Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Chemistry ; : e202402071, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162708

RESUMO

Referring to selected examples of reproducible green syntheses using hybrid sol-gel catalysts of the SiliaCat series from different doctoral theses and research works published between 2015 and early 2024, this study briefly illustrates how said catalysts have been applied in a number of green synthetic methods of significant industrial relevance. This shows evidence that the nanochemistry "bottom-up" sol-gel approach based on catalytic species entrapped in organically modified silicas as effective and versatile heterogeneous catalysts developed between the late 1990s and 2010 has succeeded. Subsequent developments will show how the use of said materials in automated syntheses, supplying data to machine learning algorithms actually leads to faster and cheaper optimization of the reaction conditions. Said progress ultimately will further accelerate industrial uptake of heterogeneous catalysis under flow in the fine chemical industry whose reluctance to change processes was due to the need to replace financially amortized (and expensive) production plants.

2.
Biotechnol Bioeng ; 121(8): 2524-2541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795025

RESUMO

Governments and biopharmaceutical organizations aggressively leveraged expeditious communication capabilities, decision models, and global strategies to make a COVID-19 vaccine happen within a period of 12 months. This was an unusual effort and cannot be transferred to normal times. However, this focus on a single vaccine has also led to other treatments and drug developments being sidelined. Society expects the pharmaceutical industry to provide an uninterrupted supply of medicines. However, it is often overlooked how complex the manufacture of these compounds is and what logistics are required, not to mention the time needed to develop new drugs. The overarching theme, therefore, is patient access and how we can help ensure access and extend it to low- and middle-income countries. Despite unceasing efforts to make medications available to all patient populations, this must never be done at the expense of patient safety. A major fraction of the costs in biopharmaceutical manufacturing are for drug discovery, process development, and clinical studies. Infrastructure costs are very difficult to quantify because they often depend on whether a greenfield facility or an existing, depreciated facility is used or adapted for a new product. To accelerate process development concepts of platform process and prior knowledge are increasingly leveraged. While more traditional protein therapeutics continue to dominate the field, we are also experiencing the exciting emergence and evolution of other therapeutic formats (bispecifics, tetravalent mAbs, antibody-drug conjugates, enzymes, peptides, etc.) that offer unique treatment options for patients. Protein modalities are still dominant, but new modalities are being developed that can be learned from including advanced therapeutics-like cell and gene therapies. The industry must develop a model-based strategy for process development and technologies such as continuous integrated biomanufacturing must be adopted. The overall conclusion is that the pandemic pace was unsustainable, focused on vaccine delivery at the expense of other modalities/disease targets, and had implications for professional and personal life (work-life balance). Routinely reducing development time from 10 years to 1 year is nearly impossible to achieve. Environmental aspects of sustainable downstream processing are also described.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Indústria Farmacêutica
3.
Biotechnol Bioeng ; 121(6): 1876-1888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494789

RESUMO

Regulatory authorities recommend using residence time distribution (RTD) to address material traceability in continuous manufacturing. Continuous virus filtration is an essential but poorly understood step in biologics manufacturing in respect to fluid dynamics and scale-up. Here we describe a model that considers nonideal mixing and film resistance for RTD prediction in continuous virus filtration, and its experimental validation using the inert tracer NaNO3. The model was successfully calibrated through pulse injection experiments, yielding good agreement between model prediction and experiment ( R 2 > ${R}^{2}\gt $ 0.90). The model enabled the prediction of RTD with variations-for example, in injection volumes, flow rates, tracer concentrations, and filter surface areas-and was validated using stepwise experiments and combined stepwise and pulse injection experiments. All validation experiments achieved R 2 > ${R}^{2}\gt $ 0.97. Notably, if the process includes a porous material-such as a porous chromatography material, ultrafilter, or virus filter-it must be considered whether the molecule size affects the RTD, as tracers with different sizes may penetrate the pore space differently. Calibration of the model with NaNO3 enabled extrapolation to RTD of recombinant antibodies, which will promote significant savings in antibody consumption. This RTD model is ready for further application in end-to-end integrated continuous downstream processes, such as addressing material traceability during continuous virus filtration processes.


Assuntos
Filtração , Filtração/métodos , Vírus/isolamento & purificação
4.
Biotechnol Bioeng ; 121(1): 206-218, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747706

RESUMO

The messenger RNA (mRNA) 5'-cap structure is indispensable for mRNA translation initiation and stability. Despite its importance, large-scale production of capped mRNA through in vitro transcription (IVT) synthesis using vaccinia capping enzyme (VCE) is challenging, due to the requirement of tedious and multiple pre-and-post separation steps causing mRNA loss and degradation. Here in the present study, we found that the VCE together with 2'-O-methyltransferase can efficiently catalyze the capping of poly dT media-tethered mRNA to produce mRNA with cap-1 structure under an optimized condition. We have therefore designed an integrated purification and solid-based capping protocol, which involved capturing the mRNA from the IVT system by using poly dT media through its affinity binding for 3'-end poly-A in mRNA, in situ capping of mRNA 5'-end by supplying the enzymes, and subsequent eluting of the capped mRNA from the poly dT media. Using mRNA encoding the enhanced green fluorescent protein as a model system, we have demonstrated that the new strategy greatly simplified the mRNA manufacturing process and improved its overall recovery without sacrificing the capping efficiency, as compared with the conventional process, which involved at least mRNA preseparation from IVT, solution-based capping, and post-separation and recovering steps. Specifically, the new process accomplished a 1.76-fold (84.21% over 47.79%) increase in mRNA overall recovery, a twofold decrease in operation time (70 vs. 140 min), and similar high capping efficiency (both close to 100%). Furthermore, the solid-based capping process greatly improved mRNA stability, such that the integrity of the mRNA could be well kept during the capping process even in the presence of exogenously added RNase; in contrast, mRNA in the solution-based capping process degraded almost completely. Meanwhile, we showed that such a strategy can be operated both in a batch mode and in an on-column continuous mode. The results presented in this work demonstrated that the new on-column capping process developed here can accomplish high capping efficiency, enhanced mRNA recovery, and improved stability against RNase; therefore, can act as a simple, efficient, and cost-effective platform technology suitable for large-scale production of capped mRNA.


Assuntos
Poli T , Ribonucleases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética
5.
Biotechnol Bioeng ; 121(9): 2678-2690, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702962

RESUMO

The growing demand for biological therapeutics has increased interest in large-volume perfusion bioreactors, but the operation and scalability of perfusion membranes remain a challenge. This study evaluates perfusion cell culture performance and monoclonal antibody (mAb) productivity at various membrane fluxes (1.5-5 LMH), utilizing polyvinylidene difluoride (PVDF), polyethersulfone (PES), or polysulfone (PS) membranes in tangential flow filtration mode. At low flux, culture with PVDF membrane maintained higher cell culture growth, permeate titer (1.06-1.34 g/L) and sieving coefficients (≥83%) but showed lower permeate volumetric throughput and higher transmembrane pressure (TMP) (>1.50 psi) in the later part of the run compared to cultures with PES and PS membrane. However, as permeate flux increased, the total mass of product decreased by around 30% for cultures with PVDF membrane, while it remained consistent with PES and PS membrane, and at the highest flux studied, PES membrane generated 12% more product than PVDF membrane. This highlights that membrane selection for large-volume perfusion bioreactors depends on the productivity and permeate flux required. Since operating large-volume perfusion bioreactors at low flux would require several cell retention devices and a complex setup, PVDF membranes are suitable for low-volume operations at low fluxes whereas PES membranes can be a desirable alternative for large-volume higher demand products at higher fluxes.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Cricetulus , Membranas Artificiais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/biossíntese , Células CHO , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Polímeros/química , Sulfonas/química , Perfusão/métodos , Perfusão/instrumentação , Polivinil/química , Cricetinae , Polímeros de Fluorcarboneto
6.
Mol Pharm ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137015

RESUMO

Our previous work (Mol Pharm, 20 (2023) 3427) showed that crystalline excipients, specifically anhydrous dibasic calcium phosphate (DCPA), facilitated the dehydration of carbamazepine dihydrate (CBZDH) and the formation of an amorphous product phase during the mixing stage of continuous tablet manufacturing. Understanding the mechanism of this excipient-induced effect was the object of this study. Blending with DCPA for 15 min caused pronounced lattice disorder in CBZDH. This was evident from the 190% increase in the apparent lattice strain determined by the Williamson-Hall plot. The rapid dehydration was attributed to the increased reactivity of CBZDH caused by this lattice disorder. Lattice disorder in CBZDH was induced by a second method, cryomilling it with DCPA. The dehydration was accelerated in the milled sample. Annealing the cryomilled sample reversed the effect, thus confirming the effect of lattice disorder on the dehydration kinetics. The hardness of DCPA appeared to be responsible for the disordering effect. DCPA exhibited a similar effect in other hydrates, thereby revealing that the effect was not unique to CBZDH. However, its magnitude varied on a case-by-case basis. The high shear powder mixing was necessary for rapid and efficient powder mixing during continuous drug product manufacturing. The mechanical stress imposed on the CBZDH, and exacerbated by DCPA, caused this unexpected destabilization.

7.
Pharm Res ; 41(5): 833-837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698195

RESUMO

Currently, the lengthy time needed to bring new drugs to market or to implement postapproval changes causes multiple problems, such as delaying patients access to new lifesaving or life-enhancing medications and slowing the response to emergencies that require new treatments. However, new technologies are available that can help solve these problems. The January 2023 NIPTE pathfinding workshop on accelerating drug product development and approval included a session in which participants considered the current state of product formulation and process development, barriers to acceleration of the development timeline, and opportunities for overcoming these barriers using new technologies. The authors participated in this workshop, and in this article have shared their perspective of some of the ways forward, including advanced manufacturing techniques and adaptive development. In addition, there is a need for paradigm shifts in regulatory processes, increased pre-competitive collaboration, and a shared strategy among regulators, industry, and academia.


Assuntos
Aprovação de Drogas , Humanos , Desenvolvimento de Medicamentos/métodos , Indústria Farmacêutica/métodos , Tecnologia Farmacêutica/métodos , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos
8.
Bioprocess Biosyst Eng ; 47(7): 1107-1116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864863

RESUMO

Menaquinone-7 (MK-7), a vital vitamin with numerous health benefits, is synthesized and secreted extracellularly by the formation of biofilm, dominantly in Bacillus strains. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. Continuous fermentation in biofilm reactors offers a promising strategy for achieving sustainable and efficient production of Menaquinone-7 (MK-7). Unlike conventional batch fermentation, continuous biofilm reactors maintain a steady state of operation, which reduces resource consumption and waste generation, contributing to sustainability. By optimizing fermentation conditions, MK-7 production was significantly enhanced in this study, demonstrating the potential for sustainable industrial-scale production. To determine the optimal operational parameters, various dilution rates were tested. These rates were selected based on their potential to enhance nutrient supply and biofilm stability, thereby improving MK-7 production. By carefully considering the fermentation conditions and systematically varying the dilution rates, MK-7 production was significantly enhanced during continuous fermentation. The MK-7 productivity was found to increase from 0.12 mg/L/h to 0.33 mg/L/h with a dilution rate increment from 0.007 to 0.042 h-1). This range was chosen to explore the impact of various nutrient supply rates on MK-7 production and to identify the optimal conditions for maximizing productivity. However, a further increase in the dilution rate to 0.084 h-1 led to reduced productivity at approximately 0.16 mg/L/h, likely due to insufficient retention time for effective biofilm formation. Consequently, a dilution rate of 0.042 h-1 exhibited the highest productivity of 0.33 mg/L/h, outperforming all investigated dilution rates and demonstrating the critical balance between nutrient supply and retention time in continuous fermentation. These findings validate the feasibility of operating continuous fermentation at a 0.084 h-1 dilution rate, corresponding to a 48 h retention time, to achieve the highest MK-7 productivity compared to conventional batch fermentation. The significant advancements achieved in enhancing Menaquinone-7 (MK-7) productivity through continuous fermentation at optimal dilution rates in the present work indicate promising prospects for even greater efficiency and sustainability in MK-7 production through future developments.


Assuntos
Bacillus subtilis , Biofilmes , Reatores Biológicos , Vitamina K 2 , Biofilmes/crescimento & desenvolvimento , Vitamina K 2/metabolismo , Vitamina K 2/análogos & derivados , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Fermentação
9.
Pharm Dev Technol ; 29(5): 395-414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38618690

RESUMO

The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.


Assuntos
Excipientes , Tecnologia Farmacêutica , Excipientes/química , Tecnologia Farmacêutica/métodos , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Indústria Farmacêutica/métodos
10.
Pharm Dev Technol ; : 1-7, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38995216

RESUMO

The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.

11.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355916

RESUMO

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Tecnologia de Extrusão por Fusão a Quente , Indústria Farmacêutica/métodos , Temperatura Alta
12.
Biotechnol Bioeng ; 120(9): 2601-2621, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126355

RESUMO

Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients' access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV-mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state-of-the-art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Dependovirus/genética , Vetores Genéticos/genética , Terapia Genética
13.
Mol Pharm ; 20(8): 3779-3790, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37421361

RESUMO

For more than five decades, pharmaceutical manufacturers have been relying heavily on batch manufacturing that is a sequential, multistep, laborious, and time-consuming process. However, late advances in manufacturing technologies have prompted manufacturers to consider continuous manufacturing (CM) is a feasible manufacturing process that encompasses fewer steps and is less tedious and quick. Global regulatory agencies are taking a proactive role to facilitate pharmaceutical industries to adopt CM that assures product quality by employing robust manufacturing technologies encountering fewer interruptions, thereby substantially reducing product failures and recalls. However, adopting innovative CM is known to pose technical and regulatory challenges. Hot melt extrusion (HME) is one such state-of-the-art enabling technology that facilitates CM of diverse pharmaceutical dosage forms, including topical semisolids. Efforts have been made to continuously manufacture semisolids by HME integrating the principles of Quality by Design (QbD) and Quality Risk Management (QRM) and deploying Process Analytical Technologies (PAT) tools. Attempts have been made to systematically elucidate the effect of critical material attributes (CMA) and critical process parameters (CPP) on product critical quality attributes (CQA) and Quality Target Product Profiles (QTPP) deploying PAT tools. The article critically reviews the feasibility of one of the enabling technologies such as HME in CM of topical semisolids. The review highlights the benefits of the CM process and challenges ahead to implement the technology to topical semisolids. Once the CM of semisolids adopting melt extrusion integrated with PAT tools becomes a reality, the process can be extended to manufacture sterile semisolids that usually involve more critical processing steps.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Tecnologia Farmacêutica , Indústria Farmacêutica , Preparações Farmacêuticas , Temperatura Alta , Composição de Medicamentos
14.
Mol Pharm ; 20(7): 3427-3437, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37232571

RESUMO

In recent years, continuous tablet manufacturing technology has been used to obtain regulatory approval of several new drug products. While a significant fraction of active pharmaceutical ingredients exists as hydrates (wherein water is incorporated stoichiometrically in the crystal lattice), the impact of processing conditions and formulation composition on the dehydration behavior of hydrates during continuous manufacturing has not been investigated. Using powder X-ray diffractometry, we monitored the dehydration kinetics of carbamazepine dihydrate in formulations containing dibasic calcium phosphate, anhydrous (DCPA), mannitol, or microcrystalline cellulose. The combined effect of nitrogen flow and vigorous mixing during the continuous mixing stage of tablet manufacture facilitated API dehydration. Dehydration was rapid and most pronounced in the presence of DCPA. The dehydration product, amorphous anhydrous carbamazepine, sorbed a significant fraction of the water released by dehydration. Thus, the dehydration process resulted in a redistribution of water in the powder blend. The unintended formation of an amorphous dehydrated phase, which tends to be much more reactive than its crystalline counterparts, is of concern and warrants further investigation.


Assuntos
Carbamazepina , Água , Humanos , Carbamazepina/química , Água/química , Desidratação , Pós , Comprimidos , Difração de Raios X
15.
Mol Pharm ; 20(10): 5160-5172, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37646101

RESUMO

Organic solvent-free process or green chemistry is needed for manufacturing pharmaceutical salts to avoid various environmental, safety, and manufacturing cost issues involved. In this study, a cinnarizine (CNZ) salt with malic acid at a 1:1 molar ratio was successfully prepared by twin screw extrusion (TSE) with water assistance. The feasibility of salt formation was first evaluated by screening several carboxylic acids by neat grinding (NG) and liquid-assisted grinding (LAG) using a mortar and pestle, which indicated that malic acid and succinic acid could form salts with CNZ. Further studies on salt formation were conducted using malic acid. The examination by hot-stage microscopy revealed that the addition of water could facilitate the formation and crystallization of CNZ-malic acid salt even though CNZ is poorly water-soluble. The feasibility of salt formation was confirmed by determining the pH-solubility relationship between CNZ and malic acid, where a pHmax of 2.7 and a salt solubility of 2.47 mg/mL were observed. Authentic salt crystals were prepared by solution crystallization from organic solvents for examining crystal properties and structure by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, solid-state 13C and 15N nuclear magnetic resonance (NMR), and single-crystal X-ray diffraction (SXD). These techniques also established that a salt, and not a cocrystal, was indeed formed. The CNZ salt crystals were then prepared by TSE of a 1:1 CNZ-malic acid mixture, where the addition of small amounts of water resulted in a complete conversion of the mixture into the salt form. The salts prepared by solvent crystallization and water-assisted TSE had identical properties, and their moisture sorption profiles were also similar, indicating that TSE is a viable method for salt preparation by green chemistry. Since TSE can be conducted in a continuous manner, the results of the present investigation, if combined with other continuous processes, suggest the possibility of continuous manufacturing of drug products from the synthesis of active pharmaceutical ingredients (APIs) to the production of final dosage forms.


Assuntos
Cinarizina , Malatos , Tecnologia Farmacêutica , Água , Varredura Diferencial de Calorimetria , Cinarizina/síntese química , Cinarizina/química , Composição de Medicamentos/métodos , Preparações Farmacêuticas , Sais/síntese química , Cloreto de Sódio , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X , Malatos/química , Indústria Farmacêutica , Tecnologia Farmacêutica/métodos
16.
Biotechnol Lett ; 45(10): 1265-1277, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606752

RESUMO

OBJECTIVES: Gene therapy using viral vectors and antibody-based therapies continue to expand within the pharmaceutical market. We evaluated whether Cellhesion® VP, a chitin-based material, can be used as 3D culture platform for cell lines used for the production of antibodies and viral vectors. RESULTS: The results of Cell Counting Kit-8 assay and LDH assay revealed that Cellhesion® VP had no adverse effect to Human Embryonic Kidney (HEK) 293, A549 and Chinese hamster ovary (CHO) DG44-Interferon-ß (IFN) cells. Cell growth analyses showed that Cellhesion® VP supported the 3D culture of HEK293, A549 and CHO DG44- IFN-ß cells with a spherical morphology. Importantly, subculture of these cell lines on Cellhesion® VP was easily performed without trypsinization because cells readily transferred to newly added scaffold. Our data also suggest that CHO DG44-IFNß, cultured on Cellhesion® VP secreted IFNß stably and continuously during the culture period. CONCLUSIONS: Cellhesion® VP provides a simple and streamlined expansion culture system for the production of biopharmaceuticals.


Assuntos
Produtos Biológicos , Animais , Cricetinae , Humanos , Células HEK293 , Quitina , Células CHO , Cricetulus , Técnicas de Cultura de Células
17.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241953

RESUMO

In this work, a continuous system to produce multi-hundred-gram quantities of aryl sulfonyl chlorides is described. The scheme employs multiple continuous stirred-tank reactors (CSTRs) and a continuous filtration system and incorporates an automated process control scheme. The experimental process outlined is intended to safely produce the desired sulfonyl chloride at laboratory scale. Suitable reaction conditions were first determined using a batch-chemistry design of experiments (DOE) and several isolation methods. The hazards and incompatibilities of the heated chlorosulfonic acid reaction mixture were addressed by careful equipment selection, process monitoring, and automation. The approximations of the CSTR fill levels and pumping performance were measured by real-time data from gravimetric balances, ultimately leading to the incorporation of feedback controllers. The introduction of process automation demonstrated in this work resulted in significant improvements in process setpoint consistency, reliability, and spacetime yield, as demonstrated in medium- and large-scale continuous manufacturing runs.

18.
Pharm Dev Technol ; 28(5): 440-451, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37078894

RESUMO

Twin-screw wet granulation offers the possibility to granulate continuously. A drying step after wet granulation is required to realize a full continuous manufacturing line. Aim of this study was to gain insights into the drying behavior of a continuous vibrated fluidized bed dryer intended for pharmaceutical research and development. A Design of Experiment was conducted to examine the influence of process parameters during the drying of granules using drying temperature, air flow, and vibration acceleration as factors. The obtained temperature and humidity profiles during the drying of lactose-MCC and mannitol granules displayed the first and second drying stage which is spatially resolved. With a higher drying temperature or higher air flow, the second drying stage was achieved earlier. An increase in vibration acceleration shortened the residence time and by this, the second drying stage was reached later at a lower granule temperature and thus higher residual moisture of the granules. Formulation-dependent impact of the drying parameters was observed as lactose-MCC led to smaller granules when increasing the temperature or air flow.


Assuntos
Lactose , Vibração , Composição de Medicamentos , Tamanho da Partícula , Temperatura , Tecnologia Farmacêutica
19.
Pharm Dev Technol ; 28(10): 948-961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889884

RESUMO

The focus of this study was to investigate the sensitivity of different drug formulations to differences in process parameters based on previously developed scale-up strategies. Three different formulations were used for scale-up experiments from a QbCon® 1 with a screw diameter of 16 mm and a throughput of 2 kg/h to a QbCon® 25 line with a screw diameter of 25 mm and a throughput of 25 kg/h. Two of those formulations were similar in their composition of excipients but had a different API added to the blend to investigate the effect of solubility of the API during twin-screw wet granulation, while the third formulation was based on a controlled release formulation with different excipients and a high fraction of HPMC. The L/S-ratio had to be set specifically for each formulation as depending on the binder and the overall composition the blends varied significantly in their response to water addition and their overall granulation behavior. Before milling there were large differences in granule size distributions based on scale (Earth Mover's Distance 140-1100 µm, higher values indicating low similarity) for all formulations. However, no major differences in granule properties (e.g. Earth Mover's Distance for GSDs: 23-88 µm) or tablet tensile strength (> 1.8 MPa at a compaction pressure of 200 MPa for all formulations with a coefficient of variation < 0.1, indicating high robustness for all formulations) were observed after milling, which allowed for a successful scale-up independent of the selected formulations.


Assuntos
Excipientes , Tecnologia Farmacêutica , Tamanho da Partícula , Solubilidade , Comprimidos , Composição de Medicamentos
20.
AAPS PharmSciTech ; 24(3): 70, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36805870

RESUMO

The continuous manufacturing (CM) of solid oral dosage forms has received increased attention in recent years and has become a leading technology in the pharmaceutical industry. A model has been developed based on process data from two design of experiments (DoEs), where the impact of the mixer process parameters, throughput (THR), hold up mass (HUM), impeller speed (IMP), and the input raw material bulk density (BDi), on the continuous process and the resulting drug product has been investigated. These statistical models revealed equations, describing process parameter interactions for optimization purposes. For the exit valve opening width (EV) at the bottom of the continuous mixer (CMT), the combination of high throughput (30 kg/h) and low impeller speed (300 rpm) resulted in optimal process conditions. Apparent bulk density of the blend (BD) within the process, fill depth (FD), and tensile strength (TS) were mainly impacted by input bulk density (BDi) of the tableting mixture, emphasizing the role of material attributes on the continuous manufacturing process. The apparent bulk density itself was, other than from the input bulk density, equally dependent from THR and IMP in opposite deflections. However, process parameters (THR and IMP) revealed a minor impact on the apparent BD compared to the input bulk density. FD was impacted mainly by THR ahead of IMP and the TS by IMP and THR to a similar extend, in opposite deflections. A simplified linear model to estimate the input bulk density revealed satisfactory prediction quality when included in the derived statistical model equations.


Assuntos
Indústria Farmacêutica , Modelos Estatísticos , Comprimidos , Modelos Lineares , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa