro-inflammatory cytokines such as IL-8, IL-6, and IL-1ß in only NP patients after ICI treatment. Moreover, using t-distributed stochastic neighbor embedding (t-SNE) and cluster analysis, we characterized in NP patients a significant increase in the amount of lymphocytes and a slight contraction of myeloid cells such as neutrophils and monocytes. Despite this moderate ICI-associated alteration in myeloid cells, we identified a distinctive reduction of c-FLIP expression in M-MDSCs from NP patients concurrently with the first clinical evaluation (T1), even though NP and P patients showed the same level of expression at baseline (T0). In agreement with the c-FLIP expression, monocytes isolated from both P and NP patients displayed similar immunosuppressive functions at T0; however, this pro-tumor activity was negatively influenced at T1 in the NP patient cohort exclusively. Hence, ICI therapy can mitigate systemic inflammation and impair MDSC-dependent immunosuppression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Supressoras Mieloides , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Monócitos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
6.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022194

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors owing to its robust desmoplasia, low immunogenicity, and recruitment of cancer-conditioned, immunoregulatory myeloid cells. These features strongly limit the success of immunotherapy as a single agent, thereby suggesting the need for the development of a multitargeted approach. The goal is to foster T lymphocyte infiltration within the tumor landscape and neutralize cancer-triggered immune suppression, to enhance the therapeutic effectiveness of immune-based treatments, such as anticancer adoptive cell therapy (ACT). METHODS: We examined the contribution of immunosuppressive myeloid cells expressing arginase 1 and nitric oxide synthase 2 in building up a reactive nitrogen species (RNS)-dependent chemical barrier and shaping the PDAC immune landscape. We examined the impact of pharmacological RNS interference on overcoming the recruitment and immunosuppressive activity of tumor-expanded myeloid cells, which render pancreatic cancers resistant to immunotherapy. RESULTS: PDAC progression is marked by a stepwise infiltration of myeloid cells, which enforces a highly immunosuppressive microenvironment through the uncontrolled metabolism of L-arginine by arginase 1 and inducible nitric oxide synthase activity, resulting in the production of large amounts of reactive oxygen and nitrogen species. The extensive accumulation of myeloid suppressing cells and nitrated tyrosines (nitrotyrosine, N-Ty) establishes an RNS-dependent chemical barrier that impairs tumor infiltration by T lymphocytes and restricts the efficacy of adoptive immunotherapy. A pharmacological treatment with AT38 ([3-(aminocarbonyl)furoxan-4-yl]methyl salicylate) reprograms the tumor microenvironment from protumoral to antitumoral, which supports T lymphocyte entrance within the tumor core and aids the efficacy of ACT with telomerase-specific cytotoxic T lymphocytes. CONCLUSIONS: Tumor microenvironment reprogramming by ablating aberrant RNS production bypasses the current limits of immunotherapy in PDAC by overcoming immune resistance.


Assuntos
Adenocarcinoma/imunologia , Carcinoma Ductal Pancreático/imunologia , Imunoterapia/métodos , Estresse Nitrosativo/imunologia , Linfócitos T Citotóxicos/imunologia , Humanos , Microambiente Tumoral
7.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685679

RESUMO

Myeloid-derived suppressor cells (MDSCs) constitute a plastic and heterogeneous cell population among immune cells within the tumour microenvironment (TME) that support cancer progression and resistance to therapy. During tumour progression, cancer cells modify their metabolism to sustain an increased energy demand to cope with uncontrolled cell proliferation and differentiation. This metabolic reprogramming of cancer establishes competition for nutrients between tumour cells and leukocytes and most importantly, among tumour-infiltrating immune cells. Thus, MDSCs that have emerged as one of the most decisive immune regulators of TME exhibit an increase in glycolysis and fatty acid metabolism and also an upregulation of enzymes that catabolise essential metabolites. This complex metabolic network is not only crucial for MDSC survival and accumulation in the TME but also for enhancing immunosuppressive functions toward immune effectors. In this review, we discuss recent progress in the field of MDSC-associated metabolic pathways that could facilitate therapeutic targeting of these cells during cancer progression.


Assuntos
Terapia de Imunossupressão , Redes e Vias Metabólicas , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral/imunologia , Animais , Humanos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
8.
Front Immunol ; 11: 613069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584695

RESUMO

Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.


Assuntos
Neoplasias/imunologia , Proteínas/imunologia , Animais , Proliferação de Células/fisiologia , Humanos , Imunidade/imunologia , Imunomodulação/imunologia , Ativação Linfocitária/imunologia
9.
Front Oncol ; 10: 165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133298

RESUMO

Tumor metastases represent the major cause of cancer-related mortality, confirming the urgent need to identify key molecular pathways and cell-associated networks during the early phases of the metastatic process to develop new strategies to either prevent or control distal cancer spread. Several data revealed the ability of cancer cells to establish a favorable microenvironment, before their arrival in distant organs, by manipulating the cell composition and function of the new host tissue where cancer cells can survive and outgrow. This predetermined environment is termed "pre-metastatic niche" (pMN). pMN development requires that tumor-derived soluble factors, like cytokines, growth-factors and extracellular vesicles, genetically and epigenetically re-program not only resident cells (i.e., fibroblasts) but also non-resident cells such as bone marrow-derived cells. Indeed, by promoting an "emergency" myelopoiesis, cancer cells switch the steady state production of blood cells toward the generation of pro-tumor circulating myeloid cells defined as myeloid-derived suppressor cells (MDSCs) able to sustain tumor growth and dissemination. MDSCs are a heterogeneous subset of myeloid cells with immunosuppressive properties that sustain metastatic process. In this review, we discuss current understandings of how MDSCs shape and promote metastatic dissemination acting in each fundamental steps of cancer progression from primary tumor to metastatic disease.

10.
Front Immunol ; 10: 1786, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447834

RESUMO

Cancer immunotherapy relies on either restoring or activating the function of adaptive immune cells, mainly CD8+ T lymphocytes. Despite impressive clinical success, cancer immunotherapy remains ineffective in many patients due to the establishment of tumor resistance, largely dependent on the nature of tumor microenvironment. There are several cellular and molecular mechanisms at play, and the goal is to identify those that are clinically significant. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-tumoral function. Indeed, monocytes are involved in several cancer-associated processes such as immune-tolerance, metastatic spread, neoangiogenesis, and chemotherapy resistance; on the other hand, by presenting cancer-associated antigens, they can also promote and sustain anti-tumoral T cell response. Recently, by high throughput technologies, new findings have revealed previously underappreciated, profound transcriptional, epigenetic, and metabolic differences among monocyte subsets, which complement and expand our knowledge on the monocyte ontogeny, recruitment during steady state, and emergency hematopoiesis, as seen in cancer. The subdivision into discrete monocytes subsets, both in mice and humans, appears an oversimplification, whereas continuum subsets development is best for depicting the real condition. In this review, we examine the evidences sustaining the existence of a monocyte heterogeneity along with functional activities, at the primary tumor and at the metastatic niche. In particular, we describe how tumor-derived soluble factors and cell-cell contact reprogram monocyte function. Finally, we point out the role of monocytes in preparing and shaping the metastatic niche and describe relevant targetable molecules altering monocyte activities. We think that exploiting monocyte complexity can help identifying key pathways important for the treatment of cancer and several conditions where these cells are involved.


Assuntos
Monócitos/fisiologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Plasticidade Celular , Humanos , Imunoterapia , Monócitos/imunologia , Células Supressoras Mieloides/fisiologia , Neoplasias/imunologia , Neoplasias/terapia
11.
J Immunother Cancer ; 7(1): 255, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533831

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with an overall 5-year survival rate of less than 8%. New evidence indicates that PDAC cells release pro-inflammatory metabolites that induce a marked alteration of normal hematopoiesis, favoring the expansion and accumulation of myeloid-derived suppressor cells (MDSCs). We report here that PDAC patients show increased levels of both circulating and tumor-infiltrating MDSC-like cells. METHODS: The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in three independent cohorts of PDAC patients (total analyzed patients, n = 117). Frequency of circulating MDSCs was correlated with overall survival of PDAC patients. We also analyzed the frequency of tumor-infiltrating MDSC and the immune landscape in fresh biopsies. Purified myeloid cell subsets were tested in vitro for their T-cell suppressive capacity. RESULTS: Correlation with clinical data revealed that MDSC frequency was significantly associated with a shorter patients' overall survival and metastatic disease. However, the immunosuppressive activity of purified MDSCs was detectable only in some patients and mainly limited to the monocytic subset. A transcriptome analysis of the immunosuppressive M-MDSCs highlighted a distinct gene signature in which STAT3 was crucial for monocyte re-programming. Suppressive M-MDSCs can be characterized as circulating STAT3/arginase1-expressing CD14+ cells. CONCLUSION: MDSC analysis aids in defining the immune landscape of PDAC patients for a more appropriate diagnosis, stratification and treatment.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Pancreáticas/imunologia , Fator de Transcrição STAT3/metabolismo , Evasão Tumoral , Idoso , Idoso de 80 Anos ou mais , Arginase/imunologia , Arginase/metabolismo , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Separação Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Pâncreas/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Prognóstico , Estudos Prospectivos , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Análise de Sobrevida , Microambiente Tumoral/imunologia
12.
Vaccine ; 36(25): 3708-3716, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29752021

RESUMO

Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy.


Assuntos
Terapia Combinada/métodos , Células Dendríticas/imunologia , Células Epiteliais/transplante , Hipertermia Induzida/métodos , Imunoterapia/métodos , Neoplasias da Próstata/terapia , Linfócitos T Citotóxicos/imunologia , Animais , Antineoplásicos/farmacologia , Quimioterapia Adjuvante/métodos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Próstata/efeitos dos fármacos , Próstata/imunologia , Próstata/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Análise de Sobrevida , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Nat Commun ; 9(1): 5193, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518925

RESUMO

Immunosuppression is a hallmark of tumor progression, and treatments that inhibit or deplete monocytic myeloid-derived suppressive cells could promote anti-tumor immunity. c-FLIP is a central regulator of caspase-8-mediated apoptosis and necroptosis. Here we show that low-dose cytotoxic chemotherapy agents cause apoptosis linked to c-FLIP down-regulation selectively in monocytes. Enforced expression of c-FLIP or viral FLIP rescues monocytes from cytotoxicity and concurrently induces potent immunosuppressive activity, in T cell cultures and in vivo models of tumor progression and immunotherapy. FLIP-transduced human blood monocytes can suppress graft versus host disease. Neither expression of FLIP in granulocytes nor expression of other anti-apoptotic genes in monocytes conferred immunosuppression, suggesting that FLIP effects on immunosuppression are specific to monocytic lineage and distinct from death inhibition. Mechanistically, FLIP controls a broad transcriptional program, partially by NF-κB activation. Therefore, modulation of FLIP in monocytes offers a means to elicit or block immunosuppressive myeloid cells.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/imunologia , Infecções por Lentivirus/imunologia , Monócitos/imunologia , NF-kappa B/imunologia , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Células Cultivadas , Humanos , Terapia de Imunossupressão , Lentivirus/fisiologia , Infecções por Lentivirus/genética , Infecções por Lentivirus/fisiopatologia , Infecções por Lentivirus/virologia , Células Mieloides/imunologia , NF-kappa B/genética
14.
Stem Cells Dev ; 16(5): 797-810, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17999601

RESUMO

We show here that human and mouse mesenchymal stem cells (MSCs) can be obtained not only from bone marrow (BM), but also from adult spleen and thymus. In vitro, both human and mouse spleen- and thymus-derived MSCs exhibit immunophenotypic characteristics and differentiation potential completely comparable to BM-MSCs. In addition, they can inhibit immune responses mediated by activated T lymphocytes with efficiency comparable to BM-MSCs. In vivo, mouse MSCs from BM, spleen, and thymus, if injected together with a genetically modified tumor cell vaccine, can equally prevent the onset of an anti-tumor memory immune response, thus leading to tumor growth in normally resistant mice. Our data suggest that not only do spleen and thymus have a stem cell reservoir to build up their stromal architecture, but also contain microenviromental immunoregulatory cells with the same properties of BM-MSCs.


Assuntos
Envelhecimento , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Baço/citologia , Timo/citologia , Adulto , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Memória Imunológica/efeitos dos fármacos , Imunofenotipagem , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias/imunologia , Baço/efeitos dos fármacos , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Timo/efeitos dos fármacos
15.
Oncotarget ; 8(7): 11809-11826, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28107180

RESUMO

In the late B cell differentiation stages, miRNAs expression modifications promoting or inhibiting key pathways are only partially defined. We isolated 29 CD19+ human B cell samples at different stages of differentiation: B cells from peripheral blood; naïve, germinal center (GC) and subepithelial (SE) B cells from tonsils. SE cells were further split in activated and resting B cell. The miRNA expression profile of these B cells was assessed by microarray analysis and selected miRNAs were validated by quantitative RT-PCR and in situ hybridization on normal tonsils. The comparison of all samples showed changes in 107 miRNAs in total. Among 48 miRNAs differentially expressed in naïve, GC and SE cells, we identified 8 miRNAs: mir-323, mir-138, mir-9*, mir-211, mir-149, mir-373, mir-135a and mir-184, strictly specific to follicular cells that had never been implicated before in late stages of B cell development. Moreover, we unveiled 34 miRNAs able to discriminate between CD5- activated B cells and resting B cells. The miRNAs profile of CD5- resting B cells showed a higher similarity to naïve CD5+ than CD5- activated B cells. Finally, network analysis on shortest paths connecting gene targets suggested ZEB1 and TP53 as key miRNA targets during the follicular differentiation pathway. These data confirm and extend our knowledge on the miRNAs-related regulatory pathways involved in the late B cell maturation.


Assuntos
Linfócitos B/fisiologia , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Linfócitos B/citologia , Diferenciação Celular/fisiologia , Redes Reguladoras de Genes , Humanos , Estadiamento de Neoplasias , Proteína Supressora de Tumor p53/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
16.
Oncotarget ; 8(50): 86987-87001, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152058

RESUMO

Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

17.
Microbes Infect ; 8(6): 1424-33, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16702010

RESUMO

Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Animais , Antígenos CD4/imunologia , Células CHO , Fusão Celular/métodos , Cricetinae , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Imunização/métodos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Testes de Neutralização , Receptores CCR5/imunologia , Proteínas Recombinantes de Fusão/imunologia
18.
Cancer Res ; 76(9): 2540-51, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197263

RESUMO

Telomerase (TERT) is overexpressed in 80% to 90% of primary tumors and contributes to sustaining the transformed phenotype. The identification of several TERT epitopes in tumor cells has elevated the status of TERT as a potential universal target for selective and broad adoptive immunotherapy. TERT-specific cytotoxic T lymphocytes (CTL) have been detected in the peripheral blood of B-cell chronic lymphocytic leukemia (B-CLL) patients, but display low functional avidity, which limits their clinical utility in adoptive cell transfer approaches. To overcome this key obstacle hindering effective immunotherapy, we isolated an HLA-A2-restricted T-cell receptor (TCR) with high avidity for human TERT from vaccinated HLA-A*0201 transgenic mice. Using several relevant humanized mouse models, we demonstrate that TCR-transduced T cells were able to control human B-CLL progression in vivo and limited tumor growth in several human, solid transplantable cancers. TERT-based adoptive immunotherapy selectively eliminated tumor cells, failed to trigger a self-MHC-restricted fratricide of T cells, and was associated with toxicity against mature granulocytes, but not toward human hematopoietic progenitors in humanized immune reconstituted mice. These data support the feasibility of TERT-based adoptive immunotherapy in clinical oncology, highlighting, for the first time, the possibility of utilizing a high-avidity TCR specific for human TERT. Cancer Res; 76(9); 2540-51. ©2016 AACR.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante , Telomerase/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Leucemia Linfocítica Crônica de Células B , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
J Neuroimmunol ; 141(1-2): 83-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12965257

RESUMO

A previously isolated and characterized IgM monoclonal antibody (mAb 1H6.2) specific to myelin basic protein (MBP) and to MBP epitopes expressed by nonneural cells was used to immunoprecipitate and investigate the expression of MBP epitopes by human T cells. Peripheral T lymphocytes secreted MBP epitopes, and secretion increased in time after mitogen stimulation. Conversely, thymocytes secreted these proteins independently on mitogen stimulation. Specific antibody reactivity (primarily due to IgG3) towards immunoprecipitated MBP epitopes was found in all tested sera from healthy donors and from multiple sclerosis patients as well as in sera from normal human cord blood. Collectively, these data provide insights into the immunological mechanisms leading to central and peripheral tolerance to MBP products.


Assuntos
Autoanticorpos/sangue , Epitopos de Linfócito T/biossíntese , Epitopos de Linfócito T/imunologia , Proteína Básica da Mielina/imunologia , Proteína Básica da Mielina/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Especificidade de Anticorpos , Autoanticorpos/biossíntese , Sítios de Ligação de Anticorpos , Células Cultivadas , Pré-Escolar , Humanos , Soros Imunes/biossíntese , Soros Imunes/sangue , Imunidade Celular , Imunidade Inata , Imunoglobulina G/biossíntese , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Gamopatia Monoclonal de Significância Indeterminada/sangue , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Proteína Básica da Mielina/biossíntese
20.
Virchows Arch ; 444(3): 269-77, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14677066

RESUMO

Ampulla of Vater cancers (AVC) are of clinical relevance, as they represent more than one-third of patients undergoing surgery for pancreaticoduodenal malignancies and have a better prognosis than periampullary cancers of pancreaticobiliary origin. The availability of cellular models is crucial to perform cell biology and pharmacological studies and clarify the relationship between AVC and pancreatic and biliary cancers. Numerous cell lines are available for pancreatic and biliary adenocarcinomas, while only two have been reported recently for AVC. These were derived from a poor and a well-differentiated AVC, and both had wild-type K- ras and mutated p53. We report the establishment of a novel AVC cell line (AVC1) derived from a moderately differentiated cancer, having a mutated K- ras, wild-type p53, and methylated p16. Thus, our cell line adds to the spectrum of available in vitro models representative of the different morphological and molecular presentations of primary AVC. We further characterized AVC1 for the expression of relevant cell surface molecules and sensitivity to chemotherapeutic agents of common clinical use. It expresses MHC-I and CD95/Fas, while HLA-DR, CD40, CD80, CD86, MUC-1, MUC-2, and ICAM-1/CD54 are absent. It has a low to moderate sensitivity to both 5-FU and gemcitabine, at variance with much higher sensitivity displayed by two pancreatic ductal carcinoma cell lines. Lastly, AVC1 can be readily xenografted in immunodeficient mice, making it a suitable model for pre-clinical studies.


Assuntos
Adenocarcinoma , Ampola Hepatopancreática , Neoplasias do Ducto Colédoco , Desoxicitidina/análogos & derivados , Células Tumorais Cultivadas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Adesão Celular , Neoplasias do Ducto Colédoco/tratamento farmacológico , Neoplasias do Ducto Colédoco/genética , Neoplasias do Ducto Colédoco/patologia , Metilação de DNA , Desoxicitidina/uso terapêutico , Fluoruracila/uso terapêutico , Genes p16 , Genes p53/genética , Genes ras/genética , Humanos , Imunofenotipagem , Interferon gama/farmacologia , Cariotipagem , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Ploidias , Transplante Heterólogo , Gencitabina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa