Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960260

RESUMO

In this work, the first surface acoustic-wave-based magnetic field sensor using thin-film AlScN as piezoelectric material deposited on a silicon substrate is presented. The fabrication is based on standard semiconductor technology. The acoustically active area consists of an AlScN layer that can be excited with interdigital transducers, a smoothing SiO2 layer, and a magnetostrictive FeCoSiB film. The detection limit of this sensor is 2.4 nT/Hz at 10 Hz and 72 pT/Hz at 10 kHz at an input power of 20 dBm. The dynamic range was found to span from about ±1.7 mT to the corresponding limit of detection, leading to an interval of about 8 orders of magnitude. Fabrication, achieved sensitivity, and noise floor of the sensors are presented.

2.
Nanomaterials (Basel) ; 14(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38869611

RESUMO

Ferroelectric, phase-change, and magnetic materials are considered promising candidates for advanced memory devices. Under the development dilemma of traditional silicon-based memory devices, ferroelectric materials stand out due to their unique polarization properties and diverse manufacturing techniques. On the occasion of the 100th anniversary of the birth of ferroelectricity, scandium-doped aluminum nitride, which is a different wurtzite structure, was reported to be ferroelectric with a larger coercive, remanent polarization, curie temperature, and a more stable ferroelectric phase. The inherent advantages have attracted widespread attention, promising better performance when used as data storage materials and better meeting the needs of the development of the information age. In this paper, we start from the characteristics and development history of ferroelectric materials, mainly focusing on the characteristics, preparation, and applications in memory devices of ferroelectric wurtzite AlScN. It compares and analyzes the unique advantages of AlScN-based memory devices, aiming to lay a theoretical foundation for the development of advanced memory devices in the future.

3.
ACS Appl Mater Interfaces ; 16(13): 16427-16435, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38523333

RESUMO

Integrating ferroelectric AlScN with III-N semiconductors to enhance the performance and tunability of nitride devices requires high-quality AlScN films. This work focuses on the effect and regulation mechanism of post-annealing in pure N2 on the crystal quality and ferroelectric properties of AlScN films. It is found that the crystal quality improves with increasing annealing temperatures. Remarkably, the leakage current of AlScN films caused by grain boundaries could be reduced by four orders of magnitude after annealing at 400 °C. The crystal growth dynamics simulations and band structure calculations indicate that the energy supplied by the temperature facilitates the evolution of abnormally oriented grains to have a better c-axis orientation, resulting in the defect states at the Fermi-level disappearing, which is mainly the reason for the leakage current decrease. More interestingly, the reduction of leakage current leads to the previously leaking region exhibiting ferroelectric properties, which is of great significance to improve the ferroelectricity of AlScN and ensure the uniformity of devices. Furthermore, annealing enhances the tensile strain on the film, which flattens the energy landscape of ferroelectric switching and reduces the coercive field. However, the risk of incorporation of oxygen will also be increased if the annealing temperatures are higher than 400 °C, which will not only reduce the relative displacement of metal atoms and nitrogen atoms in AlScN but also enhance the ferroelectric depolarization field, leading to the remnant polarization decreasing dramatically. These discoveries facilitate a deeper understanding of the influencing mechanism on the ferroelectric properties of AlScN films and provide a direction for obtaining high-quality AlScN.

4.
Nanomicro Lett ; 16(1): 227, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918252

RESUMO

Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner. However, complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices. The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma. This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films. The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated. Finally, the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.

5.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255566

RESUMO

Ferroelectric scandium-doped aluminum nitride (Al1-xScxN) is of considerable research interest because of its superior ferroelectricity. Studies indicate that Al1-xScxN may suffer from a high leakage current, which can hinder further thickness scaling and long-term reliability. In this work, we systematically investigate the origin of the leakage current in Al0.7Sc0.3N films via experiments and theoretical calculations. The results reveal that the leakage may originate from the nitrogen vacancies with positively charged states and fits well with the trap-assisted Poole-Frenkel (P-F) emission. Moreover, we examine the cycling behavior of ferroelectric Al0.7Sc0.3N-based FeRAM devices. We observe that the leakage current substantially increases when the device undergoes bipolar cycling with a pulse amplitude larger than the coercive electric field. Our analysis shows that the increased leakage current in bipolar cycling is caused by the monotonously reduced trap energy level by monitoring the direct current (DC) leakage under different temperatures and the P-F emission fitting.

6.
Micromachines (Basel) ; 15(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38398964

RESUMO

This paper presents a two-axis AlScN-based water-immersible MEMS mirror fabricated in an 8-inch MEMS process. Compared with other studies, this device has a larger optical aperture 10 mm in diameter. The resonant frequencies of the device are 1011 Hz in air and 342 Hz in water. The scanning angle reaches ±5° and ±2° at resonant frequencies in air and water, respectively. The cavitation phenomenon is observed when the device is operating in water, which leads the device to electrical failure. To address this issue, a device with reduced resonant frequencies-246 Hz and 152 Hz in air and water-is characterized, through which the bubbles can be effectively prohibited. This MEMS mirror could potentially be used in ultrasound and photoacoustic microscopy applications.

7.
Materials (Basel) ; 17(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591456

RESUMO

In this work, 10 nm scandium-doped aluminum nitride (AlScN) capacitors are demonstrated for the construction of the selector-free memory array application. The 10 nm Al0.7Sc0.3N film deposited on an 8-inch silicon wafer with sputtering technology exhibits a large remnant polarization exceeding 100 µC/cm2 and a tight distribution of the coercive field, which is characterized by the positive-up-negative-down (PUND) method. As a result, the devices with lateral dimension of only 1.5 µm show a large memory window of over 250% and a low power consumption of ~40 pJ while maintaining a low disturbance rate of <2%. Additionally, the devices demonstrate stable multistate memory characteristics with a dedicated operation scheme. The back-end-of-line (BEOL)-compatible fabrication process, along with all these device performances, shows the potential of AlScN-based capacitors for the implementation of the high-density selector-free memory array.

8.
ACS Nano ; 18(5): 4180-4188, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271989

RESUMO

Recent advancements in ferroelectric field-effect transistors (FeFETs) using two-dimensional (2D) semiconductor channels and ferroelectric Al0.68Sc0.32N (AlScN) allow high-performance nonvolatile devices with exceptional ON-state currents, large ON/OFF current ratios, and large memory windows (MW). However, previous studies have solely focused on n-type FeFETs, leaving a crucial gap in the development of p-type and ambipolar FeFETs, which are essential for expanding their applicability to a wide range of circuit-level applications. Here, we present a comprehensive demonstration of n-type, p-type, and ambipolar FeFETs on an array scale using AlScN and multilayer/monolayer WSe2. The dominant injected carrier type is modulated through contact engineering at the metal-semiconductor junction, resulting in the realization of all three types of FeFETs. The effect of contact engineering on the carrier injection is further investigated through technology-computer-aided design simulations. Moreover, our 2D WSe2/AlScN FeFETs achieve high electron and hole current densities of ∼20 and ∼10 µA/µm, respectively, with a high ON/OFF ratio surpassing ∼107 and a large MW of >6 V (0.14 V/nm).

9.
ACS Appl Mater Interfaces ; 15(35): 41606-41613, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610983

RESUMO

AlxSc1-xN is a nitride-ferroelectric compatible with both CMOS and GaN technology. The origin of ferroelectricity in these ternary nitrides relies on the full inversion of nitrogen atom positions, which is a significantly different structural mechanism than conventional perovskites. Therefore, its ferroelectric characteristics exhibit a high remanent polarization and a tunable coercive field but suffer heavily from leakage currents during the switching event. In this article, we studied epitaxially grown Al0.72Sc0.28N thin films on epitaxial Pt electrode layers deposited on GaN/Al2O3 substrates. The results are compared both structurally and electrically with similar systems on SiO2/Si substrates. Our X-ray diffraction analysis showed that Al0.72Sc0.28N/epi-Pt/GaN is always a complete epitaxial stack without any significant strain gradient. Electrically, this system has an overall lower leakage current and coercive field compared to directly grown, highly crystalline, strained epitaxial Al0.72Sc0.28N/GaN, despite having a lower crystalline quality of the ferroelectric layer. In addition, decreasing the epi-Pt thickness from 100 to 10 nm resulted in further improvement of the leakage profile, which we attribute to a decrease in surface roughness in the thinner Pt. In contrast, the dominant factor of leakage in a fiber-textured system on Si substrates is the Pt(111) texture. Finally, with the combination of in-plane X-ray diffraction and high-resolution scanning transmission electron microscopy, we have demonstrated an all-epitaxial 20 nm Al0.72Sc0.28N/Pt/GaN MFM stack with a sharp interface thickness of less than 1 nm.

10.
Micromachines (Basel) ; 14(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241688

RESUMO

In this paper, the temperature performance of AlN-SAW resonators and AlScN-SAW resonators is studied. They are simulated by COMSOL Multiphysics, and their modes and the S11 curve are analyzed. The two devices were fabricated using MEMS technology and tested using VNA, and the test results were consistent with the simulation results. Temperature experiments were carried out with temperature control equipment. With the change in temperature, the changes in S11 parameters, TCF coefficient, phase velocity, and quality factor Q were analyzed. The results show that the temperature performance of the AlN-SAW resonator and the AlScN-SAW resonator is very good, and both have good linearity. At the same time, the sensitivity of the AlScN-SAW resonator is greater by 9.5%, the linearity is greater by 15%, and the TCF coefficient is greater by 11.1%. The temperature performance is excellent, and it is more suitable as a temperature sensor.

11.
Micromachines (Basel) ; 14(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984922

RESUMO

The increasing use of mobile broadband requires new acoustic filtering technologies that can operate efficiently at frequencies above 6 GHz. Previous research has shown that AlN Super High Frequency (SHF) Cross-Sectional Lamé Mode resonators (CLMRs) can address this challenge, but their performance is limited by the piezoelectric strength of AlN. In this work, we explore the use of substitutional doping of Al in AlN with Sc to enhance the kt2 values of SHF CLMRs. Our results showed that the measured kt2·Qm product of Al72Sc28N CLMRs was four times greater than that of AlN CLMRs operating at the same frequency. Additionally, the measured fractional bandwidth (FWB) of Al72Sc28N 2nd order ladder filters was 4.13%, a fourfold improvement over AlN filters with the same design. We also discuss other aspects of the technology, such as power handling, losses, and spurious mode suppression, and identify potential areas for future research.

12.
Materials (Basel) ; 16(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984049

RESUMO

This work presents a study on the homogeneity and thermal stability of Al0.7Sc0.3N films sputtered from Al-Sc segmented targets. The films are sputtered on Si substrates to assess their structural properties and on SiO2/Mo-based stacked acoustic mirrors to derive their piezoelectric activity from the frequency response of acoustic resonators. Post-deposition annealing at temperatures up to 700 °C in a vacuum are carried out to test the stability of the Al0.7Sc0.3N films and their suitability to operate at high temperatures. Despite the relatively constant radial composition of the films revealed from RBS measurements, a severe inhomogeneity in the piezoelectric activity is observed across the wafer, with significantly poorer activity in the central zone. RBS combined with NRA analysis shows that the zones of lower piezoelectric activity are likely to show higher surface oxygen adsorption, which is attributed to higher ion bombardment during the deposition process, leading to films with poorer crystalline structures. AFM analysis reveals that the worsening of the material properties in the central area is also accompanied by an increased roughness. XRD analysis also supports this hypothesis, even suggesting the possibility of a ScN non-piezoelectric phase coexisting with the AlScN piezoelectric phase. Thermal treatments do not result in great improvements in terms of piezoelectric activity and crystalline structure.

13.
Micromachines (Basel) ; 14(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37763952

RESUMO

In this paper, the newly developed 3D-constructed AlScN piezoelectric MEMS mirror is presented. This paper describes the structure and driving mechanism of the proposed mirror device, covering its driving characteristics in both quasi-static and resonant scan modes. Particularly, this paper deals with various achievable scan patterns including 1D line scan and 2D area scan capabilities and driving methods to realize each scanning strategy. Bidirectional quasi-static actuation along horizontal, vertical, and diagonal scanning directions was experimentally characterized and even under a low voltage level of ±20 V, a total optical scan angle of 10.4° was achieved. In addition, 1D line scanning methods using both resonant and non-resonant frequencies were included and a total optical scan angle of 14° was obtained with 100 mVpp under out-of-phase actuation condition. Furthermore, 2D scan patterns including Lissajous, circular and spiral, and raster scans were realized. Diverse scan patterns were realized with the presented AlScN-based MEMS mirror device even under a low level of applied voltage. Further experiments using high voltage up to ±120 V to achieve an enhanced quasi-static scan angle of more than 20° are ongoing to ensure repeatability. This multi-functional MEMS mirror possesses the potential to implement multiple scanning strategies suitable for various application purposes.

14.
Micromachines (Basel) ; 13(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295914

RESUMO

This paper reports on the deposition and characterization of piezoelectric AlXSc1-XN (further: AlScN) films on Si substrates using AlSc alloy targets with 30 at.% Sc. Films were deposited on a Ø200 mm area with deposition rates of 200 nm/min using a reactive magnetron sputtering process with a unipolar-bipolar hybrid pulse mode of FEP. The homogeneity of film composition, structural properties and piezoelectric properties were investigated depending on process parameters, especially the pulse mode of powering in unipolar-bipolar hybrid pulse mode operation. Characterization methods include energy-dispersive spectrometry of X-ray (EDS), X-ray diffraction (XRD), piezoresponse force microscopy (PFM) and double-beam laser interferometry (DBLI). The film composition was Al0.695Sc0.295N. The films showed good homogeneity of film structure with full width at half maximum (FWHM) of AlScN(002) rocking curves at 2.2 ± 0.1° over the whole coating area when deposited with higher share of unipolar pulse mode during film growth. For a higher share of bipolar pulse mode, the films showed a much larger c-lattice parameter in the center of the coating area, indicating high in-plane compressive stress in the films. Rocking curve FWHM also showed similar values of 1.5° at the center to 3° at outer edge. The piezoelectric characterization method revealed homogenous d33,f of 11-12 pm/V for films deposited at a high share of unipolar pulse mode and distribution of 7-10 pm/V for a lower share of unipolar pulse mode. The films exhibited ferroelectric switching behavior with coercive fields of around 3-3.5 MV/cm and polarization of 80-120 µC/cm².

15.
Micromachines (Basel) ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36295981

RESUMO

In the past decade, aluminum scandium nitride (AlScN) with a high Sc content has shown ferroelectric properties, which provides a new option for CMOS-process-compatible ferroelectric memory, sensors and actuators, as well as tunable devices. In this paper, the ferroelectric properties of Al0.7Sc0.3N grown on different metals were studied. The effect of metal and abnormal orientation grains (AOGs) on ferroelectric properties was observed. A coercive field of approximately 3 MV/cm and a large remanent polarization of more than 100 µC/cm2 were exhibited on the Pt surface. The Al0.7Sc0.3N thin film grown on the Mo metal surface exhibited a large leakage current. We analyzed the leakage current of Al0.7Sc0.3N during polarization with the polarization frequency, and found that the Al0.7Sc0.3N films grown on either Pt or Mo surfaces have large leakage currents at frequencies below 5 kHz. The leakage current decreases significantly as the frequency approaches 10 kHz. The positive up negative down (PUND) measurement was used to obtain the remanent polarization of the films, and it was found that the remanent polarization values were not the same in the positive and negative directions, indicating that the electrode material has an effect on the ferroelectric properties.

16.
Micromachines (Basel) ; 13(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144173

RESUMO

This paper presents AlScN piezoelectric two-axis MEMS mirrors with gimbal-less and gimbaled designs fabricated in a CMOS-compatible manner. Integrated piezoelectric sensors provided feedback signals of the actual mirror positions. The mirror with a diameter of 1.5 mm possessed adjustable optical tilt angles of up to 22.6° @ 30 V, with a high resonance frequency of about 8.2 kHz, while the 3 mm mirror reached 48.5° @ 41 V. The mirror with the gimbaled structure exhibited an excellent field of view and good mechanical decoupling. Additionally, a significant improvement in mirror scanning performance was observed in a vacuum (4 Pa), proving that the optical field of view was magnified by more than a factor of 10.

17.
Micromachines (Basel) ; 13(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36363962

RESUMO

Piezoelectric micromachined ultrasonic transducers (PMUTs) have been widely applied in distance sensing. However, the sensing distance of currently reported miniaturized ultrasonic sensors (e.g., PMUTs or CMUT) is still limited up to a certain range (e.g., ≤5 m) compared to conventional bulk ultrasonic devices. This paper reports a PMUT array design using scandium-doped aluminum nitride (AlScN) as its piezoelectric layer for an extended long-range detection purpose. To minimize air attenuation, our device is resonating at 66 kHz for a high receive sensitivity of 5.7 mV/Pa. The proposed PMUT array can generate a sound pressure level (SPL) as high as 120 dB at a distance of 10 cm without beam forming. This PMUT design is catered for a pin-to-pin replacement of the current commercial bulk ultrasonic ranging sensor and works directly with the conventional range finding system (e.g., TI PGA460). In comparison with the common bulk transducer, the size of our device is 80% smaller. With the identical ranging detection setup, the proposed PMUT array improves the system SNR by more than 5 dB even at a distance as far as 6.8 m. The result of extended sensing distance validates our miniaturized PMUT array as the optimized candidate for most ultrasonic ranging applications. With the progressive development of piezoelectric MEMS, we believe that the PMUT technology could be a game changer in future long-range sensing applications.

18.
Micromachines (Basel) ; 13(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457927

RESUMO

Piezoelectric micromirrors with aluminum nitride (AlN) and aluminum scandium nitride (Al0.68Sc0.32N) are presented and compared regarding their static deflection. Two chip designs with 2 × 3 mm2 (Design 1) and 4 × 6 mm2 (Design 2) footprint with 600 nm AlN or 2000 nm Al0.68Sc0.32N as piezoelectric transducer material are investigated. The chip with Design 1 and Al0.68Sc0.32N has a resonance frequency of 1.8 kHz and a static scan angle of 38.4° at 400 V DC was measured. Design 2 has its resonance at 2.1 kHz. The maximum static scan angle is 55.6° at 220 V DC, which is the maximum deflection measurable with the experimental setup. The static deflection per electric field is increased by a factor of 10, due to the optimization of the design and the research and development of high-performance piezoelectric transducer materials with large piezoelectric coefficient and high electrical breakthrough voltage.

19.
Micromachines (Basel) ; 13(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363937

RESUMO

This paper introduces a novel nondestructive wafer scale thin film thickness measurement method by detecting the reflected picosecond ultrasonic wave transmitting between different interfacial layers. Unlike other traditional approaches used for thickness inspection, this method is highly efficient in wafer scale, and even works for opaque material. As a demonstration, we took scandium doped aluminum nitride (AlScN) thin film and related piezoelectric stacking layers (e.g. Molybedenum/AlScN/Molybdenum) as the case study to explain the advantages of this approach. In our experiments, a laser with a wavelength of 515 nm was used to first measure the thickness of (1) a single Molybdenum (Mo) electrode layer in the range of 100-300 nm, and (2) a single AlScN piezoelectric layer in the range of 600-1000 nm. Then, (3) the combined stacking layers were measured. Finally, (4) the thickness of a standard piezoelectric composite structure (Mo/AlScN/Mo) was characterized based on the conclusions and derivation extracted from the aforementioned sets of experiments. This type of standard piezoelectric composite has been widely adopted in a variety of Micro-electromechanical systems (MEMS) devices such as the Piezoelectric Micromachined Ultrasonic Transducer (PMUT), the Film Bulk Acoustic Resonator (FBAR), the Surface Acoustic Wave (SAW) and more. A comparison between measurement data from both in-line and off-line (using Scanning Electron Microscope) methods was conducted. The result from such in situ 8-inch wafer scale measurements was in a good agreement with the SEM data.

20.
Micromachines (Basel) ; 13(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36296051

RESUMO

The laser ultrasound (LU) technique has been used to determine dispersion curves for surface acoustic waves (SAW) propagating in AlScN/Al2O3 systems. Polar and non-polar Al0.77Sc0.23N thin films were prepared by magnetron sputter epitaxy on Al2O3 substrates and coated with a metal layer. SAW dispersion curves have been measured for various propagation directions on the surface. This is easily achieved in LU measurements since no additional surface structures need to be fabricated, which would be required if elastic properties are determined with the help of SAW resonators. Variation of the propagation direction allows for efficient use of the system's anisotropy when extracting information on elastic properties. This helps to overcome the complexity caused by a large number of elastic constants in the film material. An analysis of the sensitivity of the SAW phase velocities (with respect to the elastic moduli and their dependence on SAW propagation direction) reveals that the non-polar AlScN films are particularly well suited for the extraction of elastic film properties. Good agreement is found between experiment and theoretical predictions, validating LU as a non-destructive and fast technique for the determination of elastic constants of piezoelectric thin films.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa