Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Nucleic Acids Res ; 51(9): 4508-4518, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37070188

RESUMO

A methyltransferase ribozyme (MTR1) was selected in vitro to catalyze alkyl transfer from exogenous O6-methylguanine (O6mG) to a target adenine N1, and recently, high-resolution crystal structures have become available. We use a combination of classical molecular dynamics, ab initio quantum mechanical/molecular mechanical (QM/MM) and alchemical free energy (AFE) simulations to elucidate the atomic-level solution mechanism of MTR1. Simulations identify an active reactant state involving protonation of C10 that hydrogen bonds with O6mG:N1. The deduced mechanism involves a stepwise mechanism with two transition states corresponding to proton transfer from C10:N3 to O6mG:N1 and rate-controlling methyl transfer (19.4 kcal·mol-1 barrier). AFE simulations predict the pKa for C10 to be 6.3, close to the experimental apparent pKa of 6.2, further implicating it as a critical general acid. The intrinsic rate derived from QM/MM simulations, together with pKa calculations, enables us to predict an activity-pH profile that agrees well with experiment. The insights gained provide further support for a putative RNA world and establish new design principles for RNA-based biochemical tools.


Assuntos
Metiltransferases , RNA Catalítico , RNA Catalítico/química , Simulação de Dinâmica Molecular , Prótons , Concentração de Íons de Hidrogênio , Teoria Quântica
2.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38856060

RESUMO

We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform "system calls" and enable the incorporation of long-range Ewald electrostatics into the external software's self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM-ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client-server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM-ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications.

3.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893576

RESUMO

Rare tautomeric forms of nucleobases can lead to Watson-Crick-like (WC-like) mispairs in DNA, but the process of proton transfer is fast and difficult to detect experimentally. NMR studies show evidence for the existence of short-time WC-like guanine-thymine (G-T) mispairs; however, the mechanism of proton transfer and the degree to which nuclear quantum effects play a role are unclear. We use a B-DNA helix exhibiting a wGT mispair as a model system to study tautomerization reactions. We perform ab initio (PBE0/6-31G*) quantum mechanical/molecular mechanical (QM/MM) simulations to examine the free energy surface for tautomerization. We demonstrate that while the ab initio QM/MM simulations are accurate, considerable sampling is required to achieve high precision in the free energy barriers. To address this problem, we develop a QM/MM machine learning potential correction (QM/MM-ΔMLP) that is able to improve the computational efficiency, greatly extend the accessible time scales of the simulations, and enable practical application of path integral molecular dynamics to examine nuclear quantum effects. We find that the inclusion of nuclear quantum effects has only a modest effect on the mechanistic pathway but leads to a considerable lowering of the free energy barrier for the GT*⇌G*T equilibrium. Our results enable a rationalization of observed experimental data and the prediction of populations of rare tautomeric forms of nucleobases and rates of their interconversion in B-DNA.


Assuntos
Pareamento de Bases , Guanina , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Prótons , Teoria Quântica , Timina , Guanina/química , Timina/química , DNA/química , Termodinâmica
4.
Biochemistry ; 62(13): 2079-2092, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37294744

RESUMO

Pistol ribozyme (Psr) is a distinct class of small endonucleolytic ribozymes, which are important experimental systems for defining fundamental principles of RNA catalysis and designing valuable tools in biotechnology. High-resolution structures of Psr, extensive structure-function studies, and computation support a mechanism involving one or more catalytic guanosine nucleobases acting as a general base and divalent metal ion-bound water acting as an acid to catalyze RNA 2'-O-transphosphorylation. Yet, for a wide range of pH and metal ion concentrations, the rate of Psr catalysis is too fast to measure manually and the reaction steps that limit catalysis are not well understood. Here, we use stopped-flow fluorescence spectroscopy to evaluate Psr temperature dependence, solvent H/D isotope effects, and divalent metal ion affinity and specificity unconstrained by limitations due to fast kinetics. The results show that Psr catalysis is characterized by small apparent activation enthalpy and entropy changes and minimal transition state H/D fractionation, suggesting that one or more pre-equilibrium steps rather than chemistry is rate limiting. Quantitative analyses of divalent ion dependence confirm that metal aquo ion pKa correlates with higher rates of catalysis independent of differences in ion binding affinity. However, ambiguity regarding the rate-limiting step and similar correlation with related attributes such as ionic radius and hydration free energy complicate a definitive mechanistic interpretation. These new data provide a framework for further interrogation of Psr transition state stabilization and show how thermal instability, metal ion insolubility at optimal pH, and pre-equilibrium steps such as ion binding and folding limit the catalytic power of Psr suggesting potential strategies for further optimization.


Assuntos
RNA Catalítico , RNA Catalítico/metabolismo , RNA , Cinética , Magnésio/metabolismo , Catálise , Conformação de Ácido Nucleico
5.
J Am Chem Soc ; 145(5): 2830-2839, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706353

RESUMO

Ribonucleases and small nucleolytic ribozymes are both able to catalyze RNA strand cleavage through 2'-O-transphosphorylation, provoking the question of whether protein and RNA enzymes facilitate mechanisms that pass through the same or distinct transition states. Here, we report the primary and secondary 18O kinetic isotope effects for hepatitis delta virus ribozyme catalysis that reveal a dissociative, metaphosphate-like transition state in stark contrast to the late, associative transition states observed for reactions catalyzed by specific base, Zn2+ ions, or ribonuclease A. This new information provides evidence for a discrete ribozyme active site design that modulates the RNA cleavage pathway to pass through an altered transition state.


Assuntos
RNA Catalítico , RNA Catalítico/química , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/metabolismo , RNA/química , Catálise , Domínio Catalítico , Conformação de Ácido Nucleico , Cinética
7.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37125722

RESUMO

We use the modified Bigeleisen-Mayer equation to compute kinetic isotope effect values for non-enzymatic phosphoryl transfer reactions from classical and path integral molecular dynamics umbrella sampling. The modified form of the Bigeleisen-Mayer equation consists of a ratio of imaginary mode vibrational frequencies and a contribution arising from the isotopic substitution's effect on the activation free energy, which can be computed from path integral simulation. In the present study, we describe a practical method for estimating the frequency ratio correction directly from umbrella sampling in a manner that does not require normal mode analysis of many geometry optimized structures. Instead, the method relates the frequency ratio to the change in the mass weighted coordinate representation of the minimum free energy path at the transition state induced by isotopic substitution. The method is applied to the calculation of 16/18O and 32/34S primary kinetic isotope effect values for six non-enzymatic phosphoryl transfer reactions. We demonstrate that the results are consistent with the analysis of geometry optimized transition state ensembles using the traditional Bigeleisen-Mayer equation. The method thus presents a new practical tool to enable facile calculation of kinetic isotope effect values for complex chemical reactions in the condensed phase.

8.
J Chem Phys ; 158(12): 124110, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003741

RESUMO

Modern semiempirical electronic structure methods have considerable promise in drug discovery as universal "force fields" that can reliably model biological and drug-like molecules, including alternative tautomers and protonation states. Herein, we compare the performance of several neglect of diatomic differential overlap-based semiempirical (MNDO/d, AM1, PM6, PM6-D3H4X, PM7, and ODM2), density-functional tight-binding based (DFTB3, DFTB/ChIMES, GFN1-xTB, and GFN2-xTB) models with pure machine learning potentials (ANI-1x and ANI-2x) and hybrid quantum mechanical/machine learning potentials (AIQM1 and QDπ) for a wide range of data computed at a consistent ωB97X/6-31G* level of theory (as in the ANI-1x database). This data includes conformational energies, intermolecular interactions, tautomers, and protonation states. Additional comparisons are made to a set of natural and synthetic nucleic acids from the artificially expanded genetic information system that has important implications for the design of new biotechnology and therapeutics. Finally, we examine the acid/base chemistry relevant for RNA cleavage reactions catalyzed by small nucleolytic ribozymes, DNAzymes, and ribonucleases. Overall, the hybrid quantum mechanical/machine learning potentials appear to be the most robust for these datasets, and the recently developed QDπ model performs exceptionally well, having especially high accuracy for tautomers and protonation states relevant to drug discovery.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Isomerismo , Conformação Molecular
9.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37526163

RESUMO

DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.

10.
RNA ; 26(2): 111-125, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31776179

RESUMO

We develop an L-platform/L-scaffold framework we hypothesize may serve as a blueprint to facilitate site-specific RNA-cleaving nucleic acid enzyme design. Building on the L-platform motif originally described by Suslov and coworkers, we identify new critical scaffolding elements required to anchor a conserved general base guanine ("L-anchor") and bind functionally important metal ions at the active site ("L-pocket"). Molecular simulations, together with a broad range of experimental structural and functional data, connect the L-platform/L-scaffold elements to necessary and sufficient conditions for catalytic activity. We demonstrate that the L-platform/L-scaffold framework is common to five of the nine currently known naturally occurring ribozyme classes (Twr, HPr, VSr, HHr, Psr), and intriguingly from a design perspective, the framework also appears in an artificially engineered DNAzyme (8-17dz). The flexibility of the L-platform/L-scaffold framework is illustrated on these systems, highlighting modularity and trends in the variety of known general acid moieties that are supported. These trends give rise to two distinct catalytic paradigms, building on the classifications proposed by Wilson and coworkers and named for the implicated general base and acid. The "G + A" paradigm (Twr, HPr, VSr) exclusively utilizes nucleobase residues for chemistry, and the "G + M + " paradigm (HHr, 8-17dz, Psr) involves structuring of the "L-pocket" metal ion binding site for recruitment of a divalent metal ion that plays an active role in the chemical steps of the reaction. Finally, the modularity of the L-platform/L-scaffold framework is illustrated in the VS ribozyme where the "L-pocket" assumes the functional role of the "L-anchor" element, highlighting a distinct mechanism, but one that is functionally linked with the hammerhead ribozyme.


Assuntos
Engenharia Genética , Motivos de Nucleotídeos/genética , RNA Catalítico/genética , Catálise , Domínio Catalítico , Cátions Bivalentes/metabolismo , RNA/genética , RNA Catalítico/metabolismo
11.
Org Biomol Chem ; 20(31): 6219-6230, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35452066

RESUMO

The pistol ribozyme (Psr) is one among the most recently discovered classes of small nucleolytic ribozymes that catalyze site-specific RNA self-cleavage through 2'-O-transphosphorylation. The Psr contains a conserved guanine (G40) that in crystal structures is in a position suggesting it plays the role of the general base to abstract a proton from the nucleophile to activate the reaction. Although some functional data is consistent with this mechanistic role, a notable exception is 2-aminopurine (2AP) substitution which has no effect on the rate, unlike similar substitutions across other so-called "G + M" and "G + A" ribozyme classes. Herein we postulate that an alternate conserved guanine, G42, is the primary general base, and provide evidence from molecular simulations that the active site of Psr can undergo local refolding into a structure that is consistent with the common "L-platform/L-scaffold" architecture identified in G + M and G + A ribozyme classes with Psr currently the notable exception. We summarize the key currently available experimental data and present new classical and combined quantum mechanical/molecular mechanical simulation results that collectively suggest a new hypothesis. We hypothesize that there are two available catalytic pathways supported by different conformational states connected by a local refolding of the active site: (1) a primary pathway with an active site architecture aligned with the L-platform/L-scaffold framework where G42 acts as a general base, and (2) a secondary pathway with the crystallographic active site architecture where G40 acts as a general base. We go on to make several experimentally testable predictions, and suggest specific experiments that would ultimately bring closure to the mystery as to "who stole the proton in the pistol ribozyme?".


Assuntos
RNA Catalítico , Catálise , Domínio Catalítico , Guanina , Conformação de Ácido Nucleico , Prótons , RNA Catalítico/genética
12.
J Chem Inf Model ; 62(23): 6069-6083, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450130

RESUMO

We report an automated workflow for production free-energy simulation setup and analysis (ProFESSA) using the GPU-accelerated AMBER free-energy engine with enhanced sampling features and analysis tools, part of the AMBER Drug Discovery Boost package that has been integrated into the AMBER22 release. The workflow establishes a flexible, end-to-end pipeline for performing alchemical free-energy simulations that brings to bear technologies, including new enhanced sampling features and analysis tools, to practical drug discovery problems. ProFESSA provides the user with top-level control of large sets of free-energy calculations and offers access to the following key functionalities: (1) automated setup of file infrastructure; (2) enhanced conformational and alchemical sampling with the ACES method; and (3) network-wide free-energy analysis with the optional imposition of cycle closure and experimental constraints. The workflow is applied to perform absolute and relative solvation free-energy and relative ligand-protein binding free-energy calculations using different atom-mapping procedures. Results demonstrate that the workflow is internally consistent and highly robust. Further, the application of a new network-wide Lagrange multiplier constraint analysis that imposes key experimental constraints substantially improves binding free-energy predictions.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Termodinâmica , Entropia , Proteínas/química , Ligantes
13.
J Phys Chem A ; 126(45): 8519-8533, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36301936

RESUMO

We describe the generalized weighted thermodynamic perturbation (gwTP) method for estimating the free energy surface of an expensive "high-level" potential energy function from the umbrella sampling performed with multiple inexpensive "low-level" reference potentials. The gwTP method is a generalization of the weighted thermodynamic perturbation (wTP) method developed by Li and co-workers [J. Chem. Theory Comput. 2018, 14, 5583-5596] that uses a single "low-level" reference potential. The gwTP method offers new possibilities in model design whereby the sampling generated from several low-level potentials may be combined (e.g., specific reaction parameter models that might have variable accuracy at different stages of a multistep reaction). The gwTP method is especially well suited for use with machine learning potentials (MLPs) that are trained against computationally expensive ab initio quantum mechanical/molecular mechanical (QM/MM) energies and forces using active learning procedures that naturally produce multiple distinct neural network potentials. Simulations can be performed with greater sampling using the fast MLPs and then corrected to the ab initio level using gwTP. The capabilities of the gwTP method are demonstrated by creating reference potentials based on the MNDO/d and DFTB2/MIO semiempirical models supplemented with the "range-corrected deep potential" (DPRc). The DPRc parameters are trained to ab initio QM/MM data, and the potentials are used to calculate the free energy surface of stepwise mechanisms for nonenzymatic RNA 2'-O-transesterification model reactions. The extended sampling made possible by the reference potentials allows one to identify unequilibrated portions of the simulations that are not always evident from the short time scale commonly used with ab initio QM/MM potentials. We show that the reference potential approach can yield more accurate ab initio free energy predictions than the wTP method or what can be reasonably afforded from explicit ab initio QM/MM sampling.

14.
J Chem Educ ; 99(5): 2175-2181, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35645409

RESUMO

Atomic orbitals represent an essential construct used to develop chemical bonding models, upon which other more advanced chemistry topics are built. In this article, we share a series of active-learning activities and a gamified approach to develop students' representational competence about atomic orbitals and to engage students in learning the properties of atomic orbitals. These properties are essential for understanding an array of fundamental concepts such as penetration and shielding, relationships such as periodic trends, and models used to describe chemical bonding. The activities employ an inquiry-based approach to engage students in exploring the relationship between atomic orbitals' spatial properties and quantum numbers. The activities guide students to collect data to verify periodic trends and construct electronic configurations. The activities utilize Orbital Explorer Web site for visualization, comparison and analysis of atomic orbitals. The Orbital Explorer Web site is described in a related Technology Report. The activities and the game are suitable to be conducted in both in-person and remote-teaching settings.

15.
J Chem Educ ; 99(5): 2135-2142, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35770202

RESUMO

We report a new online suite of tools that enables inquiry-based active-learning activities to develop students' representational competence about atomic orbitals. Orbital Explorer is Web site hub for the visualization and interactive investigation of atomic orbital properties. Orbital Explorer contains two integrated tools, namely, Atomic Orbital Explorer, which enables one to visualize and interrogate individual atomic orbitals, and Orbital RDF Comparison, which enables one to make a more detailed quantitative comparison of orbital energies and properties of orbital radial distribution functions (RDFs). In addition, we present an original chemistry educational gamification design, BingOrbital, constructed in a format resembling Bingo (American version). The game aims to reinforce the recognition of atomic orbitals based on the RDF and 3D isosurface and has been applied as an engaging retrieval practice tool. A companion set of example activities that use the Orbital Explorer and BingOrbital game have been presented in another article.

16.
Biochemistry ; 60(15): 1148-1164, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33787242

RESUMO

Proton-coupled electron transfer reactions play critical roles in many aspects of sensory phototransduction. In the case of flavoprotein light sensors, reductive quenching of flavin excited states initiates chemical and conformational changes that ultimately transmit light signals to downstream targets. These reactions generally require neighboring aromatic residues and proton-donating side chains for rapid and coordinated electron and proton transfer to flavin. Although photoreduction of flavoproteins can produce either the anionic (ASQ) or neutral semiquinone (NSQ), the factors that favor one over the other are not well understood. Here we employ a biologically active variant of the light-oxygen-voltage (LOV) domain protein VVD devoid of the adduct-forming Cys residue (VVD-III) to probe the mechanism of flavin photoreduction and protonation. A series of isosteric and conservative residue replacements studied by rate measurements, fluorescence quantum yields, FTIR difference spectroscopy, and molecular dynamics simulations indicate that tyrosine residues facilitate charge recombination reactions that limit sustained flavin reduction, whereas methionine residues facilitate radical propagation and quenching and also gate solvent access for flavin protonation. Replacement of a single surface Met residue with Leu favors formation of the ASQ over the NSQ and desensitizes photoreduction to oxidants. In contrast, increasing site hydrophilicity by Gln substitution promotes rapid NSQ formation and weakens the influence of the redox environment. Overall, the photoreactivity of VVD-III can be understood in terms of redundant electron donors, internal hole quenching, and coupled proton transfer reactions that all depend upon protein conformation, dynamics, and solvent penetration.


Assuntos
Flavinas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Luz , Metionina/metabolismo , Engenharia de Proteínas , Prótons , Transporte de Elétrons , Proteínas Fúngicas/genética , Simulação de Dinâmica Molecular , Domínios Proteicos
17.
RNA ; 25(11): 1439-1456, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31363004

RESUMO

The pistol ribozyme (Psr) is among the most recently discovered RNA enzymes and has been the subject of experiments aimed at elucidating the mechanism. Recent biochemical studies have revealed exciting clues about catalytic interactions in the active site not apparent from available crystallographic data. The present work unifies the interpretation of the existing body of structural and functional data on Psr by providing a dynamical model for the catalytically active state in solution from molecular simulation. Our results suggest that a catalytic Mg2+ ion makes inner-sphere contact with G33:N7 and outer-sphere coordination to the pro-RP of the scissile phosphate, promoting electrostatic stabilization of the dianionic transition state and neutralization of the developing charge of the leaving group through a metal-coordinated water molecule that is made more acidic by a hydrogen bond donated from the 2'OH of P32. This model is consistent with experimental activity-pH and mutagenesis data, including sensitivity to G33(7cG) and phosphorothioate substitution/metal ion rescue. The model suggests several experimentally testable predictions, including the response of cleavage activity to mutations at G42 and P32 positions in the ribozyme, and thio substitutions of the substrate in the presence of different divalent metal ions. Further, the model identifies striking similarities of Psr to the hammerhead ribozyme (HHr), including similar global fold, organization of secondary structure around an active site three-way junction, catalytic metal ion binding mode, and guanine general base. However, the specific binding mode and role of the Mg2+ ion, as well as a conserved 2'-OH in the active site, are interrelated but subtly different between the ribozymes.


Assuntos
Modelos Teóricos , RNA Catalítico/metabolismo , Catálise , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Magnésio/metabolismo , Conformação Proteica , RNA Catalítico/química
18.
J Chem Inf Model ; 61(9): 4145-4151, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34521199

RESUMO

Alchemical free energy methods, such as free energy perturbation (FEP) and thermodynamic integration (TI), become increasingly popular and crucial for drug design and discovery. However, the system preparation of alchemical free energy simulation is an error-prone, time-consuming, and tedious process for a large number of ligands. To address this issue, we have recently presented CHARMM-GUI Free Energy Calculator that can provide input and postprocessing scripts for NAMD and GENESIS FEP molecular dynamics systems. In this work, we extended three submodules of Free Energy Calculator to work with the full suite of GPU-accelerated alchemical free energy methods and tools in AMBER, including input and postprocessing scripts. The BACE1 (ß-secretase 1) benchmark set was used to validate the AMBER-TI simulation systems and scripts generated by Free Energy Calculator. The overall results of relatively large and diverse systems are almost equivalent with different protocols (unified and split) and with different timesteps (1, 2, and 4 fs), with R2 > 0.9. More importantly, the average free energy differences between two protocols are small and reliable with four independent runs, with a mean unsigned error (MUE) below 0.4 kcal/mol. Running at least four independent runs for each pair with AMBER20 (and FF19SB/GAFF2.1/OPC force fields), we obtained a MUE of 0.99 kcal/mol and root-mean-square error of 1.31 kcal/mol for 58 alchemical transformations in comparison with experimental data. In addition, a set of ligands for T4-lysozyme was used to further validate our free energy calculation protocol whose results are close to experimental data (within 1 kcal/mol). In summary, Free Energy Calculator provides a user-friendly web-based tool to generate the AMBER-TI system and input files for high-throughput binding free energy calculations with access to the full set of GPU-accelerated alchemical free energy, enhanced sampling, and analysis methods in AMBER.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Entropia , Ligantes , Simulação de Dinâmica Molecular , Termodinâmica
19.
J Phys Chem A ; 125(19): 4216-4232, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33784093

RESUMO

We redevelop the variational free energy profile (vFEP) method using a cardinal B-spline basis to extend the method for analyzing free energy surfaces (FESs) involving three or more reaction coordinates. We also implemented software for evaluating high-dimensional profiles based on the multistate Bennett acceptance ratio (MBAR) method which constructs an unbiased probability density from global reweighting of the observed samples. The MBAR method takes advantage of a fast algorithm for solving the unbinned weighted histogram (UWHAM)/MBAR equations which replaces the solution of simultaneous equations with a nonlinear optimization of a convex function. We make use of cardinal B-splines and multiquadric radial basis functions to obtain smooth, differentiable MBAR profiles in arbitrary high dimensions. The cardinal B-spline vFEP and MBAR methods are compared using three example systems that examine 1D, 2D, and 3D profiles. Both methods are found to be useful and produce nearly indistinguishable results. The vFEP method is found to be 150 times faster than MBAR when applied to periodic 2D profiles, but the MBAR method is 4.5 times faster than vFEP when evaluating unbounded 3D profiles. In agreement with previous comparisons, we find the vFEP method produces superior FESs when the overlap between umbrella window simulations decreases. Finally, the associative reaction mechanism of hammerhead ribozyme is characterized using 3D, 4D, and 6D profiles, and the higher-dimensional profiles are found to have smaller reaction barriers by as much as 1.5 kcal/mol. The methods presented here have been implemented into the FE-ToolKit software package along with new methods for network-wide free energy analysis in drug discovery.

20.
Nucleic Acids Res ; 47(19): 10282-10295, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31511899

RESUMO

We perform molecular dynamics simulations, based on recent crystallographic data, on the 8-17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.


Assuntos
Biocatálise , DNA Catalítico/química , RNA Catalítico/genética , Soluções/química , Sequência de Bases , Domínio Catalítico/genética , DNA/química , DNA/genética , DNA Catalítico/genética , Cinética , Chumbo/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Clivagem do RNA/genética , Sódio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa