Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541199

RESUMO

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteogenômica , Feminino , Humanos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
2.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
4.
Cell ; 158(3): 534-48, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25018104

RESUMO

Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators-KIRAs-that allosterically inhibit IRE1α's RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic ß cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Regulação Alostérica , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Endorribonucleases/química , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Retina/metabolismo , Ribonucleases/antagonistas & inibidores
5.
Nucleic Acids Res ; 51(D1): D1405-D1416, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36624666

RESUMO

The Illuminating the Druggable Genome (IDG) project aims to improve our understanding of understudied proteins and our ability to study them in the context of disease biology by perturbing them with small molecules, biologics, or other therapeutic modalities. Two main products from the IDG effort are the Target Central Resource Database (TCRD) (http://juniper.health.unm.edu/tcrd/), which curates and aggregates information, and Pharos (https://pharos.nih.gov/), a web interface for fusers to extract and visualize data from TCRD. Since the 2021 release, TCRD/Pharos has focused on developing visualization and analysis tools that help reveal higher-level patterns in the underlying data. The current iterations of TCRD and Pharos enable users to perform enrichment calculations based on subsets of targets, diseases, or ligands and to create interactive heat maps and UpSet charts of many types of annotations. Using several examples, we show how to address disease biology and drug discovery questions through enrichment calculations and UpSet charts.


Assuntos
Bases de Dados Factuais , Terapia de Alvo Molecular , Proteoma , Humanos , Produtos Biológicos , Descoberta de Drogas , Internet , Proteoma/efeitos dos fármacos
6.
PLoS Comput Biol ; 19(11): e1011672, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37992014

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1010263.].

7.
PLoS Comput Biol ; 19(5): e1010263, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37235579

RESUMO

PNCK, or CAMK1b, is an understudied kinase of the calcium-calmodulin dependent kinase family which recently has been identified as a marker of cancer progression and survival in several large-scale multi-omics studies. The biology of PNCK and its relation to oncogenesis has also begun to be elucidated, with data suggesting various roles in DNA damage response, cell cycle control, apoptosis and HIF-1-alpha related pathways. To further explore PNCK as a clinical target, potent small-molecule molecular probes must be developed. Currently, there are no targeted small molecule inhibitors in pre-clinical or clinical studies for the CAMK family. Additionally, there exists no experimentally derived crystal structure for PNCK. We herein report a three-pronged chemical probe discovery campaign which utilized homology modeling, machine learning, virtual screening and molecular dynamics to identify small molecules with low-micromolar potency against PNCK activity from commercially available compound libraries. We report the discovery of a hit-series for the first targeted effort towards discovering PNCK inhibitors that will serve as the starting point for future medicinal chemistry efforts for hit-to-lead optimization of potent chemical probes.


Assuntos
Cálcio , Calmodulina , Inteligência Artificial
8.
Nucleic Acids Res ; 50(W1): W697-W709, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35524556

RESUMO

Millions of transcriptome samples were generated by the Library of Integrated Network-based Cellular Signatures (LINCS) program. When these data are processed into searchable signatures along with signatures extracted from Genotype-Tissue Expression (GTEx) and Gene Expression Omnibus (GEO), connections between drugs, genes, pathways and diseases can be illuminated. SigCom LINCS is a webserver that serves over a million gene expression signatures processed, analyzed, and visualized from LINCS, GTEx, and GEO. SigCom LINCS is built with Signature Commons, a cloud-agnostic skeleton Data Commons with a focus on serving searchable signatures. SigCom LINCS provides a rapid signature similarity search for mimickers and reversers given sets of up and down genes, a gene set, a single gene, or any search term. Additionally, users of SigCom LINCS can perform a metadata search to find and analyze subsets of signatures and find information about genes and drugs. SigCom LINCS is findable, accessible, interoperable, and reusable (FAIR) with metadata linked to standard ontologies and vocabularies. In addition, all the data and signatures within SigCom LINCS are available via a well-documented API. In summary, SigCom LINCS, available at https://maayanlab.cloud/sigcom-lincs, is a rich webserver resource for accelerating drug and target discovery in systems pharmacology.


Assuntos
Metadados , Transcriptoma , Transcriptoma/genética , Ferramenta de Busca
9.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473785

RESUMO

Deep learning is a machine learning technique to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. Here, we report a large-scale study to predict the activity of small molecules across the human kinome-a major family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors exhibit impressive clinical efficacy in several different diseases, resistance often arises through adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant diseases. Their development would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural networks outperformed classical single-task methods, offering the potential for conducting large-scale virtual screening, predicting activity profiles, and bridging the gaps in the available data.


Assuntos
Aprendizado Profundo , Humanos , Fosfotransferases , Descoberta de Drogas/métodos , Polifarmacologia , Aprendizado de Máquina
10.
Nucleic Acids Res ; 49(D1): D1334-D1346, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33156327

RESUMO

In 2014, the National Institutes of Health (NIH) initiated the Illuminating the Druggable Genome (IDG) program to identify and improve our understanding of poorly characterized proteins that can potentially be modulated using small molecules or biologics. Two resources produced from these efforts are: The Target Central Resource Database (TCRD) (http://juniper.health.unm.edu/tcrd/) and Pharos (https://pharos.nih.gov/), a web interface to browse the TCRD. The ultimate goal of these resources is to highlight and facilitate research into currently understudied proteins, by aggregating a multitude of data sources, and ranking targets based on the amount of data available, and presenting data in machine learning ready format. Since the 2017 release, both TCRD and Pharos have produced two major releases, which have incorporated or expanded an additional 25 data sources. Recently incorporated data types include human and viral-human protein-protein interactions, protein-disease and protein-phenotype associations, and drug-induced gene signatures, among others. These aggregated data have enabled us to generate new visualizations and content sections in Pharos, in order to empower users to find new areas of study in the druggable genome.


Assuntos
Bases de Dados Factuais , Genoma Humano , Doenças Neurodegenerativas/genética , Proteômica/métodos , Software , Viroses/genética , Animais , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Antivirais/química , Antivirais/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Mineração de Dados/estatística & dados numéricos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Internet , Aprendizado de Máquina/estatística & dados numéricos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Doenças Neurodegenerativas/classificação , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/virologia , Mapeamento de Interação de Proteínas , Proteoma/agonistas , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Viroses/classificação , Viroses/tratamento farmacológico , Viroses/virologia
11.
Semin Cancer Biol ; 68: 132-142, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904426

RESUMO

Knowledge of the underpinnings of cancer initiation, progression and metastasis has increased exponentially in recent years. Advanced "omics" coupled with machine learning and artificial intelligence (deep learning) methods have helped elucidate targets and pathways critical to those processes that may be amenable to pharmacologic modulation. However, the current anti-cancer therapeutic armamentarium continues to lag behind. As the cost of developing a new drug remains prohibitively expensive, repurposing of existing approved and investigational drugs is sought after given known safety profiles and reduction in the cost barrier. Notably, successes in oncologic drug repurposing have been infrequent. Computational in-silico strategies have been developed to aid in modeling biological processes to find new disease-relevant targets and discovering novel drug-target and drug-phenotype associations. Machine and deep learning methods have especially enabled leaps in those successes. This review will discuss these methods as they pertain to cancer biology as well as immunomodulation for drug repurposing opportunities in oncologic diseases.


Assuntos
Antineoplásicos/uso terapêutico , Biologia Computacional/métodos , Aprendizado Profundo , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Aprendizado de Máquina , Neoplasias/tratamento farmacológico , Animais , Inteligência Artificial , Humanos
12.
Nucleic Acids Res ; 48(W1): W85-W93, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32469073

RESUMO

Rapid progress in proteomics and large-scale profiling of biological systems at the protein level necessitates the continued development of efficient computational tools for the analysis and interpretation of proteomics data. Here, we present the piNET server that facilitates integrated annotation, analysis and visualization of quantitative proteomics data, with emphasis on PTM networks and integration with the LINCS library of chemical and genetic perturbation signatures in order to provide further mechanistic and functional insights. The primary input for the server consists of a set of peptides or proteins, optionally with PTM sites, and their corresponding abundance values. Several interconnected workflows can be used to generate: (i) interactive graphs and tables providing comprehensive annotation and mapping between peptides and proteins with PTM sites; (ii) high resolution and interactive visualization for enzyme-substrate networks, including kinases and their phospho-peptide targets; (iii) mapping and visualization of LINCS signature connectivity for chemical inhibitors or genetic knockdown of enzymes upstream of their target PTM sites. piNET has been built using a modular Spring-Boot JAVA platform as a fast, versatile and easy to use tool. The Apache Lucene indexing is used for fast mapping of peptides into UniProt entries for the human, mouse and other commonly used model organism proteomes. PTM-centric network analyses combine PhosphoSitePlus, iPTMnet and SIGNOR databases of validated enzyme-substrate relationships, for kinase networks augmented by DeepPhos predictions and sequence-based mapping of PhosphoSitePlus consensus motifs. Concordant LINCS signatures are mapped using iLINCS. For each workflow, a RESTful API counterpart can be used to generate the results programmatically in the json format. The server is available at http://pinet-server.org, and it is free and open to all users without login requirement.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica/métodos , Software , Animais , Gráficos por Computador , Enzimas/metabolismo , Humanos , Internet , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Fluxo de Trabalho
13.
Nucleic Acids Res ; 48(D1): D431-D439, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31701147

RESUMO

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program with the goal of generating a large-scale and comprehensive catalogue of perturbation-response signatures by utilizing a diverse collection of perturbations across many model systems and assay types. The LINCS Data Portal (LDP) has been the primary access point for the compendium of LINCS data and has been widely utilized. Here, we report the first major update of LDP (http://lincsportal.ccs.miami.edu/signatures) with substantial changes in the data architecture and APIs, a completely redesigned user interface, and enhanced curated metadata annotations to support more advanced, intuitive and deeper querying, exploration and analysis capabilities. The cornerstone of this update has been the decision to reprocess all high-level LINCS datasets and make them accessible at the data point level enabling users to directly access and download any subset of signatures across the entire library independent from the originating source, project or assay. Access to the individual signatures also enables the newly implemented signature search functionality, which utilizes the iLINCS platform to identify conditions that mimic or reverse gene set queries. A newly designed query interface enables global metadata search with autosuggest across all annotations associated with perturbations, model systems, and signatures.


Assuntos
Biologia Celular , Bases de Dados Factuais , Ensaios Clínicos como Assunto , Biologia Computacional , Curadoria de Dados , Humanos , Armazenamento e Recuperação da Informação , Metadados , National Institutes of Health (U.S.) , Estados Unidos , Interface Usuário-Computador
14.
PLoS Biol ; 16(12): e3000067, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532236

RESUMO

This Formal Comment responds to a recent Meta-Research Article by identifying initiatives that are already in place for funding risky exploratory research that illuminate mysteries of the dark genome.


Assuntos
Genoma , Pesquisa
15.
Nucleic Acids Res ; 47(D1): D963-D970, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371892

RESUMO

DrugCentral is a drug information resource (http://drugcentral.org) open to the public since 2016 and previously described in the 2017 Nucleic Acids Research Database issue. Since the 2016 release, 103 new approved drugs were updated. The following new data sources have been included: Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), FDA Orange Book information, L1000 gene perturbation profile distance/similarity matrices and estimated protonation constants. New and existing entries have been updated with the latest information from scientific literature, drug labels and external databases. The web interface has been updated to display and query new data. The full database dump and data files are available for download from the DrugCentral website.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Aprovação de Drogas/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Expressão Gênica/efeitos dos fármacos , Preparações Farmacêuticas/classificação , Proteínas/classificação
16.
Nucleic Acids Res ; 46(D1): D558-D566, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140462

RESUMO

The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging. The Big Data to Knowledge (BD2K) LINCS Data Coordination and Integration Center (DCIC) has developed data standards specifications, data processing pipelines, and a suite of end-user software tools to integrate and annotate LINCS-generated data, to make LINCS signatures searchable and usable for different types of users. Here, we describe the LINCS Data Portal (LDP) (http://lincsportal.ccs.miami.edu/), a unified web interface to access datasets generated by the LINCS DSGCs, and its underlying database, LINCS Data Registry (LDR). LINCS data served on the LDP contains extensive metadata and curated annotations. We highlight the features of the LDP user interface that is designed to enable search, browsing, exploration, download and analysis of LINCS data and related curated content.


Assuntos
Bases de Dados Factuais , Biologia Celular , Biologia Computacional , Curadoria de Dados , Bases de Dados Genéticas , Epigenômica , Humanos , Metadados , Proteômica , Software , Biologia de Sistemas , Interface Usuário-Computador
17.
BMC Bioinformatics ; 20(Suppl 5): 180, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31272389

RESUMO

BACKGROUND: Stem cells and stem cell lines are widely used in biomedical research. The Cell Ontology (CL) and Cell Line Ontology (CLO) are two community-based OBO Foundry ontologies in the domains of in vivo cells and in vitro cell line cells, respectively. RESULTS: To support standardized stem cell investigations, we have developed an Ontology for Stem Cell Investigations (OSCI). OSCI imports stem cell and cell line terms from CL and CLO, and investigation-related terms from existing ontologies. A novel focus of OSCI is its application in representing metadata types associated with various stem cell investigations. We also applied OSCI to systematically categorize experimental variables in an induced pluripotent stem cell line cell study related to bipolar disorder. In addition, we used a semi-automated literature mining approach to identify over 200 stem cell gene markers. The relations between these genes and stem cells are modeled and represented in OSCI. CONCLUSIONS: OSCI standardizes stem cells found in vivo and in vitro and in various stem cell investigation processes and entities. The presented use cases demonstrate the utility of OSCI in iPSC studies and literature mining related to bipolar disorder.


Assuntos
Ontologias Biológicas , Pesquisa Biomédica/normas , Animais , Humanos , Células-Tronco
18.
Nucleic Acids Res ; 45(D1): D995-D1002, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27903890

RESUMO

The 'druggable genome' encompasses several protein families, but only a subset of targets within them have attracted significant research attention and thus have information about them publicly available. The Illuminating the Druggable Genome (IDG) program was initiated in 2014, has the goal of developing experimental techniques and a Knowledge Management Center (KMC) that would collect and organize information about protein targets from four families, representing the most common druggable targets with an emphasis on understudied proteins. Here, we describe two resources developed by the KMC: the Target Central Resource Database (TCRD) which collates many heterogeneous gene/protein datasets and Pharos (https://pharos.nih.gov), a multimodal web interface that presents the data from TCRD. We briefly describe the types and sources of data considered by the KMC and then highlight features of the Pharos interface designed to enable intuitive access to the IDG knowledgebase. The aim of Pharos is to encourage 'serendipitous browsing', whereby related, relevant information is made easily discoverable. We conclude by describing two use cases that highlight the utility of Pharos and TCRD.


Assuntos
Bases de Dados Genéticas , Descoberta de Drogas , Genômica , Farmacogenética , Ferramenta de Busca , Análise por Conglomerados , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Genômica/métodos , Humanos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Farmacogenética/métodos , Software , Navegador
19.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018579

RESUMO

The Toxicology in the 21st Century (Tox21) project seeks to develop and test methods for high-throughput examination of the effect certain chemical compounds have on biological systems. Although primary and toxicity assay data were readily available for multiple reporter gene modified cell lines, extensive annotation and curation was required to improve these datasets with respect to how FAIR (Findable, Accessible, Interoperable, and Reusable) they are. In this study, we fully annotated the Tox21 published data with relevant and accepted controlled vocabularies. After removing unreliable data points, we aggregated the results and created three sets of signatures reflecting activity in the reporter gene assays, cytotoxicity, and selective reporter gene activity, respectively. We benchmarked these signatures using the chemical structures of the tested compounds and obtained generally high receiver operating characteristic (ROC) scores, suggesting good quality and utility of these signatures and the underlying data. We analyzed the results to identify promiscuous individual compounds and chemotypes for the three signature categories and interpreted the results to illustrate the utility and re-usability of the datasets. With this study, we aimed to demonstrate the importance of data standards in reporting screening results and high-quality annotations to enable re-use and interpretation of these data. To improve the data with respect to all FAIR criteria, all assay annotations, cleaned and aggregate datasets, and signatures were made available as standardized dataset packages (Aggregated Tox21 bioactivity data, 2019).


Assuntos
Curadoria de Dados/estatística & dados numéricos , Regulação da Expressão Gênica/efeitos dos fármacos , Metadados/normas , Farmacogenética/métodos , Toxicologia/métodos , Xenobióticos/toxicidade , Benchmarking , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala/normas , Humanos , Xenobióticos/química , Xenobióticos/classificação
20.
Bioinformatics ; 33(16): 2601-2603, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28398460

RESUMO

MOTIVATION: The increasing amount of peer-reviewed manuscripts requires the development of specific mining tools to facilitate the visual exploration of evidence linking diseases and proteins. RESULTS: We developed TIN-X, the Target Importance and Novelty eXplorer, to visualize the association between proteins and diseases, based on text mining data processed from scientific literature. In the current implementation, TIN-X supports exploration of data for G-protein coupled receptors, kinases, ion channels, and nuclear receptors. TIN-X supports browsing and navigating across proteins and diseases based on ontology classes, and displays a scatter plot with two proposed new bibliometric statistics: Importance and Novelty. AVAILABILITY AND IMPLEMENTATION: http://www.newdrugtargets.org. CONTACT: cbologa@salud.unm.edu.


Assuntos
Mineração de Dados/métodos , Doença/etiologia , Software , Ontologias Biológicas , Gráficos por Computador , Humanos , Canais Iônicos/metabolismo , Fosfotransferases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa