Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Cancer ; 20(1): 292, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264860

RESUMO

BACKGROUND: Cancer metastasis and drug resistance have traditionally been studied separately, though these two lethal pathological phenomena almost always occur concurrently. Brain metastasis occurs in a large proportion of lung cancer patients (~ 30%). Once diagnosed, patients have a poor prognosis surviving typically less than 1 year due to lack of treatment efficacy. METHODS: Human metastatic lung cancer cells (PC-9-Br) were injected into the left cardiac ventricle of female athymic nude mice. Brain lesions were allowed to grow for 21 days, animals were then randomized into treatment groups and treated until presentation of neurological symptoms or when moribund. Prior to tissue collection mice were injected with Oregon Green and 14C-Aminoisobutyric acid followed by an indocyanine green vascular washout. Tracer accumulation was determined by quantitative fluorescent microscopy and quantitative autoradiography. Survival was tracked and tumor burden was monitored via bioluminescent imaging. Extent of mutation differences and acquired resistance was measured in-vitro through half-maximal inhibitory assays and qRT-PCR analysis. RESULTS: A PC-9 brain seeking line (PC-9-Br) was established. Mice inoculated with PC-9-Br resulted in a decreased survival time compared with mice inoculated with parental PC-9. Non-targeted chemotherapy with cisplatin and etoposide (51.5 days) significantly prolonged survival of PC-9-Br brain metastases in mice compared to vehicle control (42 days) or cisplatin and pemetrexed (45 days). Further in-vivo imaging showed greater tumor vasculature in mice treated with cisplatin and etoposide compared to non-tumor regions, which was not observed in mice treated with vehicle or cisplatin and pemetrexed. More importantly, PC-9-Br showed significant resistance to gefitinib by in-vitro MTT assays (IC50 > 2.5 µM at 48 h and 0.1 µM at 72 h) compared with parental PC-9 (IC50: 0.75 µM at 48 h and 0.027 µM at 72 h). Further studies on the molecular mechanisms of gefitinib resistance revealed that EGFR and phospho-EGFR were significantly decreased in PC-9-Br compared with PC-9. Expression of E-cadherin and vimentin did not show EMT in PC-9-Br compared with parental PC-9, and PC-9-Br had neither a T790M mutation nor amplifications of MET and HER2 compared with parental PC-9. CONCLUSION: Our study demonstrated that brain metastases of lung cancer cells may independently prompt drug resistance without drug treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/secundário , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Receptores ErbB/genética , Etoposídeo/uso terapêutico , Feminino , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Pemetrexede/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Cell Int ; 19: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073278

RESUMO

BACKGROUND: Lung cancer is one of the most common and deadly tumors around the world. Targeted therapy for patients with certain mutations, especially by use of tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR), has provided significant benefit to patients. However, gradually developed resistance to the therapy becomes a major challenge in clinical practice and an alternative to treat such patients is needed. Herein, we report that apatinib, a novel anti-angiogenic drug, effectively inhibits obtained gefitinib-resistant cancer cells but has no much effect on their parental sensitive cells. METHODS: Gefitinib-resistant lung cancer cell line (PC9GR) was established from its parental sensitive line (PC9) with a traditional EGFR mutation after long time exposure to gefitinib. Different concentrations of apatinib were used to treat PC9, PC9GR, and other two lung cancer cell lines for its anti-growth effects. RNA sequencing was performed on PC9, PC9GR, and both after apatinib treatment to detect differentially expressed genes and involved pathways. Protein expression of key cycle regulators p57, p27, CDK2, cyclin E2, and pRb was detected using Western blot. Xenograft mouse model was used to assess the anti-tumor activity of apatinib in vivo. RESULTS: The established PC9GR cells had over 250-fold increased resistance to gefitinib than its sensitive parental PC9 cells (IC50 5.311 ± 0.455 µM vs. 0.020 ± 0.003 µM). The PC9GR resistance cells obtained the well-known T790M mutation. Apatinib demonstrated much stronger ( ~ fivefold) growth inhibition on PC9GR cells than on PC9 and other two lung cancer cell lines, A549 and H460. This inhibition was mostly achieved through cell cycle arrest of PC9GR cells in G1 phase. RNA-seq revealed multiple changed pathways in PC9GR cells compared to the PC9 cells and after apatinib treatment the most changed pathways were cell cycle and DNA replication where most of gene activities were repressed. Consistently, protein expression of p57, CDK2, cyclin E2, and pRb was significantly impacted by apatinib in PC9GR cells. Oral intake of apatinib in mouse model significantly inhibited establishment and growth of PC9GR implanted tumors compared to PC9 established tumors. VEGFR2 phosphorylation in PC9GR tumors after apatinib treatment was significantly reduced along with micro-vessel formation. CONCLUSIONS: Apatinib demonstrated strong anti-proliferation and anti-growth effects on gefitinib resistant lung cancer cells but not its parental sensitive cells. The anti-tumor effect was mostly due to apatinib induced cell cycle arrest and VEGFR signaling pathway inhibition. These data suggested that apatinib may provide a benefit to patients with acquired resistance to EGFR-TKI treatment.

3.
Phytother Res ; 33(9): 2298-2309, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31268205

RESUMO

Cisplatin represents one of the first-line drugs used for non-small-cell lung cancer treatment. However, considerable side effects and the emergence of drug resistance are becoming critical limitations to its application. Combinatorial strategies may be able to extend the use of cisplatin. Both Tanshinone IIA and cisplatin inhibit non-small-cell lung cancer cell growth in a time- and dose-dependent manner. When Tanshinone IIA was combined with cisplatin at a ratio of 20:1, they were observed to exert a synergistic inhibitory effect on non-small-cell lung cancer cells. The combination treatment was shown to impair cell migration and invasion, arrest the cell cycle in the S phases, and induce apoptosis in A549 and PC9 cells in a synergistic manner. KEGG pathway analysis and molecular docking indicated that Tanshinone IIA might mainly influence the phosphatidylinositol 3-kinase-Akt signalling pathway. In all treated groups, the expression levels of Bax and cleaved Caspase-3 were up-regulated, whereas the expression levels of Bcl-2, Caspase-3, p-Akt, and p-PI3K proteins were down-regulated. Among these, the combination of Tan IIA and cisplatin exhibited the most significant difference. Tanshinone IIA may function as a novel option for combination therapy for non-small-cell lung cancer treatment.


Assuntos
Abietanos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Abietanos/farmacologia , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Regulação para Baixo , Sinergismo Farmacológico , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 479(2): 393-397, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27659708

RESUMO

Acquired drug resistance is a major problem in chemotherapy, and understanding of the mechanism, by which naïve cells defend themselves from drugs when the cells exposed to the drugs for the first time, may provide a solution of the problem. Gefitinib is an epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, and used as an anticancer drug; however, gefitinib treatment may sometimes lead cancer cells gradually into a gefitinib-tolerance. Here we describe that human adenocarcinoma PC-9 cells even under the presence of gefitinib were able to survive by activating another signaling pathway involving fibroblast growth factor receptor (FGFR) and its signaling molecule, FGF2; and further suggest that the FGF2 for initiating the pathway might be supplied from neighboring cells which were killed by gefitinib, i.e., the survival might be founded on neighbors' sacrifice in an early stage of gefitinib treatment. Our findings suggested that whether cells had a chance to encounter to survival factors such as FGF2 soon after gefitinib treatment might be an important crossroads for the cells for survival and for gaining a gefitinib tolerance.


Assuntos
Adenocarcinoma/patologia , Morte Celular , Quinazolinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Gefitinibe , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Resultado do Tratamento
5.
Tumour Biol ; 37(2): 2597-602, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26392110

RESUMO

Lung cancer is the major cause of cancer-related death worldwide, and 80 % of them are non-small cell lung cancer (NSCLC) cases. Gremlin, a bone morphogenetic protein (BMP) antagonist, is overexpressed in various cancerous tissues; however, little is known about the roles of Gremlin in lung carcinogenesis, and it remains unclear whether Gremlin expression may associate with EGFR-TKI resistance. In this study, expression of Gremlin mRNA and protein in matched tumor and normal lung specimens are quantified by quantitative real-time PCR and western blot. The functional role of Gremlin in NSCLC cells was evaluated by interference RNA (siRNA). The effects of Silenced Gremlin on the resistant PC-9/GR cell line were investigated by proliferation and apoptosis analysis compared with control PC-9 cells. Our results found that Gremlin expression levels were higher in NSCLC tissues, and Gremlin was more highly expressed in PC-9/GR cells compared to PC-9 cells. Knocking down of Gremlin in PC-9/GR cells decreased cell proliferation and increased the expression of BMP7 protein. In addition, Gremlin silencing significantly potentiated apoptosis induced by gefitinib in PC-9/GR with Gremlin knockdown compared to PC-9 transfected with control shRNA, suggesting Gremlin contributes to gefitinib resistance in NSCLC. Gremlin might be explored as a candidate of therapeutic target for modulating EGFR-TKI sensitivity in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Morfogenética Óssea 7/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Progressão da Doença , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
6.
Tumour Biol ; 37(5): 6331-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26628299

RESUMO

Lung cancer is the major cause of cancer-related death worldwide, and 80 % of them are non-small cell lung cancer (NSCLC) cases. Recent studies have shown that sphingosine kinase 2 (SphK2) could promote tumor progression; however, whether SphK2 could affect the chemoresistance of NSCLC to chemotherapy remains unclear. To determine whether SphK2 serves as a potential therapeutic target of NSCLC, we utilized small interference RNA (siRNA) to knock down SphK2 expression in human NSCLC cells and analyzed their phenotypic changes. The data demonstrated that knockdown of SphK2 led to decreased proliferation and enhanced chemosensitivity and apoptosis to gefitinib in NSCLC cells. In this study, we describe the findings that overexpression of SphK2 promotes chemoresistance in NSCLC cells. Inhibition of SphK2 might be considered as a strategy in NSCLC treatment with gefitinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , RNA Interferente Pequeno/genética
7.
Anticancer Res ; 44(9): 3867-3874, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197931

RESUMO

BACKGROUND/AIM: Macrophages prevail in the microenvironment of several tumors, including non-small-cell lung cancer (NSCLC), where they secrete pro-tumorigenic factors that contribute to cancer progression. This study investigated the role of macrophages on the resistance of epidermal growth factor receptor (EGFR)-mutated NSCLC cells to tyrosine kinase inhibitors (TKIs). MATERIALS AND METHODS: EGFR-mutated cell lines PC-9 and HCC827 were cocultured with macrophages and treated with TKIs (erlotinib and gefitinib). The effects of the macrophage-conditioned medium (macrophage CM) on gefitinib resistance and cell migration were also evaluated. RESULTS: Co-culture with macrophages significantly enhanced the resistance to erlotinib and gefitinib in PC-9 and HCC827 cells compared to that in cells cultured independently. Macrophage CM markedly induced gefitinib resistance in PC-9 cells, with maximum resistance observed at 50% CM concentration. This resistance persisted for up to 48 h post-CM removal. Macrophage CM inhibited gefitinib-induced apoptosis, as evidenced by the decreased expression of cleaved caspase-3, PARP, and BIM. Additionally, macrophage CM increased the migration ability of PC-9 cells, as shown by the wound healing and transwell migration assays. Studies have shown that TonEBP is crucial in cancer metastasis and drug resistance; we found that inhibition of TonEBP/NFAT5 expression reduced gefitinib resistance and migration in macrophage CM-induced PC-9 cells, indicating its role as mediator of these effects. CONCLUSION: Macrophages contribute to TKI resistance and enhance the migration of EGFR-mutated NSCLC cells through mechanisms involving TonEBP/NFAT5. Therefore, targeting TonEBP/NFAT5 represents a potential therapeutic strategy for overcoming macrophage-induced TKI resistance in NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Gefitinibe , Neoplasias Pulmonares , Macrófagos , Humanos , Gefitinibe/farmacologia , Movimento Celular/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Apoptose/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Antineoplásicos/farmacologia , Meios de Cultivo Condicionados/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Técnicas de Cocultura , Cloridrato de Erlotinib/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 23(22): 6152-5, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24095095

RESUMO

A series of novel pyrido[2,3-b]pyrazines were synthesized as potential antitumor agents for erlotinib-resistant tumors. Known signal inhibitor compounds from our Nested Chemical Library were tested in phenotypic assays on erlotinib-sensitive PC9 and erlotinib-resistant PC9-ER cell lines to find a compound class to be active on erlotinib resistant cell lines. Based on the screening data, novel pyrido[2,3-b]pyrazines were designed and synthesized. The effect of the substituent position of the heteroaromatic moiety in position 7 and the importance of unsubstituted position 2 of the pyridopyrazine core were explored. Compound 7n had an IC50 value of 0.09 µM for the inhibition of PC9 and 0.15 µM for the inhibition of PC9-ER. We found that some lead compounds of these structures overcome erlotinib-resistance which might become promising drug candidates to fight against NSCLC with EGFR T790M mutation. The signaling network(s) involved in the mechanism(s) of action of these novel compounds in overcoming erlotinib resistance remain to be elucidated.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pirazinas/síntese química , Pirazinas/farmacologia , Quinazolinas/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Cloridrato de Erlotinib , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/química , Transdução de Sinais
9.
Plants (Basel) ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079647

RESUMO

Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a key enzyme in the catabolism pathway for purine degradation. Through gas chromatography−mass spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol, neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further medical applications.

10.
Anticancer Res ; 41(6): 2963-2977, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34083287

RESUMO

BACKGROUND/AIM: Non-small-cell lung cancer (NSCLC) remains a significant cause of death despite the recent introduction of several improved therapeutics. Pemetrexed disodium heptahydrate (pemetrexed) is currently available in combination with a platinum derivative for patients with advanced non-squamous NSCLC for first-line treatment, and as a single agent for second-line treatment. However, the mechanisms underlying its anticancer activities are still not well understood. In this study, we evaluated the growth inhibitory effects of pemetrexed on PC9 (EGFR exon 19 deletion) cells and elucidated the underlying molecular mechanisms. MATERIALS AND METHODS: PC9 cells were treated with pemetrexed and then assessed for the cell viability, morphological and nuclear changes, antigenic alterations, SA-ß-gal staining, and changes in protein expression. RESULTS: Pemetrexed reduced the cell viability of PC9 cells and initiated cell morphological changes in a concentration-dependent manner. Pemetrexed significantly induced G1 phase arrest in a dose-dependent manner. The results demonstrated that pemetrexed induced apoptosis in PC9 cells, a change coupled with an increase in reactive oxygen species and a decrease in mitochondrial membrane potential. Pemetrexed decreased Bcl-2 expression, while Bax expression was increased, and cytochrome c was released. Furthermore, the expression of extrinsic pathway proteins, e.g. Fas/FasL, DR4/TRAIL, and Fas-associated protein with death domain, was increased by pemetrexed, which then activated caspase-8, caspase-9, and caspase-3 and induced poly (ADP-ribose) polymerase proteolysis. CONCLUSION: This study revealed the mechanisms by which pemetrexed works an anticancer drug in the treatment of NSCLC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Éxons , Deleção de Genes , Neoplasias Pulmonares/patologia , Pemetrexede/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Cancer Genomics Proteomics ; 18(5): 645-659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34479917

RESUMO

BACKGROUND/AIM: Paclitaxel is used as a first-line and subsequent therapy for the treatment of various cancers. However, the function and mechanisms of action of paclitaxel in non-small-cell lung cancer (NSCLC) remain unknown. In this study, the molecular mechanism underlying the anticancer activity of paclitaxel was investigated in vitro in a human NSCLC cell line carrying the EGFR exon 19 deletion (PC9). MATERIALS AND METHODS: PC9 cells were treated with paclitaxel and then evaluated with a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, reactive oxygen species (ROS) assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and Western blotting. RESULTS: Paclitaxel markedly decreased the viability of PC9 cells and induced morphological signs of apoptosis. The apoptotic effects of paclitaxel were observed through caspase cascade activation, along with ROS generation and loss of mitochondrial membrane potential (MMP). Furthermore, paclitaxel induced ROS-mediated DNA damage that triggered the activation of the extrinsic pathway of apoptosis via the up-regulation of death receptor (DR5) and caspase-8 activation. In addition, we found that paclitaxel effectively suppressed the EGFR/PI3K/AKT/mTOR signaling pathway to impede PC9 cell growth. Paclitaxel induced cell cycle arrest at the G1 phase in response to DNA damage, in association with the suppression of CDC25A, Cdk2 and Cyclin E1 protein expression. CONCLUSION: Paclitaxel showed anticancer effects against NSCLC by activating extrinsic and intrinsic apoptotic pathways through enhancing ROS generation, inducing cell cycle arrest, and suppressing EGFR/PI3K/AKT/mTOR signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Dano ao DNA/genética , Paclitaxel/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Receptores ErbB/metabolismo , Humanos , Paclitaxel/farmacologia , Espécies Reativas de Oxigênio , Transdução de Sinais
12.
Cancer Genomics Proteomics ; 18(5): 661-673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34479918

RESUMO

BACKGROUND/AIM: Coronavirus disease 2019 (COVID-19) poses a great challenge for the treatment of cancer patients. It presents as a severe respiratory infection in aged individuals, including some lung cancer patients. COVID-19 may be linked to the progression of aggressive lung cancer. In addition, the side effects of chemotherapy, such as chemotherapy resistance and the acceleration of cellular senescence, can worsen COVID-19. Given this situation, we investigated the role of paclitaxel (a chemotherapy drug) in the cell proliferation, apoptosis, and cellular senescence of gefitinib-resistant non-small-cell lung cancer (NSCLC) cells (PC9-MET) to clarify the underlying mechanisms. MATERIALS AND METHODS: PC9-MET cells were treated with paclitaxel for 72 h and then evaluated by a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, a reactive oxygen species (ROS) assay, SA-ß-Gal staining, a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and Western blotting. RESULTS: Paclitaxel significantly reduced the viability of PC9-MET cells and induced morphological signs of apoptosis. The apoptotic effects of paclitaxel were observed by increased levels of cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330) and cleaved PARP (Asp 214). In addition, paclitaxel increased ROS production, leading to DNA damage. Inhibition of ROS production by N-acetylcysteine attenuates paclitaxel-induced DNA damage. Importantly, paclitaxel eliminated cellular senescence, as observed by SA-ß-Gal staining. Cellular senescence elimination was associated with p53/p21 and p16/pRb signaling inactivation. CONCLUSION: Paclitaxel may be a promising anticancer drug and offer a new therapeutic strategy for managing gefitinib-resistant NSCLC during the COVID-19 pandemic.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Oncol Lett ; 21(1): 40, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33262832

RESUMO

COOH-terminus tensin-like molecule (CTEN) is a member of the tensin family, which is considered to be one of the novel proto-oncogenes involved in tumorigenesis and cancer progression. However, the mechanisms of CTEN in acquired resistance of non-small cell lung cancer (NSCLC) remain relatively unknown. The aim of the present study was to understand the roles of CTEN in acquired gefitinib resistance of NSCLC. The present study investigated the expression level of CTEN using reverse transcription-quantitative polymerase chain reaction and Western blot analysis. Cell Counting kit-8 and colony-formation assays were performed to evaluate the proliferative and colony-formative abilities of PC9 and PC9/GR cells in vitro. Mouse xenograft models were used to assess the growth of PC9/GR cells in vivo. A gefitinib-resistant NSCLC cell line (PC9/GR) was established, and the protein and mRNA expression levels of CTEN were observed to be higher in PC9/GR cells than in PC9 cells. Notably, the sensitivity of PC9/GR cells to gefitinib was observed to be decreased when CTEN was overexpressed, while PC9/GR cells with CTEN-downregulation showed markedly enhanced sensitivity to gefitinib. In vitro proliferation and colony formation assays revealed that increased CTEN markedly promoted the cell proliferative and colony-forming capacities of PC9 and PC9/GR cells, and CTEN-silencing inhibited the cell proliferative and colony-forming abilities of the PC9 and PC9/GR cells. Notably, deficient expression of CTEN notably retarded the growth of PC9/GR xenografts in vivo. In addition, the plasma mRNA expression of CTEN was notably elevated in patients with NSCLC with acquired gefitinib resistance. Overexpression of CTEN is associated with acquired gefitinib resistance in NSCLC. CTEN may be investigated as a potential therapeutic target for the treatment of patients with NSCLC with acquired gefitinib resistance.

14.
Front Oncol ; 10: 1732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014856

RESUMO

BACKGROUND: The application of apatinib is immensely limited by its acquired drug resistance. This research investigates whether cordycepin, a component from Cordyceps could synergize with apatinib to improve its anticancer effect on non-small cell lung cancer (NSCLC) cells. METHODS: The NSCLC cell lines A549, PC9, and H1993, and human bronchial epithelial (HBE) cell line Bears-2B were used in this study. Cell counting kit 8, colony formation assays, wound healing assay, transwell assay, and flow cytometry analysis were performed to assess the cell viability, the migration ability, and invasion ability of the cells. Kyoto encyclopedia of genes and genomes (KEGG), western blotting and molecular docking was applied to analyze the possible pathways affected by cordycepin. RESULTS: The combination of cordycepin and apatinib in a ratio of 5:1 synergistically reduced proliferation of NSCLC cells, inhibited cell migration and invasion, increased cell apoptosis by altering cell cycle in NSCLC A549 and PC9 cells. The VEGF/PI3K/Akt pathway was inhibited after treatment with cordycepin and apatinib. CONCLUSION: Our findings demonstrated that the combination of cordycepin and apatinib has synergistically anticancer effect on NSCLC cells by down-regulating VEGF/PI3K/Akt signaling pathway. This result indicated that cordycepin and apatinib could be a promising drug combination against NSCLC.

15.
In Vivo ; 34(3): 1027-1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32354888

RESUMO

BACKGROUND/AIM: Brain metastases are found in approximately 30% of patients with epidermal-growth-factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC). We compared the efficacy of two EGFR-tyrosine kinase inhibitors (TKIs), erlotinib and osimertinib on a PC-9-GFP EGFR mutant NSCLC growing in the brain of nude mice. MATERIALS AND METHODS: The brain metastasis models were randomized into five groups and treated for 15 days: Control; 5 mg/kg erlotinib; 50 mg/kg erlotinib; 0.5 mg/kg osimertinib; 5 mg/kg osimertinib. Tumor volume was evaluated by non-invasive fluorescence imaging. RESULTS: Only 5 mg/kg osimertinib, a low-dose compared to the clinically-equivalent dose, showed significant tumor regression compared to the control. CONCLUSION: This study strongly supports the high activity of osimertinib for intracranial lesions of EGFR-mutant NSCLC.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Feminino , Genes Reporter , Masculino , Camundongos , Camundongos Nus , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cheminform ; 11(1): 69, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33430991

RESUMO

The QM9 dataset has become the golden standard for Machine Learning (ML) predictions of various chemical properties. QM9 is based on the GDB, which is a combinatorial exploration of the chemical space. ML molecular predictions have been recently published with an accuracy on par with Density Functional Theory calculations. Such ML models need to be tested and generalized on real data. PC9, a new QM9 equivalent dataset (only H, C, N, O and F and up to 9 "heavy" atoms) of the PubChemQC project is presented in this article. A statistical study of bonding distances and chemical functions shows that this new dataset encompasses more chemical diversity. Kernel Ridge Regression, Elastic Net and the Neural Network model provided by SchNet have been used on both datasets. The overall accuracy in energy prediction is higher for the QM9 subset. However, a model trained on PC9 shows a stronger ability to predict energies of the other dataset.

17.
Onco Targets Ther ; 11: 5551-5557, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233216

RESUMO

BACKGROUND: The aim of this study was to observe the expression of microRNA-222 (miR-222) and matrix metalloproteinase inhibitor 3 (TIMP3) in non-small cell lung cancer (NSCLC) and discuss their significance. METHODS: A total of 230 patients with NSCLC were enrolled in the observation group during the operation. Ninety-eight normal adjacent tissues were used as the control group. Two groups of miR-222 and TIMP3 were detected by in situ hybridization and immunohistochemistry. The distribution of miR-222 and TIMP3 in A549/H358/PC9 cells was observed by immunofluorescence. Chi-squared and Spearman correlation tests were used to analyze the relationship among miR-222, TIMP3 expression, and clinicopathological parameters of NSCLC. Kaplan-Meier and Cox proportional hazards regression were used to analyze the prognostic impact of miR-222 and TIMP3. RESULTS: Immunohistochemistry showed that the expression of miR-222 in lung cancer tissue was significantly higher, but TIMP3 was lower than that in normal lung tissue (P = 0.0001 for the former and P = 0.0002 for the latter). Meanwhile, miR-222 and TIMP3 were mainly distributed in the cytoplasm. Among them, cTIMP3 accounted for 70.29% (72/101), cmiR-222 for 59.35% (92/155), 14.85% for nTIMP3 (15/101), and 18.06% for nmiR-222 (28/155). There was a significant difference in distribution (both P < 0.0001). The expression of miR-222 and TIMP3 were negatively correlated in lung cancer tissues (r = -0.43, P = 0.0219). With the progression of clinical stage, the positive intensity of cTIMP3 showed a decreasing trend, while the cmiR-222 showed a reverse trend (the former P = 0.0024 and the latter P < 0.0001). In the Kaplan-Meier prognostic analysis, we found that the high expression of cTIMP3 could predict a better prognosis (P = 0.0040), whereas cmiR-222 was the opposite (P = 0.0016). Multivariate analysis shows that both can be used as independent factors. CONCLUSION: TIMP3 expression in lung cancer is relatively low and has a negative correlation with lung cancer staging and prognosis, suggesting that it may play a defensive function in the development of lung cancer, while miR-222 has the opposite effect, and the expression of both proteins is negatively correlated, suggesting that in lung cancer progresses, both proteins may play some role together.

18.
Int J Clin Exp Pathol ; 10(12): 11968-11978, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966561

RESUMO

This study aimed to investigate the effect of ß-catenin inhibitors on cells proliferation and apoptosis in lung cancer stem cells (LCSCs). Drug-resistance PC9 cells were induced by escalation of cisplatin repeated treatment, and then PC9 LCSCs were constructed by Sphere Formation methods. Membrane expression of OCT4, SOX2, CD44, CD133 and ß-Catenin were detected by Immunofluorescent staining, and mRNA of CSCs marker genes and Wnt/ß-Catenin target genes were determined by qPCR assay. PC9 LCSCs were nurtured for 5 days (Day 5) and then ß-catenin inhibitor pyrvinium pamoate (PP) with IC50 concentration (0.221 µM) and ICG-100 with IC50 concentration (2.620 µM) were added and cultured for another 2 days (Day 7), respectively. CCK8 and AV/PI assays were performed to detect cells proliferation and apoptosis. We successfully constructed PC9 LCSCs and observed that OCT4, SOX2, CD44, CD133 and ß-Catenin expressed on all cells, and stem-cell marker genes as well as Wnt/ß-Catenin signaling pathway genes mRNA were all elevated in PC9 LCSCs compared to PC9 parent cells. Cells proliferation by CCK8 assay was decreased while apoptosis rate by AV/PI assay was increased in PP treatment group compared with control, C-Caspase 3 and Bcl-2 protein expression also supported the apoptosis results. Most of the stem-cell marker genes and Wnt/ß-Catenin signaling pathway genes mRNAs were decreased accordingly. ICG-001 also inhibited cells proliferation while induced cells apoptosis in PC9 LCSCs. In conclusion, ß-Catenin inhibitors suppressed the proliferation and promoted the apoptosis of LCSCs, which shed light on a new potential target for lung cancer treatment.

19.
Artigo em Chinês | WPRIM | ID: wpr-1014826

RESUMO

AIM: To study the effect and mechanism of Delicaflavone on migration and invasion of gefitinib-resistant lung cancer cell line PC-9/GR. METHODS: MTT assay was used to detect cell viability. Transwell and scratch assays were used to detect cell invasion and migration abilities. Western blotting was used to detect the expressions of MMP-9, MMP-2, E-cadherin, N-cadherin, Vimentin and PI3K/Akt/mTOR pathway-related proteins in PC-9/GR cells. RESULTS: Compared with control group, 20 mg/L Delicaflavone could significantly inhibit the viability of PC-9/GR cells for 24 h (P<0.05), while Delicaflavone below 10 mg/L had no significant effect on cell proliferation. The number of invasive cells and migrated cells were decreased significantly by Delicaflavone in a concentration-dependent way (P<0.05 and P<0.01). Delicaflavone could concentration-dependently reduce the expression of MMP-9, MMP-2, N-cadherin, vimentin (P<0.01), meanwhile up-regulate the expression of E-cadherin (P<0.01). In addition, Delicaflavone also decreased the expression of p-PI3K, p-Akt and p-mTOR in a concentration-dependent manner (P<0.01). CONCLUSION: Delicaflavone can inhibit the migration and invasion of PC-9/GR cells by regulating epithelial-mesenchymal transition via PI3K/Akt/mTOR pathway.

20.
J Mol Med (Berl) ; 95(3): 311-322, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27838742

RESUMO

Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. KEY MESSAGES: Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Autofagia/efeitos dos fármacos , Flavonas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Flavonas/química , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Selaginellaceae/química , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa