Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
J Sci Food Agric ; 103(8): 4195-4202, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36637051

RESUMO

BACKGROUND: Binders in plant-based meat analogues allow different components, such as extrudate and fat particles, to stick together. Typically, binders then are solidified to transform the mass into a non-sticky, solid product. As an option for a clean-label binder possessing such properties, the solidification behavior of pea protein-pectin mixtures (250 g kg-1 , r = 2:1, pH 6) was investigated upon heating, and upon addition of calcium, transglutaminase, and laccase, or by combinations thereof. RESULTS: Mixtures of (homogenized) pea protein and apple pectin had higher elastic moduli and consistency coefficients and lower frequency dependencies upon calcium addition. This indicated that calcium physically cross-linked pectin chains that formed the continuous phase in the biopolymer matrix. The highest degree of solidification was obtained with a mixture of pea protein and sugar beet pectin upon addition of laccase that covalently cross-linked both biopolymers involved. All solidified mixtures lost their stickiness. A mixture of soluble pea protein and apple pectin solidified only slightly through calcium and transglutaminase, probably due to differences in the microstructural arrangement of the biopolymers. CONCLUSION: The chemical makeup of the biopolymers and their spatial distribution determines solidification behavior in concentrated biopolymer mixtures. In general, pea protein-pectin mixtures can solidify and therefore have the potential to act as binders in meat analogues. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Proteínas de Ervilha , Pectinas , Pectinas/química , Cálcio , Lacase/química , Biopolímeros/química
2.
Compr Rev Food Sci Food Saf ; 22(4): 3366-3394, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306532

RESUMO

Meat color is an important aspect for the meat industry since it strongly determines the consumers' perception of product quality and thereby significantly influences the purchase decision. Emergence of new vegan meat analogs has renewed interest in the fundamental aspects of meat color in order to replicate it. The appearance of meat is based on a complex interplay between the pigment-based meat color from myoglobin and its chemical forms and light scattering from the muscle's microstructure. While myoglobin biochemistry and pigment-based meat color have been extensively studied, research on the physicochemical contribution of light scattering to meat color and the special case of structural colors causing meat iridescence has received only little attention. Former review articles focused mostly on the biochemical or physical mechanisms rather than the interplay between them, in particular the role that structural colors play. While from an economic point of view, meat iridescence might be considered negligible, an enhanced understanding of the underlying mechanisms and the interactions of light with meat microstructures can improve our overall understanding of meat color. Therefore, this review discusses both biochemical and physicochemical aspects of meat color including the origin of structural colors, highlights new color measurement methodologies suitable to investigate color phenomena such as meat iridescence, and finally presents approaches to modulate meat color in terms of base composition, additives, and processing.


Assuntos
Iridescência , Mioglobina , Mioglobina/química , Carne/análise , Cor , Comportamento do Consumidor
3.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997311

RESUMO

Besides the flavor profile of food, texture plays a major role in terms of the acceptance and likeability of food products. In contrast to gel-like homogenous isotropic structures, where the characterization is established and structure-texture mechanisms are well understood, there is still a lack of knowledge in the field of anisotropic complex food matrices. Food systems that show anisotropic properties in terms of macroscopic mechanical anisotropy as in grown meat, or mixed complex systems where anisotropic shaped particles or fibers are embedded into an isotropic matrix are challenging to characterize, hence the structure-texture correlation is not trivial to understand. In this paper, we bring together the state of the art of different anisotropic structures as a source of food, their formation in terms of structured plant proteins, and consequently the structure-texture correlation of those. Characteristic terms and properties to differentiate between anisotropic systems are introduced with the purpose to facilitate characterization of those. Based on the here provided terms and characteristics, further studies toward understanding such systems and their perception can be conducted. Beyond that, a first opinion on crucial influencing factors on the perception of anisotropic systems and their mechanistic background is provided.

4.
J Sci Food Agric ; 102(3): 1021-1029, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34312871

RESUMO

BACKGROUND: The use of plant proteins as food ingredients might be limited due to the presence of foreign or 'off' flavors, which may evolve during extraction and subsequent processing. In this study, the influence of dry (TVP) and wet (WTP) texturization on characteristic volatile compounds of two different pea protein isolates was assessed using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) after direct immersion stir bar sorptive extraction (DI-SBSE). RESULTS: Twenty-four odor-active compounds were found, with a prevalence of carbonyls from fat oxidation. Nine of these compounds which are also known as major (off-) flavor contributors in peas were distinctively impacted in all texturates: hexanal, nonanal, 2-undecanone, (E)-2-octenal, (E, Z)-3,5-octadiene-2-one, (E, E)-2,4-decadienal, 2-pentyl-furan, 2-pentyl-pyridine, and γ-nonalactone. For example, hexanal, a characteristic green odorant, was reduced by up to sixfold by wet texturization, from 3.29 ± 1.05% (Pea Protein I) to 0.52 ± 0.02% (Pea WTP I). Furthermore, (E,Z)-3,5-Octadiene-2-one and (E,E)-2,4-decadienal were decreased by 1.5- and 1.8-fold when Pea Protein I and Pea TVP I were compared. CONCLUSION: An overall reduction in fat oxidation products and of green and fatty odor-active compounds was observed. The results represent a first insight into the process-related modulation of pea protein (off-) flavors to broaden the applicability of pea proteins as food ingredients.


Assuntos
Odorantes/análise , Proteínas de Ervilha/química , Proteínas de Ervilha/isolamento & purificação , Pisum sativum/química , Extração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Gorduras/química , Aromatizantes/química , Aromatizantes/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução
5.
Compr Rev Food Sci Food Saf ; 21(6): 4971-5003, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209493

RESUMO

The utilization of heat is one of the foundations of modern food processing. At present, boilers that operate on fossil fuels are still dominating the generation of hot water, steam, and hot air in the food industry. In light of sustainability goals and carbon taxes as well as international efforts to reduce the dependence on natural gas, new technologies are needed to lower the greenhouse gas emissions related to thermal processing of foods. This review discusses important technologies that could serve as a replacement for conventional fossil fuel boilers in the future. These technologies are based on electricity, geothermal energy (direct/indirect use), and electricity to hydrogen conversion and include fuel cells, microturbines, engines, electrical boilers, heat pumps, radiation, and use of geothermal energy. The majority of these technologies are already available for implementation at larger scales and emissions are generally lower compared to burning fossil fuels. At present, major obstacles, such as low fossil fuel prices, still exist that prevent the widespread adoption of more sustainable heating technologies. However, the direct transformation of electrical energy and utilization of geothermal energy for heating purposes seem promising and should be more frequently installed in the future, whereas the use of H2 obtained through electrolysis as a transportable source of energy may also serve as a source of thermal energy where it is useful to generate electricity and heat on the production site or where the availability of electricity is limited.


Assuntos
Combustíveis Fósseis , Temperatura Alta , Eletricidade , Carbono , Manipulação de Alimentos
6.
Crit Rev Food Sci Nutr ; 61(1): 97-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32003225

RESUMO

The purpose of food processing today is to make food safer, more nutritious and tastier, and to increase storage life. Consumers have a lack of trust in the way food is produced, formulated and processed, particularly with possible contaminants or chemical residues from production. Food manufacturers are not seen as being highly trusted sources. This may partly result from manufacturers' reluctance to share all information and to protect intellectual property via patents and thus maintain a competitive edge. There is a need to inform the consumer better about what operations the involved ingredients are subjected to and why. Various ways of food processing are reviewed. New food processing technologies face challenges when introduced and factors influencing consumers' and other stakeholders' acceptance should be part of decision-making process when adopting new technologies. Consumers' perception of risks is not the same as the risk assessment made by experts. A few specific cases are being discussed to further highlight the multiplicity of factors that may contribute to the development of a certain consumer perception about a product or a class of products. This is also linked to the emergence of certain terminologies that are associated with an increasingly negative perception of the processing of foods. We recommend more transparency on food formulation and food processing to restore consumer trust, which enables to take the advantage of the benefits different processing methods offer. Food manufacturers must make an effort to let consumers know how their food is being processed within the walls of the factory and highlight the benefits vis-à-vis preparing foods in a domestic environment.


Assuntos
Comportamento do Consumidor , Confiança , Alimentos , Manipulação de Alimentos , Inocuidade dos Alimentos
7.
J Sci Food Agric ; 101(8): 3348-3354, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222184

RESUMO

BACKGROUND: Microalgae are a promising alternative source to meet the increasing global demand for protein. The insoluble microalgae protein fraction that makes up over half of the protein composition of the biomass has shown potential to serve as a functional emulsifier after acidic hydrolysis. However, creaming was observed due to the flocculation of emulsion droplets, suggesting a preferable use in concentrated emulsions. RESULTS: In this study, we examined the emulsifying behavior of the untreated insoluble microalgae protein fraction and two of its hydrolysates obtained in 0.5 mol L-1 HCl for 4 h at 65 °C (Hydrolysates 65) or 85 °C (Hydrolysates 85), at a concentration of 3% (w/w), and elevated levels of oil (50-70%). The results showed an increase in droplet size and apparent viscosity with increasing oil content in the emulsions. The emulsions made with Hydrolysates 85 had the smallest droplet size and the highest apparent viscosity. The gravitational separation was hindered when oil content was increased. The Hydrolysates 85 stabilized emulsions had a gel-like structure and were stable against coalescence or creaming during a 7 day storage test. CONCLUSION: The results suggest that the thermal acid-treated fraction Hydrolysates 85 may, in particular, be a good emulsifier to formulate concentrated emulsion-based foods with oil content over 50%, such as mayonnaise, salad dressings, or dips. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chlorella/química , Emulsificantes/química , Microalgas/química , Proteínas de Plantas/química , Ácidos/química , Emulsificantes/isolamento & purificação , Hidrólise , Proteínas de Plantas/isolamento & purificação , Viscosidade
8.
J Sci Food Agric ; 101(13): 5707-5714, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33788286

RESUMO

BACKGROUND: In the presence of ascorbic acid, the degradation of acylated (sinapic, ferulic and p-coumaric acid derivatives of cyanidin-3-xylosylglucosylgalactoside) and non-acylated anthocyanins of black carrot extract (BCE) encapsulated in liposomes was studied. BCEs (0.2% and 0.4% w/w) were encapsulated in liposomes using different lecithin concentrations (1%, 2% and 4% w/w). RESULTS: The liposomes were prepared with particle diameters of less than 50 nm and zeta potentials of about -21.3 mV for extract-containing liposomes and -27.7 mV for control liposomes. The encapsulation efficiency determined using high-performance liquid chromatography (HPLC) showed that increasing lecithin levels increased the efficiency to 59% at the same extract concentration. The concentrations of total anthocyanins and individual anthocyanins were determined for ascorbic acid (0.1% w/w)-degraded extract and liposomes (containing 0.2% w/w extract). Anthocyanin quantification of both liposomal and extract samples was performed by HPLC using cyanidin-3-O-glucoside chloride as standard. Five anthocyanins in the extract and encapsulated liposomes were quantified during 24 h (0-24 h): cyanidin-3-xylosylglucosylgalactoside 1.0-0.51 and 0.82-0.58 mg g-1 , cyanidin-3-xylosylgalactoside 2.5-1.1 and 2.2-1.7 mg g-1 , cyanidin-3-xylosyl(sinapoylglucosyl)galactoside 0.51-0.14 and 0.35-0.28 mg g-1 , cyanidin-3-xylosyl(feruloylglucosyl)galactoside 1.37-0.41 and 1.06-0.98 mg g-1 , and cyanidin-3-xylosyl(coumaroylglucosyl)galactoside 0.28-0.08 mg g-1 for extract and 0.27-0.26 mg g-1 for liposomes, respectively. CONCLUSIONS: This study demonstrates the potential beneficial effect of liposomal encapsulation on individual, particularly acylated, anthocyanins after addition of ascorbic acid during a storage time of 24 h.


Assuntos
Ácido Ascórbico/química , Daucus carota/química , Composição de Medicamentos/métodos , Lipossomos/química , Extratos Vegetais/química , Acilação , Raízes de Plantas/química
9.
Compr Rev Food Sci Food Saf ; 20(5): 4250-4277, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34190411

RESUMO

There has been a growing interest in developing effective strategies to inhibit lipid oxidation in emulsified food products by utilization of natural phenolic antioxidants owing to their growing popularity over the past decades. However, due to the complexity of emulsified systems, the inhibition mechanism of phenolic antioxidants against lipid oxidation is rather complicated and not yet fully understood. In order to highlight the importance of polarity of phenolic antioxidants in emulsified systems according to the polar paradox, this review covers the recent progress on chemical, enzymatic, and chemoenzymatic lipophilization techniques used to modify the polarity of antioxidants. The partitioning behavior of phenolic antioxidants at the oil-water interface, which can be influenced by the presence of synthetic surfactants and/or antioxidant emulsifiers (e.g., polysaccharides, proteins, and phospholipids), is discussed. In addition, the emerging phenolic antioxidants among phenolic acids, flavonoids, tocopherols, and stilbenes applied in food emulsions are elaborated. As well, the interactions of polar-nonpolar antioxidants are stressed as a promising strategy to induce synergistic interactions at oil-water interface for improved oxidative stability of emulsions.


Assuntos
Antioxidantes , Fenóis , Antioxidantes/análise , Emulsões , Oxirredução , Água
10.
J Food Sci Technol ; 58(2): 562-570, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568849

RESUMO

The purpose of the study was to investigate the influence of a heteropolysacchride (HePS)-forming lactic acid bacteria (LAB) on the quality attributes of raw fermented sausages. Therefore, salamis with the HePS-producing strain Lactobacillus plantarum TMW 1.1478 or the non-EPS-producing strain Lactobacillus sakei TMW 1.2037 (control) were manufactured using two different inoculation concentrations: more precisely, 107 CFU/g (typical starter culture concentration) or 109 CFU/g. Growth behavior, aw and pH development were recorded until a weight loss of 31% was reached and in-situ-formed EPS detected using confocal laser scanning microscopy. Moreover, the influence of the HePS formed on texture (texture profile analysis; TPA) and sensory attributes (26 panelists, ranking test) was investigated. The final products containing L. plantarum TMW 1.1478 were found to be significantly softer (p < 0.05) than the respective control samples, an effect that was even more pronounced at the higher inoculation level of 109 CFU/g. The semi-quantitative data interpretation of the CLSM pictures revealed that the EPS were predominantly formed during the first 72 h of fermentation at 24 °C until the final pH of 4.95 ± 0.05 was reached (stationary phase). The sensory evaluation (consistency) was in accordance with the TPA results and taste was not negatively influenced by the HePS-forming strain. Results clearly indicate that EPS-producing LAB can have a negative influence on the quality of raw fermented sausages. However, these strains (in the present case L. plantarum TMW 1.1478) might be interesting for application in the field of spreadable raw sausage manufacturing.

11.
Crit Rev Food Sci Nutr ; 60(17): 2961-2989, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595777

RESUMO

Microalgae are unicellular microorganisms that can be rich in proteins and are therefore a valuable ingredient in different foods. So far microalgae are mainly utilized in foods in low concentrations as a whole-cell ingredient even though it is known that proteins extracted from microalgae can possibly posess various technofunctional properties, such as high protein solubility, emulsification, foaming, and gelation properties. The widespread usage of protein-rich ingredients obtained from microalgae is for the most part prevented by the high price of the biomass, the lack of efficient downstream processes, and the adverse taste. The aim of this review is to give insights into the fundamental properties of the growth and processing of microalgae, highlight the advantages of microalgae ingredients and show potential applications based on the technofunctional, nutritional and sensory properties that were reported. Moreover, the existing challenges and knowledge gaps that hinder the application of microalgal proteins in foods are discussed.


Assuntos
Cianobactérias , Microalgas , Biocombustíveis , Biomassa , Ingredientes de Alimentos
12.
J Sci Food Agric ; 100(11): 4237-4244, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32378211

RESUMO

BACKGROUND: Chlorella protothecoides is one of the most widely commercialized and studied microalgae species. Recent research reported improved emulsifying properties of the insoluble protein fraction from C. protothecoides after thermal-acid treatment. RESULTS: In this research, we studied the influence of ionic strength (sodium chloride 50-500 mmol L-1 or calcium chloride 5-50 m mol L-1 ) and pH (2-9) on the stability of oil-in-water emulsions prepared by 3% (w/w) of the untreated insoluble microalgae protein fraction or hydrolysates obtained after treatment with hydrochloric acid at 65 °C (Hydrolysates 65) or 85 °C (Hydrolysates 85) for 4 h. The emulsions were prepared by mixing 10% (w/w) oil and homogenized at 68.9 MPa. The ionic strength and pH were, subsequently, adjusted. The mean particle diameter of emulsions remained constant despite extensive variations in ionic strength or pH. Emulsion droplets stabilized by Hydrolysates 85 were stable against coalescence at all ionic strengths or pH values tested. CONCLUSION: The results indicate a high potential to use acid-hydrolyzed insoluble microalgae protein fractions for the formulation of various emulsion-based food systems. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chlorella/química , Proteínas de Plantas/química , Emulsões/química , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Hidrólise , Microalgas/química , Concentração Osmolar , Solubilidade , Água/química
13.
J Sci Food Agric ; 100(3): 1344-1349, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31605384

RESUMO

BACKGROUND: Water-soluble proteins extracted from the heterotrophically cultivated microalga Chlorella protothecoides have been shown to have a good solubility over a broad pH range, which makes them a promising candidate for beverage formulations. This study investigated the sensory properties of dispersions of a protein-rich extract from C. protothecoides at neutral and pH 3. RESULTS: Sensory acceptance tests of the pure extract revealed an overall low acceptance at pH 7 without sucrose addition. Sensory acceptance was significantly (P ≤ 0.05) increased by lowering the pH to 3 with citric acid, and the addition of 50 g kg-1 sucrose. Here, overall positive sensory acceptance ratings were achieved up to a protein extract concentration of 40 g kg-1 . Basic taste evaluations showed only low bitterness scores and no significant (P > 0.05) increase in bitterness with decreasing pH. CONCLUSION: It is suggested that protein-rich extracts from C. protothecoides have promising sensory properties in beverage formulations. © 2019 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chlorella/química , Extratos Vegetais/química , Proteínas de Plantas/química , Bebidas/análise , Chlorella/crescimento & desenvolvimento , Processos Heterotróficos , Humanos , Concentração de Íons de Hidrogênio , Microalgas/química , Microalgas/crescimento & desenvolvimento , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Solubilidade , Paladar
14.
J Sci Food Agric ; 100(3): 1072-1079, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31650550

RESUMO

BACKGROUND: Acid-induced hydrolysis of proteins has been used to improve the solubility and functional properties of various proteins, and could be a promising tool to facilitate the use of currently underutilized insoluble microalgae protein-rich fractions in food applications. However, the results of a prior study showed an unusual resistance of an insoluble microalgae protein-rich fraction to acid hydrolysis at room temperature. RESULTS: In the present study, the insoluble protein-rich fraction extracted from microalgae Chlorella prothothecoides was treated with 0.5 mol L-1 hydrochloric acid at 25, 45, 65 or 85 °C for 0-4 h. The results showed that hydrolysis of the fraction at 85 °C for 4 h led to decreases in the amount of insoluble protein-rich aggregates and the formation of fragments with a lower molecular weight, as well as an increase in protein solubility by approximately 40%. Nevertheless, some aggregated insoluble protein-rich particles remained, even after hydrolysis at 85 °C for 4 h. CONCLUSION: The higher temperature improved the efficiency of the acid hydrolysis of the insoluble protein fraction from microalgae Chlorella prothothecoides, which is highly acid-resistant. Overall, an erosion-based mechanism was suggested for the acid hydrolysis of insoluble microalgae protein fraction. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chlorella/química , Proteínas/química , Fracionamento Químico , Temperatura Alta , Ácido Clorídrico/química , Hidrólise , Microalgas/química , Peso Molecular , Proteínas/isolamento & purificação , Solubilidade
15.
Compr Rev Food Sci Food Saf ; 19(6): 2932-2954, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337046

RESUMO

In the meat industry, hydrocolloids and phosphates are used to improve the quality attributes of meat products. However, latest research results revealed that the usage of exopolysaccharide (EPS)-forming lactic acid bacteria (LAB), which are able to produce EPS in situ during processing could be an interesting alternative. The current review aims to give a better understanding of bacterial EPS production in food matrices with a special focus on meat products. This includes an introduction to microbial EPS production (homopolysaccharides as well as heteropolysaccharides) and an overview of parameters affecting EPS formation and yield depending on LAB used. This is followed by a summary of methods to detect and characterize EPS to facilitate a rational selection of starter cultures and fermentation conditions based on desired structure-function relationships in different food matrices. The mechanism of action of in situ generated EPS is then highlighted with an emphasis on different meat products. In the process, this review also highlights food additives currently used in meat production that could in the future be replaced by in situ EPS-forming LAB.


Assuntos
Lactobacillales/metabolismo , Produtos da Carne/microbiologia , Polissacarídeos Bacterianos/metabolismo , Animais , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Polissacarídeos Bacterianos/química
16.
Crit Rev Food Sci Nutr ; 58(4): 610-630, 2018 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-27469301

RESUMO

Cured raw hams are a valuable and popular group of meat products. The consumption and international trade have increased during the last years, therefore new technologies to accelerate the production process and to increase product quality and safety are needed. In the current review, an overview of European protected cured raw hams is presented. Furthermore, traditional methods for cured raw ham production together with recent advantages in the techniques for pretreatment (trimming, blade tenderization, and freeze-thawing), curing/salting (tumbling, vacuum impregnation, pulsed pressure, ultrasound, pulsed electric fields, simultaneous thawing/salting), drying/ripening (Quick-Dry-Slice-process, oil drop application, high temperature short time process) and postprocessing (vacuum and modified atmosphere packaging, high hydrostatic pressure, high pressure carbon dioxide, high pressure carbon dioxide with ultrasound) are described. Moreover, application techniques and effects of protective cultures and starter cultures, such as molds, yeasts, coagulase-negative staphylococci and lactic acid bacteria, on cured raw ham quality and safety are reviewed.


Assuntos
Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Carne Vermelha/microbiologia
17.
Food Microbiol ; 64: 210-218, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28213028

RESUMO

The effectiveness of sequential applications of the antimicrobials eugenol and lauric arginate (LAE) was investigated against Staphylococcus carnosus, Listeria innocua, Escherichia coli K12, and Pseudomonas fluorescens. The antimicrobials were applied simultaneously at half of their minimum lethal concentrations (MLC) or sequentially at t = 0 h and t = 3, 4, 6 or 8 h. Bacterial survival was determined by direct plate counts. Survivals kinetic were fitted to a growth and mortality model to obtain characteristic parameters that described time-dependent changes from growth to mortality or vice versa. The most effective was a simultaneous exposure of both antimicrobials to the spoilage organisms at the beginning of the incubation period. Efficiency decreases depending on order and timing of the two antimicrobials were observed upon sequential treatments. These were most effective when antimicrobials where applied within a short time period (3-4 h) and when eugenol was first applied against S. carnosus and P. fluorescens. No sequence effects were observed for L. innocua, and sequential treatments proved to be ineffective against E. coli K12. These results were attributed to cells adapting to the first applied antimicrobial. In some cases, this provided protection against the second antimicrobial rendering the overall treatment less effective.


Assuntos
Antibacterianos/farmacologia , Arginina/análogos & derivados , Bactérias/efeitos dos fármacos , Eugenol/farmacologia , Microbiologia de Alimentos , Viabilidade Microbiana , Arginina/farmacologia , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Listeria/efeitos dos fármacos , Listeria/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Modelos Biológicos , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/crescimento & desenvolvimento , Staphylococcus/efeitos dos fármacos , Staphylococcus/crescimento & desenvolvimento , Fatores de Tempo
18.
J Microencapsul ; 34(2): 140-150, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28298154

RESUMO

Encapsulation is an established technique to protect sensitive materials from environmental stress. In order to understand the physical protection mechanism against oxidation, knowledge about the powder microstructure is required. Time domain-nuclear magnetic resonance (TD-NMR) has the potential to determine the surface oil (SO) and droplet size distribution by relaxation and restricted self-diffusion, respectively. The amount of SO, the retention and encapsulation efficiency are determined based on a lipid balance. The oil load of the initial powder and after SO removal is measured by TD-NMR. The results correlate with gravimetric and photometric references. The oil droplet size obtained by TD-NMR correlates well with static light scattering. The diameter of droplets in emulsions and dried powder both measured by TD-NMR, correlates (r = 0.998), implying that oil droplets embedded in a solid matrix can be measured. Summarising, TD-NMR allows analysis of the microstructure of encapsulated lipid powders, in a rapid, simple and non-destructive way.


Assuntos
Lipídeos/química , Pós/análise , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Tecnologia Farmacêutica
19.
J Sci Food Agric ; 97(4): 1178-1184, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27299974

RESUMO

BACKGROUND: The high viscosity and stickiness of honey in its natural state causes handling difficulties, therefore the demand for honey powder is continuously increasing. Powder preparation has to be performed gently because of the thermo- and oxidation- sensitive nature of honey. The aim of this study was to determine the degradation of invertase during drying as an indirect measure of the retention of valuable honey nutrients. RESULTS: The reaction kinetics were estimated in polyfloral honey and honey-glucose syrup (GS) formulation and the impact of temperature (40-70°C) and water activity (aw 0.23-0.81) was established. The honey-GS formulation (55:45 w/w) was intended for the preparation of high-grade honey powders using the vacuum-drying method. Invertase inactivation at temperatures below 60°C followed first-order kinetics. At 60°C high dilution (aw 0.81) and at 70°C, heterogeneous inactivation behaviour was observed. The best fit of invertase heterogeneous inactivation kinetic was achieved with the Cerf two-fraction model. The GS addition showed a stabilizing effect on invertase during thermal degradation. CONCLUSION: The data on invertase inactivation gathered here can be utilized to select optimal parameters for honey vacuum-drying and other thermal processes in order to achieve maximum invertase retention. © 2016 Society of Chemical Industry.


Assuntos
Dessecação , Glucose/química , Mel/análise , Proteólise , Temperatura , Água/fisiologia , beta-Frutofuranosidase/química , Química Farmacêutica , Composição de Medicamentos/métodos , Cinética , Pós , Vácuo , Viscosidade
20.
J Sci Food Agric ; 97(14): 4872-4879, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28387032

RESUMO

BACKGROUND: Dry fermented sausages that are packed under modified atmosphere are often affected by the formation of white crystals on the surface. These so called efflorescences are rejected by consumers and lead to high financial losses for the meat processing industry. In this study, the distribution of efflorescence-causing components was investigated over the sausage profile during 8 weeks of storage under modified atmosphere at 4 °C. In addition, two visual methods (image and sensory analyses) were compared regarding the ability to quantify the efflorescence content. RESULTS: The initial formation of efflorescences was observed after 2 weeks (7%). After 4 weeks of storage, 23.4% of the sausage surface was covered with efflorescences, and the amount of efflorescences did not change significantly by the end of storage. Furthermore, chemical analyses revealed that magnesium (increased by 98.1%), lactate (increased by 54.2%) and creatine (increased by 51.8%) are enriched on the sausage surface during storage. CONCLUSION: Sensory and image analyses lead to comparable results (r = 0.992) and therefore both are suitable to quantify the amount of efflorescences. The moisture gradient in the interior of the sausages which is built upon drying is supposed to be the driving force for the movement of efflorescence-causing compounds. © 2017 Society of Chemical Industry.


Assuntos
Produtos da Carne/análise , Animais , Dessecação , Embalagem de Alimentos , Armazenamento de Alimentos , Humanos , Suínos , Paladar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa