Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 299(1): 102781, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496074

RESUMO

TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.


Assuntos
Processamento Alternativo , Retículo Endoplasmático , Proteínas de Membrana , Cátions/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Regulação da Expressão Gênica/genética
2.
FASEB J ; 34(12): 16348-16363, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058267

RESUMO

Cell surface trafficking of many G protein-coupled receptors is tightly regulated. Among them, the mandatory heterodimer GABAB receptor for the main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), is a model. In mammals, its cell surface trafficking is highly controlled by an endoplasmic reticulum retention signal in the C-terminal intracellular region of the GB1 subunit that is masked through a coiled-coil interaction with the GB2 subunit. Here, we investigate the molecular basis for the export of its homolog in Drosophila melanogaster that regulates the circadian rhythm and sleep. In contrast to mammals, the endoplasmic retention signal is carried by GB2, while GB1 reaches the cell surface alone. NMR analysis showed that the coiled-coil domain that controls GABAB heterodimer formation is structurally conserved between flies and mammals, despite specific features. These findings show the adaptation of a similar quality control system during evolution for maintaining the subunit composition of a functional heterodimeric receptor.


Assuntos
Receptores de GABA/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Ritmo Circadiano/fisiologia , Dimerização , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Peixes/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Subunidades Proteicas , Transporte Proteico/fisiologia , Controle de Qualidade , Ratos , Sono/fisiologia , Ácido gama-Aminobutírico/metabolismo
3.
Hum Mutat ; 39(5): 676-690, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327391

RESUMO

SLC4A11 mutations cause cases of congenital hereditary endothelial dystrophy (CHED), Harboyan syndrome (HS), and Fuchs endothelial corneal dystrophy (FECD). Defective water reabsorption from corneal stroma by corneal endothelial cells (CECs) leads to these corneal dystrophies. SLC4A11, in the CEC basolateral membrane, facilitates transmembrane movement of H2 O, NH3 , and H+ -equivalents. Some SLC4A11 disease mutants have impaired folding, leading to a failure to move to the cell surface, which in some cases can be corrected by the drug, glafenine. To identify SLC4A11 mutants that are targets for folding-correction therapy, we examined 54 SLC4A11 missense mutants. Cell-surface trafficking was assessed on immunoblots, by the level of mature, high molecular weight, cell surface-associated form, and using a bioluminescence resonance energy transfer assay. Low level of cell surface trafficking was found in four out of 18 (20%) of FECD mutants, 19/ out of 31 (61%) of CHED mutants, and three out of five (60%) of HS mutants. Amongst ER-retained mutants, 16 showed increased plasma membrane trafficking when grown at 30°C, suggesting that their defect has potential for rescue. CHED-causing point mutations mostly resulted in folding defects, whereas the majority of FECD missense mutations did not affect trafficking, implying functional impairment. We identified mutations that make patients candidates for folding correction of their corneal dystrophy.


Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Distrofia Endotelial de Fuchs/genética , Mutação de Sentido Incorreto/genética , Medicina de Precisão , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/química , Antiporters/química , Membrana Celular/metabolismo , Temperatura Baixa , Cães , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Modelos Moleculares , Fenótipo
4.
Hum Mutat ; 39(2): 266-280, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134705

RESUMO

Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly glycosylated α-DG and the transmembrane ß-DG. In skeletal muscle, DG is involved in dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a reduced glycosylation of α-DG. The genes mutated in secondary dystroglycanopathies are involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of α-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, destabilize the α-DG core protein influencing its binding to modifying enzymes. Recently, a homozygous mutation (p.Cys699Phe) hitting the ß-DG ectodomain has been identified in a patient affected by muscle-eye-brain disease with multicystic leucodystrophy, suggesting that other mechanisms than hypoglycosylation of α-DG could be implicated in dystroglycanopathies. Herein, we have characterized the DG murine mutant counterpart by transfection in cellular systems and high-resolution microscopy. We observed that the mutation alters the DG processing leading to retention of its uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray scattering data, corroborated by biochemical and biophysical experiments, revealed that the mutation provokes an alteration in the ß-DG ectodomain overall folding, resulting in disulfide-associated oligomerization. Our data provide the first evidence of a novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, underlying dystroglycanopathy.


Assuntos
Distroglicanas/genética , Leucoencefalopatias/genética , Proteínas Mutantes/genética , Síndrome de Walker-Warburg/genética , Linhagem Celular , Humanos
5.
Neuroendocrinology ; 107(2): 167-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949799

RESUMO

OBJECTIVE: Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is characterized by severe polyuria and polydipsia and is caused by variations in the gene encoding the AVP prohormone. This study aimed to ascertain a correct diagnosis, to identify the underlying genetic cause of adFNDI in a Swedish family, and to test the hypothesis that the identified synonymous exonic variant in the AVP gene (c.324G>A) causes missplicing and endoplasmic reticulum (ER) retention of the prohormone. DESIGN/PATIENTS: Three affected family members were admitted for fluid deprivation test and dDAVP (1-deamino-8-d-arginine-vasopressin) challenge test. Direct sequencing of the AVP gene was performed in the affected subjects, and genotyping of the identified variant was performed in family members. The variant was examined by expression of AVP minigenes containing the entire coding regions as well as intron 2 of AVP. METHODS/RESULTS: Clinical tests revealed significant phenotypical variation with both complete and partial adFNDI phenotype. DNA analysis revealed a synonymous c.324G>A substitution in one allele of the AVP gene in affected family members only. Cellular studies revealed both normally spliced and misspliced pre-mRNA in cells transfected with the AVP c.324G>A minigene. Confocal laser scanning microscopy showed collective localization of the variant prohormone to ER and vesicular structures at the tip of cellular processes. CONCLUSION: We identified a synonymous variant affecting the second nucleotide of exon 3 in the AVP gene (c.324G>A) in a family in which adFNDI segregates. Notably, we showed that this variant causes partial missplicing of pre-mRNA, resulting in accumulation of the variant prohormone in ER. Our study suggests that even a small amount of aberrant mRNA might be sufficient to disturb cellular function, resulting in adFNDI.


Assuntos
Diabetes Insípido Neurogênico/genética , Neurofisinas/genética , Precursores de Proteínas/genética , Vasopressinas/genética , Feminino , Variação Genética , Humanos , Masculino , Linhagem
6.
J Biol Chem ; 290(5): 2689-98, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25516596

RESUMO

Surface expression of voltage-gated Ca(2+) (Cav) channels is important for their function in calcium homeostasis in the physiology of excitable cells, but whether or not and how the α1 pore-forming subunits of Cav channels are trafficked to plasma membrane in the absence of the known Cav auxiliary subunits, ß and α2δ, remains mysterious. Here we showed that 14-3-3 proteins promoted functional surface expression of the Cav2.2 α1B channel in transfected tsA-201 cells in the absence of any known Cav auxiliary subunit. Both the surface to total ratio of the expressed α1B protein and the current density of voltage step-evoked Ba(2+) current were markedly suppressed by the coexpression of a 14-3-3 antagonist construct, pSCM138, but not its inactive control, pSCM174, as determined by immunofluorescence assay and whole cell voltage clamp recording, respectively. By contrast, coexpression with 14-3-3τ significantly enhanced the surface expression and current density of the Cav2.2 α1B channel. Importantly, we found that between the two previously identified 14-3-3 binding regions at the α1B C terminus, only the proximal region (amino acids 1706-1940), closer to the end of the last transmembrane domain, was retained by the endoplasmic reticulum and facilitated by 14-3-3 to traffic to plasma membrane. Additionally, we showed that the 14-3-3/Cav ß subunit coregulated the surface expression of Cav2.2 channels in transfected tsA-201 cells and neurons. Altogether, our findings reveal a previously unidentified regulatory function of 14-3-3 proteins in promoting the surface expression of Cav2.2 α1B channels.


Assuntos
Proteínas 14-3-3/metabolismo , Canais de Cálcio Tipo N/metabolismo , Proteínas 14-3-3/genética , Animais , Western Blotting , Canais de Cálcio Tipo N/genética , Membrana Celular/metabolismo , Células Cultivadas , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Imunoprecipitação , Ligação Proteica , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Hum Mutat ; 35(9): 1082-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916015

RESUMO

SLC4A11 mutations cause some cases of the corneal endothelial dystrophies, congenital hereditary endothelial corneal dystrophy type 2 (CHED2), Harboyan syndrome (HS), and Fuchs endothelial corneal dystrophy (FECD). SLC4A11 protein was recently identified as facilitating water flux across membranes. SLC4A11 point mutations usually cause SLC4A11 misfolding and retention in the endoplasmic reticulum (ER). We set about to test the feasibility of rescuing misfolded SLC4A11 protein to the plasma membrane as a therapeutic approach. Using a transfected HEK293 cell model, we measured functional activity present in cells expressing SLC4A11 variants in combinations representing the state found in CHED2 carriers, affected CHED2, FECD individuals, and unaffected individuals. These cells manifest respectively about 60%, 5%, and 25% of the water flux activity, relative to the unaffected (WT alone). ER-retained CHED2 mutant SLC4A11 protein could be rescued to the plasma membrane, where it conferred 25%-30% of WT water flux level. Further, some ER-retained CHED2 mutants expressed at 30°C supported increased water flux compared with 37°C cultures. Caspase activation and cell vitality assays revealed that expression of SLC4A11 mutants in HEK293 cells does not induce cell death. We conclude that therapeutics able to increase cell surface localization of ER-retained SLC4A11 mutants hold promise to treat CHED2 and FECD patients.


Assuntos
Distrofias Hereditárias da Córnea/genética , Mutação , Proteínas SLC4A/genética , Apoptose/genética , Caspase 3/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Retículo Endoplasmático/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Dobramento de Proteína , Multimerização Proteica , Transporte Proteico , Deficiências na Proteostase/genética , Proteínas SLC4A/química , Proteínas SLC4A/metabolismo , Temperatura
8.
Int J Biol Macromol ; 257(Pt 2): 128564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061527

RESUMO

Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.


Assuntos
Doença de Dent , Doenças Genéticas Ligadas ao Cromossomo X , Nefrolitíase , Humanos , Doença de Dent/genética , Doença de Dent/patologia , Nefrolitíase/genética , Mutação , Transporte de Íons
9.
Brain Commun ; 6(2): fcae110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650830

RESUMO

We have previously characterized the molecular mechanisms for variants in γ-aminobutyric acid transporter 1-encoding solute carrier family 6-member 1 (SLC6A1) in vitro and concluded that a partial or complete loss of γ-aminobutyric acid uptake due to impaired protein trafficking is the primary aetiology. Impairment of γ-aminobutyric acid transporter 1 function could cause compensatory changes in the expression of γ-aminobutyric acid receptors, which, in turn, modify disease pathophysiology and phenotype. Here we used different approaches including radioactive 3H γ-aminobutyric acid uptake in cells and synaptosomes, immunohistochemistry and confocal microscopy as well as brain slice surface protein biotinylation to characterize Slc6a1+/A288V and Slc6a1+/S295L mice, representative of a partial or a complete loss of function of SLC6A1 mutations, respectively. We employed the γ-aminobutyric acid transporter 1-specific inhibitor [3H]tiagabine binding and GABAA receptor subunit-specific radioligand binding to profile the γ-aminobutyric acid transporter 1 and GABAA receptor expression in major brain regions such as cortex, cerebellum, hippocampus and thalamus. We also determined the total and surface expression of γ-aminobutyric acid transporter 1, γ-aminobutyric acid transporter 3 and expression of GABAA receptor in the major brain regions in the knockin mice. We found that γ-aminobutyric acid transporter 1 protein was markedly reduced in cortex, hippocampus, thalamus and cerebellum in both mutant mouse lines. Consistent with the findings of reduced γ-aminobutyric acid uptake for both γ-aminobutyric acid transporter 1(A288V) and γ-aminobutyric acid transporter 1(S295L), both the total and the γ-aminobutyric acid transporter 1-mediated 3H γ-aminobutyric acid reuptake was reduced. We found that γ-aminobutyric acid transporter 3 is only abundantly expressed in the thalamus and there was no compensatory increase of γ-aminobutyric acid transporter 3 in either of the mutant mouse lines. γ-Aminobutyric acid transporter 1 was reduced in both somatic regions and nonsomatic regions in both mouse models, in which a ring-like structure was identified only in the Slc6a1+/A288V mouse, suggesting more γ-aminobutyric acid transporter 1 retention inside endoplasmic reticulum in the Slc6a1+/A288V mouse. The [3H]tiagabine binding was similar in both mouse models despite the difference in γ-aminobutyric acid uptake function and γ-aminobutyric acid transporter 1 protein expression for both mutations. There were no differences in GABAA receptor subtype expression, except for a small increase in the expression of α5 subunits of GABAA receptor in the hippocampus of Slc6a1S295L homozygous mice, suggesting a potential interaction between the expression of this GABAA receptor subtype and the mutant γ-aminobutyric acid transporter 1. The study provides the first comprehensive characterization of the SLC6A1 mutations in vivo in two representative mouse models. Because both γ-aminobutyric acid transporter 1 and GABAA receptors are targets for anti-seizure medications, the findings from this study can help guide tailored treatment options based on the expression and function of γ-aminobutyric acid transporter 1 and GABAA receptor in SLC6A1 mutation-mediated neurodevelopmental and epileptic encephalopathies.

10.
Cancer Biol Med ; 18(1): 215-226, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33628596

RESUMO

Objective: In some patients with adenomatous polyposis, an identifiable pathogenic variant of known associated genes cannot be found. Researchers have studied this for decades; however, few new genes have been identified. Methods: Adenomatous polyposis coli (APC) negative polyposis patients were identified through next-generation sequencing and multiplex ligation-dependent probe amplification. Then, whole-exome sequencing (WES) was used to determine candidate genes harboring pathogenic variants. Functional experiments were performed to explore their effects. Subsequently, using Sanger sequencing, we found other polyposis patients carrying variants of the DUOX2 gene, encoding dual oxidase 2, and analyzed them. Results: From 88 patients with suspected familial adenomatous polyposis, 25 unrelated APC negative polyposis patients were identified. Based on the WES results of 3 patients and 2 healthy relatives from a family, the germline nonsense variant (c.1588A>T; p.K530X) of the DUOX2 gene was speculated to play a decisive role in the pedigree in relation to adenomatous polyposis. During functional experiments, we observed that the truncated protein, hDuox2 K530, was overexpressed in the adenoma in a carrier of the DUOX2 nonsense variant, causing abnormal cell proliferation through endoplasmic reticulum (ER) retention. In addition, we found two unrelated APC negative patients carrying DUOX2 missense variants (c.3329G>A, p.R1110Q; c.4027C>T, p.L1343F). Given the results of the in silico analysis, these two missense variants might exert a negative influence on the function of hDuox2. Conclusions: To our knowledge, this is the first study that reports the possible association of DUOX2 germline variants with adenomatous polyposis. With an autosomal dominant inheritance, it causes ER retention, inducing an unfolded protein response.


Assuntos
Polipose Adenomatosa do Colo/genética , Oxidases Duais/genética , Mutação em Linhagem Germinativa , Polipose Adenomatosa do Colo/patologia , Adulto , Estudos de Casos e Controles , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
11.
FEBS Open Bio ; 9(8): 1355-1369, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31033254

RESUMO

B-cell immunoglobulin binding protein (BiP) is an essential endoplasmic reticulum (ER) chaperone normally found in the ER lumen. However, BiP also has other extracellular and intracellular functions. As it is unclear whether peripheral BiP has a signal and/or ER retention sequence, here we produced and biochemically characterised four variants of BiP. The variants differed depending on the presence or the absence of signal and ER retention peptides. Proteins were purified using nickel affinity chromatography, and variant size and quality were confirmed using SDS/PAGE gels. The thermal denaturing temperature of these proteins was found to be 46-47 °C. In addition, we characterised nucleotide binding properties in the absence and the presence of divalent cations. Interestingly, in the absence of cations, ADP has a higher binding affinity to BiP than ATP. The presence of divalent cations results in a decrease of the Kd values of both ADP and ATP, indicating higher affinities of both nucleotides for BiP. ATPase assays were carried out to study the enzyme activity of these variants and to characterise the kinetic parameters of BiP variants. Variants with the signal sequence had higher specific activities than those without. Both Mg2+ and Mn2+ efficiently stimulated the ATPase activity of these variants at low micromolar concentrations, whereas calcium failed to stimulate BiP ATPase. Our novel findings indicate the potential functionality of BiP variants that retain a signal sequence, and also reveal the effect of physiological concentrations of cations on the nucleotide binding properties and enzyme activities of all variants.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Homeostase , Humanos , Imunoglobulinas/metabolismo , Transporte de Íons , Linfocinas , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas/genética
12.
J Cancer Res Ther ; 14(Supplement): S748-S757, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30249898

RESUMO

OBJECTIVE: The aim of this is to compare the immunotherapeutic effects of human colorectal cancer antigen GA733-2 fused to the Fc fragment of antibody (GA733-2-Fc) and to Fc and endoplasmic reticulum (ER) retention motif KDEL (GA733-2-Fc-KDEL). MATERIALS AND METHODS: Recombinant GA733-2-Fc and GA733-2-Fc-KDEL were produced from infiltrated Nicotiana benthamiana leaves and purified by affinity chromatography. Glycan structures were determined by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The allergic and immunogenic responses of recombinant GA733-2-Fc and GA733-2-Fc-KDEL were estimated in an intraperitoneally immunized mouse. The tumor regression effect of recombinant GA733-2-Fc and GA733-2-Fc-KDEL was examined using a colorectal carcinoma CT-26 animal model. RESULTS: Recombinant GA733-2-Fc contained plant-specific glycan structures including ß(1,2)-xylose and α(1,3)-fucose whereas recombinant GA733-2-Fc-KDEL contained oligomannose type glycan structures. Mice immunized intraperitoneally with recombinant GA733-2-Fc and GA733-2-Fc-KDEL elicited strong GA733-2-Fc-specific immunoglobulin G (IgG) and IgA serum antibody responses. Recombinant GA733-2-Fc-KDEL reduced the production of GA733-2-Fc-specific IgE. Recombinant GA733-2-Fc-KDEL increased the production of interferon-γ. Intraperitoneal preimmunization with recombinant GA733-2-Fc and GA733-2-Fc-KDEL regressed tumor growth in a colorectal carcinoma CT-26 animal model. The tumor regression effect induced by recombinant GA733-2-Fc-KDEL was greater than that induced by recombinant GA733-2-Fc. The human and mouse colorectal carcinoma cell binding activities of recombinant GA733-2-Fc-KDEL-immunized sera were higher than those of recombinant GA733-2-Fc. CONCLUSIONS: Our results suggest that GA733-2-Fc conjugated to ER-retention motif KDEL is a more efficient antigen to prevent tumor growth induced by colorectal carcinoma and minimize an allergic response.


Assuntos
Neoplasias Colorretais/genética , Molécula de Adesão da Célula Epitelial/farmacologia , Oligopeptídeos/farmacologia , Polissacarídeos/farmacologia , Animais , Anticorpos Monoclonais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Retículo Endoplasmático/química , Molécula de Adesão da Célula Epitelial/química , Molécula de Adesão da Célula Epitelial/genética , Humanos , Imunoconjugados/genética , Imunoconjugados/farmacologia , Imunoglobulina E/genética , Imunoglobulina E/farmacologia , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Camundongos , Oligopeptídeos/genética , Polissacarídeos/química , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
13.
Microb Cell ; 5(2): 88-103, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29417057

RESUMO

Fat storage-inducing transmembrane (FIT or FITM) proteins have been implicated in the partitioning of triacylglycerol to lipid droplets and the budding of lipid droplets from the ER. At the molecular level, the sole relevant interaction is that FITMs directly bind to triacyglycerol and diacylglycerol, but how they function at the molecular level is not known. Saccharomyces cerevisiae has two FITM homologues: Scs3p and Yft2p. Scs3p was initially identified because deletion leads to inositol auxotrophy, with an unusual sensitivity to addition of choline. This strongly suggests a role for Scs3p in phospholipid biosynthesis. Looking at the FITM family as widely as possible, we found that FITMs are widespread throughout eukaryotes, indicating presence in the last eukaryotic common ancestor. Protein alignments also showed that FITM sequences contain the active site of lipid phosphatase/phosphotransferase (LPT) enzymes. This large family transfers phosphate-containing headgroups either between lipids or in exchange for water. We confirmed the prediction that FITMs are related to LPTs by showing that single amino-acid substitutions in the presumptive catalytic site prevented their ability to rescue growth of the mutants on low inositol/high choline media when over-expressed. The substitutions also prevented rescue of other phenotypes associated with loss of FITM in yeast, including mistargeting of Opi1p, defective ER morphology, and aberrant lipid droplet budding. These results suggest that Scs3p, Yft2p and FITMs in general are LPT enzymes involved in an as yet unknown critical step in phospholipid metabolism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa