Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Drug Metab Dispos ; 46(8): 1179-1189, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29880631

RESUMO

We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion-transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP), and talinolol (P-gp) were obtained in cynomolgus monkey-alone or in combination with transporter inhibitors. Single-dose rifampicin (30 mg/kg) significantly (P < 0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin [area under the plasma concentration-time curve (AUC) ratio ∼21-39]. Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (P < 0.05) impacted the renal clearance of rosuvastatin (∼8-fold). In vitro, rifampicin (10 µM) inhibited uptake of pitavastatin, rosuvastatin, and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP, whereas talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions.


Assuntos
Transporte Biológico/fisiologia , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células HEK293 , Hepatócitos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica/fisiologia , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
2.
J Clin Pharmacol ; 64(1): 67-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691236

RESUMO

Ritlecitinib is a small molecule in clinical development that covalently and irreversibly inhibits Janus kinase 3 (JAK3) and the TEC family of kinases (BTK, BMX, ITK, TXK, and TEC). This phase 1, open-label, parallel-group study assessed target occupancy and functional effects of ritlecitinib on JAK3 and TEC family kinases in healthy participants aged 18-60 years who received 50 or 200 mg single doses of ritlecitinib on day 1. Blood samples to assess ritlecitinib pharmacokinetics, target occupancy, and pharmacodynamics were collected over 48 hours. Target occupancy was assessed using mass spectroscopy. Functional inhibition of JAK3-dependent signaling was measured by the inhibition of the phosphorylation of its downstream target signal transducer and activator of transcription 5 (pSTAT5), following activation by interleukin 15 (IL-15). The functional inhibition of Bruton's tyrosine kinase (BTK)-dependent signaling was measured by the reduction in the upregulation of cluster of differentiation 69 (CD69), an early marker of B-cell activation, following treatment with anti-immunoglobulin D. Eight participants received one 50 mg ritlecitinib dose and 8 participants received one 200 mg dose. Ritlecitinib plasma exposure increased in an approximately dose-proportional manner from 50 to 200 mg. The maximal median JAK3 target occupancy was 72% for 50 mg and 64% for 200 mg. Ritlecitinib 50 mg had >94% maximal target occupancy of all TEC kinases, except BMX (87%), and 200 mg had >97% for all TEC kinases. For BTK and TEC, ritlecitinib maintained high target occupancy throughout a period of 48 hours. Ritlecitinib reduced pSTAT5 levels following IL-15- and BTK-dependent signaling in a dose-dependent manner. These target occupancy and functional assays demonstrate the dual inhibition of the JAK3- and BTK-dependent pathways by ritlecitinib. Further studies are needed to understand the contribution to clinical effects of inhibiting these pathways.


Assuntos
Interleucina-15 , Janus Quinase 3 , Humanos , Tirosina Quinase da Agamaglobulinemia , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Fatores Imunológicos
3.
Am J Clin Nutr ; 117(3): 529-539, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36811472

RESUMO

BACKGROUND: Elevated BCAA levels are strongly associated with diabetes, but how diabetes affects BCAA, branched-chain ketoacids (BCKAs), and the broader metabolome after a meal is not well known. OBJECTIVE: To compare quantitative BCAA and BCKA levels in a multiracial cohort with and without diabetes after a mixed meal tolerance test (MMTT) as well as to explore the kinetics of additional metabolites and their associations with mortality in self-identified African Americans. METHODS: We administered an MMTT to 11 participants without obesity or diabetes and 13 participants with diabetes (treated with metformin only) and measured the levels of BCKAs, BCAAs, and 194 other metabolites at 8 time points across 5 h. We used mixed models for repeated measurements to compare between group metabolite differences at each timepoint with adjustment for baseline. We then evaluated the association of top metabolites with different kinetics with all-cause mortality in the Jackson Heart Study (JHS) (N = 2441). RESULTS: BCAA levels, after adjustment for baseline, were similar at all timepoints between groups, but adjusted BCKA kinetics were different between groups for α-ketoisocaproate (P = 0.022) and α-ketoisovalerate (P = 0.021), most notably diverging at 120 min post-MMTT. An additional 20 metabolites had significantly different kinetics across timepoints between groups, and 9 of these metabolites-including several acylcarnitines-were significantly associated with mortality in JHS, irrespective of diabetes status. The highest quartile of a composite metabolite risk score was associated with higher mortality (HR:1.57; 1.20, 2.05, P = 0.00094) than the lowest quartile. CONCLUSIONS: BCKA levels remained elevated after an MMTT among participants with diabetes, suggesting that BCKA catabolism may be a key dysregulated process in the interaction of BCAA and diabetes. Metabolites with different kinetics after an MMTT may be markers of dysmetabolism and associated with increased mortality in self-identified African Americans.


Assuntos
Aminoácidos de Cadeia Ramificada , Diabetes Mellitus , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Fatores de Risco , Obesidade/metabolismo , Metaboloma
4.
Nat Commun ; 14(1): 4812, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558654

RESUMO

Branched chain amino acid (BCAA) catabolic impairments have been implicated in several diseases. Branched chain ketoacid dehydrogenase (BCKDH) controls the rate limiting step in BCAA degradation, the activity of which is inhibited by BCKDH kinase (BDK)-mediated phosphorylation. Screening efforts to discover BDK inhibitors led to identification of thiophene PF-07208254, which improved cardiometabolic endpoints in mice. Structure-activity relationship studies led to identification of a thiazole series of BDK inhibitors; however, these inhibitors did not improve metabolism in mice upon chronic administration. While the thiophenes demonstrated sustained branched chain ketoacid (BCKA) lowering and reduced BDK protein levels, the thiazoles increased BCKAs and BDK protein levels. Thiazoles increased BDK proximity to BCKDH-E2, whereas thiophenes reduced BDK proximity to BCKDH-E2, which may promote BDK degradation. Thus, we describe two BDK inhibitor series that possess differing attributes regarding BDK degradation or stabilization and provide a mechanistic understanding of the desirable features of an effective BDK inhibitor.


Assuntos
Aminoácidos de Cadeia Ramificada , Tiofenos , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Fosforilação , Tiofenos/farmacologia , Oxirredutases/metabolismo
5.
Mol Metab ; 66: 101611, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36220546

RESUMO

OBJECTIVE: Branched chain amino acid (BCAA) catabolic defects are implicated to be causal determinates of multiple diseases. This work aimed to better understand how enhancing BCAA catabolism affected metabolic homeostasis as well as the mechanisms underlying these improvements. METHODS: The rate limiting step of BCAA catabolism is the irreversible decarboxylation by the branched chain ketoacid dehydrogenase (BCKDH) enzyme complex, which is post-translationally controlled through phosphorylation by BCKDH kinase (BDK). This study utilized BT2, a small molecule allosteric inhibitor of BDK, in multiple mouse models of metabolic dysfunction and NAFLD including the high fat diet (HFD) model with acute and chronic treatment paradigms, the choline deficient and methionine minimal high fat diet (CDAHFD) model, and the low-density lipoprotein receptor null mouse model (Ldlr-/-). shRNA was additionally used to knock down BDK in liver to elucidate liver-specific effects of BDK inhibition in HFD-fed mice. RESULTS: A rapid improvement in insulin sensitivity was observed in HFD-fed and lean mice after BT2 treatment. Resistance to steatosis was assessed in HFD-fed mice, CDAHFD-fed mice, and Ldlr-/- mice. In all cases, BT2 treatment reduced steatosis and/or inflammation. Fasting and refeeding demonstrated a lack of response to feeding-induced changes in plasma metabolites including insulin and beta-hydroxybutyrate and hepatic gene changes in BT2-treated mice. Mechanistically, BT2 treatment acutely altered the expression of genes involved in fatty acid oxidation and lipogenesis in liver, and upstream regulator analysis suggested that BT2 treatment activated PPARα. However, BT2 did not directly activate PPARα in vitro. Conversely, shRNA-AAV-mediated knockdown of BDK specifically in liver in vivo did not demonstrate any effects on glycemia, steatosis, or PPARα-mediated gene expression in mice. CONCLUSIONS: These data suggest that BT2 treatment acutely improves metabolism and liver steatosis in multiple mouse models. While many molecular changes occur in liver in BT2-treated mice, these changes were not observed in mice with AAV-mediated shRNA knockdown of BDK. All together, these data suggest that systemic BDK inhibition is required to improve metabolism and steatosis by prolonging a fasting signature in a paracrine manner. Therefore, BCAA may act as a "fed signal" to promote nutrient storage and reduced systemic BCAA levels as shown in this study via BDK inhibition may act as a "fasting signal" to prolong the catabolic state.


Assuntos
Fígado Gorduroso , PPAR alfa , Animais , Camundongos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Jejum , Camundongos Knockout , RNA Interferente Pequeno
6.
ACS Chem Neurosci ; 9(11): 2832-2837, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29893546

RESUMO

Cognitive decline and psychosis have been hypothesized to be mediated by N-methyl-d-aspartate receptor (NMDAR) hypofunction. Consistent with this hypothesis, chronic treatment with d-alanine, a coagonist at the glycine site of the NMDAR, leads to an improvement of positive and cognitive symptoms in schizophrenic patients. d-alanine is oxidized by d-amino acid oxidase (DAAO); thus, an inhibitor of DAAO would be expected to enhance d-alanine levels and likewise lead to desirable clinical outcomes. Sodium benzoate, on the basis of d-amino acid inhibition, was observed to display beneficial clinical effects in schizophrenic and Alzheimer's patients. However, in the clinical pilot studies using sodium benzoate, d-amino acids were not quantified to verify that sodium benzoate's efficacy was mediated through DAAO inhibition. In this study, d-alanine content was monitored in cerebral spinal fluid (CSF) of dogs treated with daily injections of d-alanine (30 mg/kg) alone and in combination with sodium benzoate (30 mg/kg) for seven consecutive days. We reasoned that the cerebral spinal fluid d-alanine quantity is reflective of the brain d-alanine levels and it would increase as a consequence of DAAO inhibition with sodium benzoate. We found that d-alanine treatment lead to maximal concentration of 7.51 µM CSF d-alanine level; however, coadministration of sodium benzoate and d-alanine did not change CSF d-alanine level beyond that of d-alanine treatment alone. As a consequence, we conclude that clinical efficacy associated with chronic administration of sodium benzoate in schizophrenic and Alzheimer's patients is likely not mediated through inhibition of DAAO.


Assuntos
Alanina/efeitos dos fármacos , Benzoato de Sódio/farmacologia , Alanina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Ácido Benzoico/líquido cefalorraquidiano , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , D-Aminoácido Oxidase/antagonistas & inibidores , Cães , Humanos , Receptores de N-Metil-D-Aspartato/agonistas , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Resultado do Tratamento
7.
Bioanalysis ; 10(9): 645-657, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29749252

RESUMO

AIM: Selected bile acids (BAs) in plasma have been proposed as endogenous probes for assessing drug-drug interactions involving hepatic drug transporters such as the organic anion-transporting polypeptides (OATP1B1 and OATP1B3). MATERIALS & METHODS: Plasma extracts were analyzed for selected BAs using a triple TOF API6600 high-resolution mass spectrometer. RESULTS: Glycodeoxycholic acid 3-sulfate, glycochenodeoxycholic acid 3-sulfate, glycodeoxycholic acid 3-O-ß-glucuronide and glycochenodeoxycholic acid 3-O-ß-glucuronide are presented as potential OATP1B1/3 biomarkers. CONCLUSION: Six BAs are quantified in human plasma using a multiplexed high-resolution mass spectrometry method. Glycodeoxycholic acid 3-sulfate and glycodeoxycholic acid 3-O-ß-glucuronide are proposed as potential biomarkers based on observed four- to fivefold increase in plasma AUC (vs placebo), following administration of a compound known to present as an OATP1B1/3 inhibitor in vitro.


Assuntos
Biomarcadores Farmacológicos/sangue , Ácido Glicodesoxicólico/sangue , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Área Sob a Curva , Cromatografia Líquida , Interações Medicamentosas , Feminino , Ácido Glicodesoxicólico/análogos & derivados , Humanos , Masculino , Espectrometria de Massas/métodos , Preparações Farmacêuticas/metabolismo , Sensibilidade e Especificidade
8.
Cancer Biol Ther ; 7(10): 1570-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18769117

RESUMO

Histone deacetylase 3 (HDAC3) is overexpressed in approximately half of all colon adenocarcinomas. We took an RNAi approach to determine how HDAC3 influenced chromatin modifications and the expression of growth regulatory genes in colon cancer cells. A survey of histone modifications revealed that HDAC3 knockdown in SW480 cells significantly increased histone H4-K12 acetylation, a modification present during chromatin assembly that has been implicated in imprinting. This modification was found to be most prominent in proliferating cells in the intestinal crypt and in APC(Min) tumors, but was less pronounced in the tumors that overexpress HDAC3. Gene expression profiling of SW480 revealed that HDAC3 shRNA impacted the expression of genes in the Wnt and vitamin D signaling pathways. The impact of HDAC3 on Wnt signaling was complex, with both positive and negative effects observed. However, long-term knockdown of HDAC3 suppressed beta-catenin translocation from the plasma membrane to the nucleus, and increased expression of Wnt inhibitors TLE1, TLE4 and SMO. HDAC3 knockdown also enhanced expression of the TLE1 and TLE4 repressors in HT-29 and HCT116 cells. HDAC3 shRNA enhanced expression of the vitamin D receptor in SW480 and HCT116 cells, and rendered SW480 cells sensitive to 1,25-dihydroxyvitamin D3. We propose that HDAC3 overexpression alters the epigenetic programming of colon cancer cells to impact intracellular Wnt signaling and their sensitivity to external growth regulation by vitamin D.


Assuntos
Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Vitamina D/metabolismo , Proteínas Wnt/metabolismo , Butiratos/farmacologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica/métodos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa