Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioprocess Biosyst Eng ; 47(5): 753-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573334

RESUMO

Green synthesis of metal oxides as a treatment for bone diseases is still exploring. Herein, MgO and Fe2O3 NPs were prepared from the extract of Hibiscus sabdariffa L. to study their effect on vit D3, Ca+2, and alkaline phosphatase enzyme ALP associated with osteoporosis. Computational chemistry was utilized to gain insight into the possible interactions. These oxides were characterized by X-ray diffraction, SEM, FTIR, and AFM. Results revealed that green synthesis of MgO and Fe2O3 NPs was successful with abundant. MgO NPs were in vitro applied on osteoporosis patients (n = 35) and showed a significant elevation of vit D3 and Ca+2 (0.0001 > p < 0.001) levels, compared to healthy volunteers (n = 25). Thus, Hibiscus sabdariffa L. is a good candidate to prepare MgO NPs, with a promising enhancing effect on vit D3 and Ca+2 in osteoporosis. In addition, interactions of Fe2O3 and MgO NPs with ALP were determined by molecular docking study.


Assuntos
Hibiscus , Óxido de Magnésio , Osteoporose , Hibiscus/química , Humanos , Osteoporose/tratamento farmacológico , Óxido de Magnésio/química , Compostos Férricos/química , Extratos Vegetais/química , Feminino , Masculino , Cálcio/química , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Pessoa de Meia-Idade , Óxidos/química , Fosfatase Alcalina/metabolismo , Colecalciferol/química , Colecalciferol/farmacologia
2.
Environ Geochem Health ; 46(2): 30, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227286

RESUMO

The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.


Assuntos
Poluentes Ambientais , Águas Residuárias , Escherichia coli , Frutas , Staphylococcus aureus , Nanopartículas Magnéticas de Óxido de Ferro , Extratos Vegetais
3.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764280

RESUMO

Green approaches for nanoparticle synthesis have emerged as biocompatible, economical, and environment-friendly alternatives to counteract the menace of microbial drug resistance. Recently, the utilization of honey as a green source to synthesize Fe2O3-NPs has been introduced, but its antibacterial activity against one of the opportunistic MDR pathogens, Klebsiella pneumoniae, has not been explored. Therefore, this study employed Apis mellifera honey as a reducing and capping agent for the synthesis of iron oxide nanoparticles (Fe2O3-NPs). Subsequent to the characterization of nanoparticles, their antibacterial, antioxidant, and anti-inflammatory properties were appraised. In UV-Vis spectroscopic analysis, the absorption band ascribed to the SPR peak was observed at 350 nm. XRD analysis confirmed the crystalline nature of Fe2O3-NPs, and the crystal size was deduced to be 36.2 nm. Elemental analysis by EDX validated the presence of iron coupled with oxygen in the nanoparticle composition. In ICP-MS, the highest concentration was of iron (87.15 ppm), followed by sodium (1.49 ppm) and other trace elements (<1 ppm). VSM analysis revealed weak magnetic properties of Fe2O3-NPs. Morphological properties of Fe2O3-NPs revealed by SEM demonstrated that their average size range was 100-150 nm with a non-uniform spherical shape. The antibacterial activity of Fe2O3-NPs was ascertained against 30 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zone recorded being 10 mm. The MIC value for Fe2O3-NPs was 30 µg/mL. However, when mingled with three selected antibiotics, Fe2O3-NPs did not affect any antibacterial activity. Momentous antioxidant (IC50 = 22 µg/mL) and anti-inflammatory (IC50 = 70 µg/mL) activities of Fe2O3-NPs were discerned in comparison with the standard at various concentrations. Consequently, honey-mediated Fe2O3-NP synthesis may serve as a substitute for orthodox antimicrobial drugs and may be explored for prospective biomedical applications.


Assuntos
Mel , Abelhas , Animais , Antioxidantes/farmacologia , Estudos Prospectivos , Antibacterianos/farmacologia , Ferro , Klebsiella pneumoniae , Nanopartículas Magnéticas de Óxido de Ferro
4.
J Appl Microbiol ; 132(5): 3735-3745, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35152519

RESUMO

AIMS: Iron oxide nanoparticles (Fe2 O3 NPs) were mycosynthesized using Trichoderma harzianum and applied to control brown rot of apple. The influence of Fe2 O3 NPs on the quality of fruit was also studied. METHODS AND RESULTS: Diseased apple fruits with brown rot symptoms were collected, and the disease-causing pathogen was isolated and identified as Fusarium oxysporum. To control this disease, mycosynthesis of Fe2 O3 NPs was executed using T. harzianum. FTIR spectroscopy revealed the occurrence of stabilizing and reducing agents on NPs. X-ray diffraction (XRD) analysis determined their average size (17.78 nm) and crystalline nature. Energy-dispersive X-ray (EDX) showed strong signals of iron, and scanning electron microscopy (SEM) displayed a high degree of polydispersity of synthesized NPs. Foliar application of NPs significantly reduced brown rot and helped fruits to maintain biochemical and organoleptic properties. Firmness and higher percentage of soluble solids, sugars and ascorbic acid depicted its good quality. CONCLUSION: Environment-friendly mycosynthesized Fe2 O3 NPs can be effectively used to control brown rot of apple. SIGNIFICANCE AND IMPACT OF THE STUDY: Trichoderma harzianum is a famous biocontrol agent, and the synthesis of NPs in its extract is an exciting avenue to control fungal diseases. Due to its nontoxic nature to human gut, it can be applied on all edible fruits.


Assuntos
Hypocreales , Malus , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Sensação
5.
J Nanobiotechnology ; 19(1): 442, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930295

RESUMO

BACKGROUND: Due to the severe cadmium (Cd) pollution of farmland soil, effective measures need to be taken to reduce the Cd content in agricultural products. In this study, we added α-Fe2O3 nanoparticles (NPs) and biochar into Cd-contaminated soil to investigate physiological responses of muskmelon in the whole life cycle. RESULTS: The results showed that Cd caused adverse impacts on muskmelon (Cucumis melo) plants. For instance, the chlorophyll of muskmelon leaves in the Cd alone treatment was reduced by 8.07-32.34% in the four periods, relative to the control. The treatments with single amendment, α-Fe2O3 NPs or 1% biochar or 5% biochar, significantly reduced the soil available Cd content, but the co-exposure treatments (α-Fe2O3 NPs and biochar) had no impact on the soil available Cd content. All treatments could reduce the Cd content by 47.64-74.60% and increase the Fe content by 15.15-95.27% in fruits as compared to the Cd alone treatment. The KEGG enrichment results of different genes in different treatments indicated that single treatments could regulate genes related to anthocyanin biosynthesis, glutathione metabolism and MAPK signal transduction pathways to reduce the Cd toxicity. CONCLUSIONS: Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon. The present study could provide new insights into Cd remediation in soil using α-Fe2O3 NPs and biochar as amendments.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Cucumis/crescimento & desenvolvimento , Compostos Férricos/química , Nanopartículas Metálicas/química , Antioxidantes/metabolismo , Cádmio/química , Cádmio/toxicidade , Clorofila/análise , Cucumis/química , Cucumis/efeitos dos fármacos , Compostos Férricos/metabolismo , Frutas/química , Frutas/metabolismo , Glutationa/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Transdução de Sinais/efeitos dos fármacos , Solo/química , Transcriptoma/efeitos dos fármacos
6.
Neurochem Res ; 44(7): 1533-1548, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30941547

RESUMO

Iron oxide (Fe2O3) nanoparticles (NPs) attract the attention of clinicians for its unique magnetic and paramagnetic properties, which are exclusively used in neurodiagnostics and therapeutics among the other biomedical applications. Despite numerous research findings has already proved neurotoxicity of Fe2O3-NPs, factors affecting neurobehaviour has not been elucidated. In this study, mice were exposed to Fe2O3-NPs (25 and 50 mg/kg body weight) by oral intubation daily for 30 days. It was observed that Fe2O3-NPs remarkably impair motor coordination and memory. In the treated brain regions, mitochondrial damage, depleted energy level and decreased ATPase (Mg2+, Ca2+ and Na+/K+) activities were observed. Disturbed ion homeostasis and axonal demyelination in the treated brain regions contributes to poor motor coordination. Increased intracellular calcium ([Ca2+]i) and decreased expression of growth associated protein 43 (GAP43) impairs vesicular exocytosis could result in insufficient signal between neurons. In addition, levels of dopamine (DA), norepinephrine (NE) and epinephrine (EP) were found to be altered in the subjected brain regions in correspondence to the expression of monoamine oxidases (MAO). Along with all these factors, over expression of glial fibrillary acidic protein (GFAP) confirms the neuronal damage, suggesting the evidences for behavioural changes.


Assuntos
Comportamento Animal/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Monoaminoxidase/metabolismo , Trifosfato de Adenosina/metabolismo , Administração Oral , Animais , Axônios/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/etiologia , Exocitose/efeitos dos fármacos , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Proteínas de Choque Térmico HSP27/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Atividade Motora/efeitos dos fármacos
7.
J Biochem Mol Toxicol ; 33(6): e22303, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30811714

RESUMO

Magnetic nanoparticles (NPs) are used to a large extent in the targeted delivery of therapeutic agents. In this study, we aimed to investigate the possible toxicity of Fe2 O 3 NPs on human cells, including blood lymphocytes. We isolated blood lymphocytes from healthy humans using Ficoll polysaccharide and subsequently by gradient centrifugation. Then, the toxicity parameters, including cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, cellular glutathione (GSH) level, mitochondrial and lysosomal damage, were measured in blood lymphocytes after exposure to Fe 2 O 3 NPs. Our results indicated that Fe 2 O 3 NPs significantly (dependent on concentration) reduced the cell viability, and the IC 50 was determined to be 1 mM. With increasing concentrations, we found that Fe 2 O 3 NPs-induced cell toxicity was associated with a significant increase in intracellular ROS and loss of mitochondrial membrane potential and lysosomal membrane leakiness. Consequently, these NPs at different concentrations affect GSH level and cause oxidative stress in human lymphocytes.


Assuntos
Linfócitos/metabolismo , Nanopartículas de Magnetita/toxicidade , Adulto , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/patologia , Lisossomos/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Nanomedicine ; 14(3): 735-744, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277639

RESUMO

Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe2O3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe2O3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe2O3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease.


Assuntos
Coagulação Sanguínea , Compostos Férricos/química , Imunidade Inata/efeitos dos fármacos , Sistema Calicreína-Cinina , Nanopartículas Metálicas/administração & dosagem , Humanos , Nanopartículas Metálicas/química , Fator de Crescimento Derivado de Plaquetas/metabolismo , Coroa de Proteína/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Environ Toxicol ; 32(2): 594-608, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26991130

RESUMO

The aim of this study was to determine whether repeated exposure to iron oxide nanoparticles (Fe2 O3 -NPs) could be toxic to mice testis. Fe2 O3 -NPs (25 and 50 mg/kg) were intraperitoneally administered into mice once a week for 4 weeks. Our study showed that Fe2 O3 -NPs have the ability to cross the blood-testis barrier to get into the testis. The findings showed that exposure resulted in the accumulation of Fe2 O3 -NPs which was evidenced from the iron content and accumulation in the testis. Furthermore, 25 and 50 mg/kg Fe2 O3 -NPs administration increased the reactive oxygen species, lipid peroxidation, protein carbonyl content, glutathione peroxidase activity, and nitric oxide levels with a concomitant decrease in the levels of antioxidants-superoxide dismutase, catalase, glutathione, and vitamin C. Increased expression of Bax, cleaved-caspase-3, and cleaved-PARP confirms apoptosis. Serum testosterone levels increased with increased concentration of Fe2 O3 -NPs exposure. In addition, the histopathological lesions like vacuolization, detachment, and sloughing of germ cells were also observed in response to Fe2 O3 -NPs treatment. The data from our study entailed that testicular toxicity caused by Fe2 O3 -NPs exposure may be associated with Fe2 O3 -NPs accumulation leading to oxidative stress and apoptosis. Therefore, precautions should be taken in the safe use of Fe2 O3 -NPs to avoid complications in the fertility of males. Further research will unravel the possible molecular mechanisms on testicular toxicity of Fe2 O3 -NPs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 594-608, 2017.


Assuntos
Poluentes Ambientais/toxicidade , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Testículo/efeitos dos fármacos , Animais , Apoptose , Ácido Ascórbico/metabolismo , Caspase 3/metabolismo , Catalase/metabolismo , Compostos Férricos/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Estresse Oxidativo , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo , Contagem de Espermatozoides , Espermatozoides/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue
10.
Braz J Microbiol ; 54(3): 1341-1350, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400611

RESUMO

The subtropical fruit known as the loquat is prized for both its flavour and its health benefits. The perishable nature of loquat makes it vulnerable to several biotic and abiotic stressors. During the previous growing season (March-April 2021), loquat in Islamabad showed signs of fruit rot. Loquat fruits bearing fruit rot symptoms were collected, and the pathogen that was causing the disease isolated and identified using its morphology, microscopic visualisation, and rRNA sequence. The pathogen that was isolated was identified as Fusarium oxysporum. Green synthesized metallic iron oxide nanoparticles (Fe2O3 NPs) were employed to treat fruit rot disease. Iron oxide nanoparticles were synthesized using a leaf extract of the Calotropis procera. Characterization of NPs was performed by different modern techniques. Fourier transform infrared spectroscopy (FTIR) determined the existence of stabilizing and reducing compounds like phenol, carbonyl compounds, and nitro compounds, on the surface of Fe2O3 NPs. X-ray diffraction (XRD) explained the crystalline nature and average size (~49 nm) of Fe2O3 NPs. Energy dispersive X-ray (EDX) exhibited Fe and O peaks, and scanning electron microscopy (SEM) confirmed the smaller size and spherical shape of Fe2O3 NPs. Following both in vitro and in vivo approaches, the antifungal potential of Fe2O3 NPs was determined, at different concentrations. The results of both in vitro and in vivo analyses depicted that the maximum fungal growth inhibition was observed at concentration of 1.0 mg/mL of Fe2O3 NPs. Successful mycelial growth inhibition and significantly reduced disease incidence suggest the future application of Fe2O3 NPs as bio fungicides to control fruit rot disease of loquat.


Assuntos
Eriobotrya , Fusarium , Nanopartículas Metálicas , Nanopartículas , Frutas/química , Nanopartículas Metálicas/química , Paquistão , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Difração de Raios X , Antibacterianos/farmacologia
11.
Environ Sci Pollut Res Int ; 30(55): 117022-117036, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37221292

RESUMO

The present study is the first attempt to utilize the root extracts of Glycyrrhiza glabra as a novel biological route for the synthesis of iron oxide nanoparticles (Fe2O3NPs) under optimized conditions. The process variables namely concentration of ferric chloride, root extract of G. glabra and temperature were optimized using Response Surface Methodology (RSM) to obtain high yield. Phytochemicals mediated the reduction process and served as capping and stabilizing agent. The biosynthesized Fe2O3NPs characterized using UV-Vis spectroscopy exhibited a prominent peak at 350 nm. The crystallinity and valence state of Fe2O3NPs was confirmed by XRD and XPS. The surface functionalization of the nanoparticles was confirmed from the presence of functional groups in the FT-IR spectrum. The FESEM analysis revealed the biosynthesized Fe2O3NPs are irregular and the EDX spectrum recorded the presence of iron and oxygen in the synthesized nanoparticles. The biosynthesized Fe2O3NPs exhibited an appreciable photocatalytic activity against methylene blue under sunlight with a maximum decolorisation efficiency of 92% within 180 min of reaction time. The experimental data of adsorption studies well fitted with Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study proved to be spontaneous, feasible and endothermic in nature. The phytotoxicity study revealed 92% germination and increased seedling growth in the green gram seeds exposed to Fe2O3NPs. Hence the study established the efficiency of biosynthesized of Fe2O3NPs in photocatalytic and phytotoxic activities.


Assuntos
Alcaloides , Glycyrrhiza , Nanopartículas Metálicas , Nanopartículas , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas/química
12.
Chemosphere ; 337: 139229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354953

RESUMO

The metal ion-based nanocomposite photocatalysts were accepted to exhibit a wide range of photocatalytic and biological applications. In this paper, we synthesize bare Fe2O3, 1 wt% metal (Ag, Co, and Cu) doped Fe2O3 nanoparticles (NPs) using a simple hydrothermal process and wet impregnation method. The as-prepared nanomaterials crystalline structure, shape, optical characteristics, and elemental composition were determined by using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDS) and Transmission electron microscopy (TEM) techniques. Furthermore, the synthesized nanocomposites were utilized as a photosensitizer for the degradation of reactive red (RR120) and orange II (O-II) dyes under sunlight irradiation. The synthesized 1 wt% Ag-Fe2O3 (AgF) NPs samples exhibit a more exceptional catalytic performance of RR120 and O-II dyes (98.32%) within 120 min than the existing Fe2O3, 1 wt% Co-Fe2O3, and Cu-Fe2O3 NPs. The effect of parameters such as exciton formation under solar irradiation, charge recombination rate, and surface charge availability. The metal oxide-doped nanocomposite economic relevance is revealed by their long-term durability and recyclability in photodegradation reactions. The photocatalytic investigations show that the active species O2∙-, HO∙ and h+ play an important role in the dye degradation process. This research might pave the opportunity for the sustainable development of greater photocatalysts for photodegradation and a wide range of environmental applications.


Assuntos
Nanopartículas , Luz Solar , Água , Prata/química , Corantes/química , Catálise
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122207, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502763

RESUMO

This work describes biologically important nanostructures of metals (AgNPs, AuNPs, and PtNPs) and metal oxides (Cu2ONPs, CuONSs, γ-Fe2O3NPs, ZnONPs, ZnONPs-GS, anatase-TiO2NPs, and rutile-TiO2NPs) synthesized by different methods (wet-chemical, electrochemical, and green-chemistry methods). The nanostructures were characterized by molecular spectroscopic methods, including scanning/transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Raman scattering spectroscopy (RS), and infrared light spectroscopy (IR). Then, a peptide (bombesin, BN) was adsorbed onto the surface of these nanostructures from an aqueous solution with pH of 7 that did not contain surfactants. Adsorption was monitored using surface-enhanced Raman scattering spectroscopy (SERS) to determine the influence of the nature of the metal surface and surface evolution on peptide geometry. Information from the SERS studies was compared with information on the biological activity of the peptide. The SERS enhancement factor was determined for each of the metallic surfaces.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Óxidos , Água
14.
Nanomaterials (Basel) ; 12(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080111

RESUMO

An evaluation of the ameliorative effect of pomegranate peel extract (PPE) in counteracting the toxicity of iron oxide nanoparticles (Fe2O3-NPs) that cause hepatic tissue damage is focused on herein. Forty male albino mice were haphazardly grouped into four groups as follows: the first control group was orally gavage daily with physiological saline; the second group received 100 mg/kg of PPE by the oral route day after day; the third group received 30 mg/kg Fe2O3-NPs orally; and the fourth group received both PPE and Fe2O3-NPs by the oral route, the same as the second and third sets. Later, after the completion of the experiment, we collected the liver, blood, and bone marrow of bone specimens that were obtained for further laboratory tests. For instance, exposure to Fe2O3-NPs significantly altered serum antioxidant biomarkers by decreasing the levels of total antioxidant capacity (TAC), catalase (CAT), and glutathione s-transferase (GST). Additionally, it caused changes in the morphology of hepatocytes, hepatic sinusoids, and inflammatory Kupffer cells. Furthermore, they significantly elevated the number of chromosomal aberrations including gaps, breaks, deletions, fragments, polyploidies, and ring chromosomes. Moreover, they caused a significant overexpression of TIMP-1, TNF-α, and BAX mRNA levels. Finally, the use of PPE alleviates the toxicity of Fe2O3-NPs that were induced in the hepatic tissues of mice. It is concluded that PPE extract has mitigative roles against the damage induced by Fe2O3-NPs, as it serves as an antioxidant and hepatoprotective agent. The use of PPE as a modulator of Fe2O3-NPs' hepatotoxicity could be considered as a pioneering method in the use of phytochemicals against the toxicity of nanoparticles.

15.
J Photochem Photobiol B ; 205: 111821, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32131044

RESUMO

Iron oxide nanoparticles (Fe2O3NPs) are an interested and attractive area of research as they have numerous effective environmental and biomedical applications. Herein we have reported a simple and eco-benign synthesis Fe2O3NPs using Tamarix aphylla extract. The extract of the Tamarix aphylla acts both as a reducing and capping agent which leads to the fast and successful eco-benign synthesis of Fe2O3NPs.UV/Vis spectroscopy, XRD, EDX, SEM and TEM techniques were used to characterize and explore different features of Fe2O3NPs. UV/Vis studies showed asharppeak at 390 nm due to surface plasmon resonance absorption of Fe2O3NPs. XRD studies indicated that Fe2O3NPs were crystalline in nature. Structural features, elemental composition and geometry of Fe2O3NPswere confirmed by SEM, EDX and TEM. The as synthesized Fe2O3NPs showed efficient efficacy to degrade 100% of Methylene blue (MB) dye by 4 mg/25 ml MB and revealed 90% scavenging of the more stable DPPH free radical(1 mg/ml). Furthermore, Fe2O3NPs showed excellent antimicrobial activity against pathogenic multidrug resistant bacterial strains. The results of the present study explored the potential reducing, capping property of Tamarix aphylla extract, photocatalytic and biomedical applications of eco-benignly synthesized Fe2O3NPs which could be an alternative material for effective remediation of lethal organic pollutants and microbes.


Assuntos
Antibacterianos , Compostos Férricos , Nanopartículas , Extratos Vegetais/química , Tamaricaceae , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/efeitos da radiação , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Catálise , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Compostos Férricos/efeitos da radiação , Química Verde , Luz , Azul de Metileno/química , Azul de Metileno/efeitos da radiação , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/efeitos da radiação , Fotólise
16.
J Photochem Photobiol B ; 206: 111841, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32197209

RESUMO

The synthesis of magnetic Hematite nanoparticles (α-Fe2O3) via green route has been a long lasting challenge for the scientific and technological fascination of many researchers. In the present investigation, iron oxide nanoparticles (α-Fe2O3) were synthesized using Rheum emodi roots in a cost effective and ecofriendly method. Their physicochemical property orchestration involved techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Vibrating sample magnetometer (VSM), and Atomic force microscopy (AFM). Through TEM, FESEM and AFM analysis, α-Fe2O3NPs were confirmed spherical in shape and the average diameter of particle is ~12 nm as depicted through TEM image. Thermal property was investigated by TGA. Magnetic behavior was observed in R. emodi mediated α-Fe2O3NPs by magnetic hysteresis measurements. FTIR analysis revealed the presence of anthraquinones in R. emodi roots extract which play the central role in stabilization of the α-Fe2O3NPs. Further, the crystalline nature of the nanoparticle sample was determined with XRD experiment and SAED fringes calculation. The crystal was also confirmed with Rietveld refinement of XRD profile fitted with R-3c model Additionally, magnetic interaction with bacterial cell wall showed antimicrobial property against Escherichia coli, Gram-negative and Staphylococcus aureus, Gram-positive species. The approach transcribed in this paper reveals a novel methodology that utilizes α-Fe2O3 NPs to initiate apoptosis and inhibition of cervical cancer cells.

17.
Environ Pollut ; 249: 1011-1018, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31146307

RESUMO

Iron fertilizers are worthy to be studied due to alleviate the Fe deficiency. Different forms of iron oxide nanoparticles are selected to better understand possible particle applications as an Fe source for crop plants. In this study, we assessed the different effects of γ-Fe2O3 and Fe3O4 NPs on the physiology and fruit quality of muskmelon plants in a pot experiment for five weeks. Results showed that no increased iron content was found under NPs treatment in root, stem, leaf and fruit, except 400 mg/L Fe3O4 NPs had a higher iron content in muskmelon root. With the extension of NPs exposure, both γ-Fe2O3 and Fe3O4 NPs began to promote plant growth. In addition, γ-Fe2O3 and Fe3O4 NPs could increase chlorophyll content at a certain stage of exposure. Happily, 200 mg/L γ-Fe2O3 NPs and 100, 200 mg/L Fe3O4 NPs significantly increased fruit weight of muskmelon by 9.1%, 9.4% and 11.5%. It is noteworthy that both γ-Fe2O3 and Fe3O4 NPs caused positive effects on VC content, particularly 100 mg/L Fe3O4 NPs increased the VC content by 46.95%. To the best of our knowledge, little research has been done on the effect of nanoparticles on the whole physiological cycle and fruit quality of melon. The assessment of physiology and fruit quality of muskmelon plants in vitro upon γ-Fe2O3 and Fe3O4 NPs exposure could lay a foundation for NPs potential impact at every growth period of muskmelon plants.


Assuntos
Cucumis melo/efeitos dos fármacos , Compostos Férricos/farmacologia , Óxido Ferroso-Férrico/farmacologia , Frutas/efeitos dos fármacos , Nanopartículas/química , Antioxidantes/metabolismo , Clorofila , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/fisiologia , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Fertilizantes , Qualidade dos Alimentos , Frutas/crescimento & desenvolvimento , Frutas/fisiologia
18.
J Trace Elem Med Biol ; 50: 73-79, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262319

RESUMO

Engineered nanomaterials are used in various applications due to their particular properties. Among them, Iron Oxide Nanoparticles (Fe2O3-NPs) are used in Biomedicine as theranostic agents i.e. contrast agents in Magnetic Resonance Imaging and cancer treatment. With the increasing production and use of these Fe2O3-NPs, there is an evident raise of Fe2O3-NPs exposure and subsequently a higher risk of adverse outcomes for the environment and Human. In the present paper, we investigated the effects of an intravenous daily Fe2O3-NPs exposure on Wistar rat for one week. As results, we showed that several hematological parameters and transaminase (ALT and AST) levels as well as organ histology remained unchanged in treated rats. Neither the catecholamine levels nor the emotional behavior and learning / memory capacities of rats were impacted by the sub-acute intravenous exposure to Fe2O3-NPs. However, iron level in plasma and iron content homeostasis in brain were disrupted after this exposure. Thus, our results demonstrated that Fe2O3-NPs could have transient effects on rat but the intravenous route is still safer that others which is encouraging for their use in medical and/or biological applications.


Assuntos
Catecolaminas/metabolismo , Cognição/efeitos dos fármacos , Compostos Férricos/efeitos adversos , Compostos Férricos/química , Ferro/sangue , Ferro/metabolismo , Nanopartículas Metálicas/efeitos adversos , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Fígado/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar
19.
Neurotox Res ; 32(2): 187-203, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28321581

RESUMO

Iron oxide nanoparticles (Fe2O3-NPs) are widely used in various biomedical applications, extremely in neurotheranostics. Simultaneously, Fe2O3-NP usage is of alarming concern, as its exposure to living systems causes deleterious effects due to its redox potential. However, study on the neurobehavioural impacts of Fe2O3-NPs is very limited. In this regard, adult male mice were intraperitoneally administered with Fe2O3-NPs (25 and 50 mg/kg body weight) once a week for 4 weeks. A significant change in locomotor behaviour and spatial memory was observed in Fe2O3-NP-treated animals. Damages to blood-brain barrier permeability by Fe2O3-NPs and their accumulation in brain regions were evidenced by Evan's blue staining, iron estimation and Prussian blue staining. Elevated nitric oxide, acetylcholinesterase, lactate dehydrogenase leakage and demyelination were observed in the Fe2O3-NP-exposed brain tissues. Imbalanced levels of ROS generation and antioxidant defence mechanism (superoxide dismutase and catalase) cause damages to lipids, proteins and DNA. PARP and cleaved caspase 3 expression levels were found to be increased in the Fe2O3-NP-exposed brain regions which confirms DNA damage and apoptosis. Thus, repeated Fe2O3-NP exposure causes neurobehavioural impairments by nanoparticle accumulation, oxidative stress and apoptosis in the mouse brain.


Assuntos
Doenças Desmielinizantes/induzido quimicamente , Compostos Férricos/toxicidade , Deficiências da Aprendizagem/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Transtornos dos Movimentos/etiologia , Transtornos Psicomotores/induzido quimicamente , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Caspase 3/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , L-Lactato Desidrogenase/metabolismo , Deficiências da Aprendizagem/patologia , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Transtornos dos Movimentos/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Transtornos Psicomotores/patologia
20.
Chem Biol Interact ; 278: 54-64, 2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-28993115

RESUMO

The cardiotoxicity of iron oxide nanoparticles (Fe2O3-NPs) in mice was investigated. The mice were intraperitoneally administered with Fe2O3-NPs at the dose of 25 and 50 mg/kg bw for 30 days at seven days interval. In vivo MRI analysis reveals the Fe2O3-NPs accumulation in the cardiac system. Also, serum iron estimation and Prussian blue staining confirms the iron deposition in circulatory system. Cardiac dysfunction was assessed by ECG analysis and further validated by evaluating the functional markers such as cardiac Troponin-1 (cTnI) expression, AChE activity and levels of LDH and CK-MB in cardiac tissue. Fe2O3-NPs exposure disturbs the balance between the oxidants and antioxidants resulting in oxidative myocardial damages. In consequence, damaged mitochondria, diminished ATP level and NOX4 over expression were observed in the intoxicated groups indicating the role of Fe2O3-NPs in oxidative stress. A dose dependant increase in oxidative stress mediates apoptosis through upregulation of Bax, cytochrome c and cleaved caspase 3 in the 25 mg/kg treated group. Sustained oxidative stress suggest the occurrence of necrosis in addition to apoptosis in 50 mg/kg treated group evidenced by altered expression pattern of cleaved PARP, cytochrome c, Bax and cleaved caspase 3. In addition, triphenyl tetrazolium chloride (TTC) staining confirms cardiac necrosis in 50 mg/kg Fe2O3-NPs treated group.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Férricos/química , Nanopartículas Metálicas/toxicidade , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Caspase 3/metabolismo , Creatina Quinase Forma MB/metabolismo , Citocromos c/metabolismo , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/química , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miocárdio/patologia , NADPH Oxidase 4/metabolismo , Necrose/diagnóstico , Poli(ADP-Ribose) Polimerases/metabolismo , Troponina I/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa