Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Cell ; 183(4): 847-849, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33186527

RESUMO

In this issue of Cell, Liu et al. present FucoID, a glycosyltransferase-mediated tagging platform, to biochemically label and capture antigen-specific T cells. With this technology, the authors isolate and characterize tumor-specific CD8+ and CD4+ T cells in murine tumor models. FucoID shows promise as a tool to enhance the understanding of anti-tumor immune responses.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Animais , Antígenos de Neoplasias , Biotinilação , Linfócitos T CD4-Positivos , Camundongos , Açúcares
2.
Nat Genet ; 25(2): 205-8, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10835638

RESUMO

Holoprosencephaly (HPE) is the most common structural defect of the developing forebrain in humans (1 in 250 conceptuses, 1 in 16,000 live-born infants). HPE is aetiologically heterogeneous, with both environmental and genetic causes. So far, three human HPE genes are known: SHH at chromosome region 7q36 (ref. 6); ZIC2 at 13q32 (ref. 7); and SIX3 at 2p21 (ref. 8). In animal models, genes in the Nodal signalling pathway, such as those mutated in the zebrafish mutants cyclops (refs 9,10), squint (ref. 11) and one-eyed pinhead (oep; ref. 12), cause HPE. Mice heterozygous for null alleles of both Nodal and Smad2 have cyclopia. Here we describe the involvement of the TG-interacting factor (TGIF), a homeodomain protein, in human HPE. We mapped TGIF to the HPE minimal critical region in 18p11.3. Heterozygous mutations in individuals with HPE affect the transcriptional repression domain of TGIF, the DNA-binding domain or the domain that interacts with SMAD2. (The latter is an effector in the signalling pathway of the neural axis developmental factor NODAL, a member of the transforming growth factor-beta (TGF-beta) family.) Several of these mutations cause a loss of TGIF function. Thus, TGIF links the NODAL signalling pathway to the bifurcation of the human forebrain and the establishment of ventral midline structures.


Assuntos
Padronização Corporal/genética , Holoprosencefalia/genética , Proteínas de Homeodomínio/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia , Animais , Sequência de Bases , Células COS , Cromossomos Humanos Par 18/genética , DNA/genética , DNA/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Éxons/genética , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Mutação , Proteína Nodal , Mapeamento Físico do Cromossomo , Prosencéfalo/anormalidades , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Ligação Proteica , RNA Mensageiro/análise , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Smad2 , Transativadores/metabolismo
3.
Nat Genet ; 27(1): 48-54, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11137997

RESUMO

We report here the transcriptional profiling of the cell cycle on a genome-wide scale in human fibroblasts. We identified approximately 700 genes that display transcriptional fluctuation with a periodicity consistent with that of the cell cycle. Systematic analysis of these genes revealed functional organization within groups of coregulated transcripts. A diverse set of cytoskeletal reorganization genes exhibit cell-cycle-dependent regulation, indicating that biological pathways are redirected for the execution of cell division. Many genes involved in cell motility and remodeling of the extracellular matrix are expressed predominantly in M phase, indicating a mechanism for balancing proliferative and invasive cellular behavior. Transcripts upregulated during S phase displayed extensive overlap with genes induced by DNA damage; cell-cycle-regulated transcripts may therefore constitute coherent programs used in response to external stimuli. Our data also provide clues to biological function for hundreds of previously uncharacterized human genes.


Assuntos
Ciclo Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Transcrição Gênica/genética , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Evolução Molecular , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Metanossulfonato de Metila/farmacologia , Mitose/efeitos dos fármacos , Mitose/genética , Mitose/efeitos da radiação , RNA Mensageiro/análise , RNA Mensageiro/genética , Fase S/efeitos dos fármacos , Fase S/genética , Fase S/efeitos da radiação , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta
4.
Curr Opin Cell Biol ; 6(6): 847-52, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7880532

RESUMO

The regulation of cyclin-dependent kinases is at the heart of cell cycle control and, by inference, the control of cell proliferation. Recent advances in regulation of these kinases have uncovered a group of small proteins that bind to and inhibit them, thus preventing cell cycle progression. Linking these proteins to tumor suppressor functions has provided a much sought after connection between cancer and cell cycle control.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Animais , Ciclo Celular/fisiologia , Humanos , Mamíferos , Neoplasias/enzimologia , Saccharomyces cerevisiae
5.
Nat Cell Biol ; 3(11): 958-65, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11715016

RESUMO

Cells experiencing DNA replication stress activate a response pathway that delays entry into mitosis and promotes DNA repair and completion of DNA replication. The protein kinases ScRad53 and SpCds1 (in baker's and fission yeast, respectively) are central to this pathway. We describe a conserved protein Mrc1, mediator of the replication checkpoint, required for activation of ScRad53 and SpCds1 during replication stress. mrc1 mutants are sensitive to hydroxyurea and have a checkpoint defect similar to rad53 and cds1 mutants. Mrc1 may be the replicative counterpart of Rad9 and Crb2, which are required for activating ScRad53 and Chk1 in response to DNA damage.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Ativação Enzimática , Proteínas Fúngicas/genética , Genes Fúngicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe
6.
Trends Cell Biol ; 6(10): 388-92, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15157521

RESUMO

Cyclin-kinase inhibitors (CKIs) are versatile negative regulators of cell proliferation that function in developmental decisions, checkpoint control and tumour suppression. Phenotypic examination of mice lacking individual CKIs has begun to reveal the specialized roles that each of these proteins play in vivo. This review focuses on what has been learned about the role of CKIs in development and cancer through the generation of knockout animals. The authors discuss whether differences in knockout phenotypes between CKIs reflect differential use of these inhibitors by the organism or a fundamental difference between the inhibitors, and suggest a balance hypothesis to explain the different effects observed.

7.
J Cell Biol ; 128(3): 263-71, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7844141

RESUMO

Protein kinase C (PKC) plays a central role in the control of proliferation and differentiation of a wide range of cell types by mediating the signal transduction response to hormones and growth factors. Upon activation by diacylglycerol, PKC translocates to different subcellular sites where it phosphorylates numerous proteins, most of which are unidentified. We used the yeast two-hybrid system to identify proteins that interact with activated PKC alpha. Using the catalytic region of PKC fused to the DNA binding domain of yeast GAL4 as "bait" to screen a mouse T cell cDNA library in which cDNA was fused to the GAL4 activation domain, we cloned several novel proteins that interact with C-kinase (PICKs). One of these proteins, designated PICK1, interacts specifically with the catalytic domain of PKC and is an efficient substrate for phosphorylation by PKC in vitro and in vivo. PICK1 is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK1 and other PICKs may play important roles in mediating the actions of PKC.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , DNA Complementar , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato
8.
J Cell Biol ; 127(3): 609-22, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7525595

RESUMO

The tumor suppressing capacity of the retinoblastoma protein (p110RB) is dependent on interactions made with cellular proteins through its carboxy-terminal domains. How the p110RB amino-terminal region contributes to this activity is unclear, though evidence now indicates it is important for both growth suppression and regulation of the full-length protein. We have used the yeast two-hybrid system to screen for cellular proteins which bind to the first 300 amino acids of p110RB. The only gene isolated from this screen encodes a novel 84-kD nuclear matrix protein that localizes to subnuclear regions associated with RNA processing. This protein, p84, requires a structurally defined domain in the amino terminus of p110RB for binding. Furthermore, both in vivo and in vitro experiments demonstrate that p84 binds preferentially to the functionally active, hypophosphorylated form of p110RB. Thus, the amino terminus of p110RB may function in part to facilitate the binding of growth promoting factors at subnuclear regions actively involved in RNA metabolism.


Assuntos
Genes do Retinoblastoma , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , Proteína do Retinoblastoma/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Antígenos Nucleares , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação , Western Blotting , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Escherichia coli , Biblioteca Gênica , Camundongos , Camundongos Endogâmicos BALB C/imunologia , Dados de Sequência Molecular , Peso Molecular , Proteínas Nucleares/análise , Proteínas Nucleares/biossíntese , RNA/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/metabolismo , Mapeamento por Restrição , Proteína do Retinoblastoma/química , Saccharomyces cerevisiae
9.
Science ; 274(5293): 1664-72, 1996 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-8939848

RESUMO

Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions and ensure that critical events such as DNA replication and chromosome segregation are completed with high fidelity. In addition, checkpoints respond to damage by arresting the cell cycle to provide time for repair and by inducing transcription of genes that facilitate repair. Checkpoint loss results in genomic instability and has been implicated in the evolution of normal cells into cancer cells. Recent advances have revealed signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage. Checkpoint pathways have components shared among all eukaryotes, underscoring the conservation of cell cycle regulatory machinery.


Assuntos
Ciclo Celular , Animais , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Regulação da Expressão Gênica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo
10.
Science ; 282(5395): 1893-7, 1998 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-9836640

RESUMO

In response to DNA damage and replication blocks, cells prevent cell cycle progression through the control of critical cell cycle regulators. We identified Chk2, the mammalian homolog of the Saccharomyces cerevisiae Rad53 and Schizosaccharomyces pombe Cds1 protein kinases required for the DNA damage and replication checkpoints. Chk2 was rapidly phosphorylated and activated in response to replication blocks and DNA damage; the response to DNA damage occurred in an ataxia telangiectasia mutated (ATM)-dependent manner. In vitro, Chk2 phosphorylated Cdc25C on serine-216, a site known to be involved in negative regulation of Cdc25C. This is the same site phosphorylated by the protein kinase Chk1, which suggests that, in response to DNA damage and DNA replicational stress, Chk1 and Chk2 may phosphorylate Cdc25C to prevent entry into mitosis.


Assuntos
Ciclo Celular , Dano ao DNA , Replicação do DNA , Proteínas Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Fosfatases cdc25 , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase do Ponto de Checagem 2 , Proteínas de Ligação a DNA , Ativação Enzimática , Raios gama , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe , Proteínas Supressoras de Tumor , Raios Ultravioleta
11.
Science ; 286(5442): 1162-6, 1999 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-10550055

RESUMO

The Brca1 (breast cancer gene 1) tumor suppressor protein is phosphorylated in response to DNA damage. Results from this study indicate that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation. ATM resides in a complex with Brca1 and phosphorylated Brca1 in vivo and in vitro in a region that contains clusters of serine-glutamine residues. Phosphorylation of this domain appears to be functionally important because a mutated Brca1 protein lacking two phosphorylation sites failed to rescue the radiation hypersensitivity of a Brca1-deficient cell line. Thus, phosphorylation of Brca1 by the checkpoint kinase ATM may be critical for proper responses to DNA double-strand breaks and may provide a molecular explanation for the role of ATM in breast cancer.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama/genética , Proteínas de Ciclo Celular , Linhagem Celular , DNA Complementar , Proteínas de Ligação a DNA , Feminino , Raios gama , Genes BRCA1 , Predisposição Genética para Doença , Células HeLa , Heterozigoto , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Supressoras de Tumor
12.
Science ; 294(5547): 1713-6, 2001 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-11721054

RESUMO

The checkpoint kinases ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3 related) transduce genomic stress signals to halt cell cycle progression and promote DNA repair. We report the identification of an ATR-interacting protein (ATRIP) that is phosphorylated by ATR, regulates ATR expression, and is an essential component of the DNA damage checkpoint pathway. ATR and ATRIP both localize to intranuclear foci after DNA damage or inhibition of replication. Deletion of ATR mediated by the Cre recombinase caused the loss of ATR and ATRIP expression, loss of DNA damage checkpoint responses, and cell death. Therefore, ATR is essential for the viability of human somatic cells. Small interfering RNA directed against ATRIP caused the loss of both ATRIP and ATR expression and the loss of checkpoint responses to DNA damage. Thus, ATRIP and ATR are mutually dependent partners in cell cycle checkpoint signaling pathways.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular , Exodesoxirribonucleases , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Morte Celular , Linhagem Celular , Sobrevivência Celular , Sequência Conservada , Dano ao DNA , Proteínas de Ligação a DNA , Éxons/genética , Deleção de Genes , Genes Essenciais/genética , Células HeLa , Humanos , Integrases/genética , Integrases/metabolismo , Dados de Sequência Molecular , Peso Molecular , Fosfoproteínas/genética , Fosforilação , Testes de Precipitina , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Science ; 271(5247): 357-60, 1996 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-8553072

RESUMO

Mutants of the Saccharomyces cerevisiae ataxia telangiectasia mutated (ATM) homolog MEC1/SAD3/ESR1 were identified that could live only if the RAD53/SAD1 checkpoint kinase was overproduced. MEC1 and a structurally related gene, TEL1, have overlapping functions in response to DNA damage and replication blocks that in mutants can be provided by overproduction of RAD53. Both MEC1 and TEL1 were found to control phosphorylation of Rad53p in response to DNA damage. These results indicate that RAD53 is a signal transducer in the DNA damage and replication checkpoint pathways and functions downstream of two members of the ATM lipid kinase family. Because several members of this pathway are conserved among eukaryotes, it is likely that a RAD53-related kinase will function downstream of the human ATM gene product and play an important role in the mammalian response to DNA damage.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular , Dano ao DNA , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Quinase do Ponto de Checagem 2 , Replicação do DNA , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor
14.
Science ; 277(5331): 1497-501, 1997 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-9278511

RESUMO

In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas F-Box , Mitose , Proteínas Quinases/metabolismo , Tirosina 3-Mono-Oxigenase , Ubiquitina-Proteína Ligases , Fosfatases cdc25 , Proteínas 14-3-3 , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinase 1 do Ponto de Checagem , Mapeamento Cromossômico , Cromossomos Humanos Par 11 , Proteínas do Citoesqueleto , Proteína 7 com Repetições F-Box-WD , Fase G2 , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Schizosaccharomyces pombe , Transdução de Sinais , Transfecção
15.
Science ; 286(5442): 1166-71, 1999 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-10550056

RESUMO

In response to DNA damage, cells activate checkpoint pathways that prevent cell cycle progression. In fission yeast and mammals, mitotic arrest in response to DNA damage requires inhibitory Cdk phosphorylation regulated by Chk1. This study indicates that Chk1 is required for function of the DNA damage checkpoint in Saccharomyces cerevisiae but acts through a distinct mechanism maintaining the abundance of Pds1, an anaphase inhibitor. Unlike other checkpoint mutants, chk1 mutants were only mildly sensitive to DNA damage, indicating that checkpoint functions besides cell cycle arrest influence damage sensitivity. Another kinase, Rad53, was required to both maintain active cyclin-dependent kinase 1, Cdk1(Cdc28), and prevent anaphase entry after checkpoint activation. Evidence suggests that Rad53 exerts its role in checkpoint control through regulation of the Polo kinase Cdc5. These results support a model in which Chk1 and Rad53 function in parallel through Pds1 and Cdc5, respectively, to prevent anaphase entry and mitotic exit after DNA damage. This model provides a possible explanation for the role of Cdc5 in DNA damage checkpoint adaptation.


Assuntos
Dano ao DNA , Mitose , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Complexos Ubiquitina-Proteína Ligase , Anáfase , Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Ciclina B/genética , Ciclina B/metabolismo , DNA Fúngico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ligases/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Securina , Ubiquitina-Proteína Ligases
16.
Science ; 294(5540): 173-7, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11533444

RESUMO

Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the transition from the G1 phase to the S phase of the cell cycle. The amount of cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiquitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E, and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads to accumulation and stabilization of cyclin E in vivo in human and Drosophila melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in yeast, suggesting an overlap in SCF E3 ligase specificity that allows combinatorial control of cyclin E degradation.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Ciclina E/metabolismo , Proteínas F-Box , Peptídeo Sintases/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Drosophila , Drosophila melanogaster , Proteína 7 com Repetições F-Box-WD , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeo Sintases/química , Peptídeo Sintases/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Cadeia Dupla , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ligases SKP Culina F-Box , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência , Transfecção , Células Tumorais Cultivadas
17.
Science ; 267(5200): 1024-7, 1995 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-7863329

RESUMO

Terminal differentiation is coupled to withdrawal from the cell cycle. The cyclin-dependent kinase inhibitor (CKI) p21Cip1 is transcriptionally regulated by p53 and can induce growth arrest. CKIs are therefore potential mediators of developmental control of cell proliferation. The expression pattern of mouse p21 correlated with terminal differentiation of multiple cell lineages including skeletal muscle, cartilage, skin, and nasal epithelium in a p53-independent manner. Although the muscle-specific transcription factor MyoD is sufficient to activate p21 expression in 10T1/2 cells, p21 was expressed in myogenic cells of mice lacking the genes encoding MyoD and myogenin, demonstrating that p21 expression does not require these transcription factors. The p21 protein may function during development as an inducible growth inhibitor that contributes to cell cycle exit and differentiation.


Assuntos
Diferenciação Celular , Ciclinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/citologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Ciclo Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Embrião de Mamíferos/metabolismo , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/fisiologia , Miogenina/genética , Miogenina/fisiologia
18.
Science ; 287(5459): 1824-7, 2000 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-10710310

RESUMO

Chk2 is a protein kinase that is activated in response to DNA damage and may regulate cell cycle arrest. We generated Chk2-deficient mouse cells by gene targeting. Chk2-/- embryonic stem cells failed to maintain gamma-irradiation-induced arrest in the G2 phase of the cell cycle. Chk2-/- thymocytes were resistant to DNA damage-induced apoptosis. Chk2-/- cells were defective for p53 stabilization and for induction of p53-dependent transcripts such as p21 in response to gamma irradiation. Reintroduction of the Chk2 gene restored p53-dependent transcription in response to gamma irradiation. Chk2 directly phosphorylated p53 on serine 20, which is known to interfere with Mdm2 binding. This provides a mechanism for increased stability of p53 by prevention of ubiquitination in response to DNA damage.


Assuntos
Dano ao DNA , Interfase , Proteínas Nucleares , Proteínas Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Quinase do Ponto de Checagem 2 , Proteínas de Ligação a DNA , Fase G1 , Fase G2 , Raios gama , Regulação da Expressão Gênica , Marcação de Genes , Genes Supressores de Tumor , Genes p53 , Humanos , Camundongos , Fosforilação , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Células-Tronco/citologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Transcrição Gênica , Proteínas Supressoras de Tumor
19.
Science ; 284(5414): 662-5, 1999 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-10213692

RESUMO

Control of cyclin levels is critical for proper cell cycle regulation. In yeast, the stability of the G1 cyclin Cln1 is controlled by phosphorylation-dependent ubiquitination. Here it is shown that this reaction can be reconstituted in vitro with an SCF E3 ubiquitin ligase complex. Phosphorylated Cln1 was ubiquitinated by SCF (Skp1-Cdc53-F-box protein) complexes containing the F-box protein Grr1, Rbx1, and the E2 Cdc34. Rbx1 promotes association of Cdc34 with Cdc53 and stimulates Cdc34 auto-ubiquitination in the context of Cdc53 or SCF complexes. Rbx1, which is also a component of the von Hippel-Lindau tumor suppressor complex, may define a previously unrecognized class of E3-associated proteins.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Peptídeo Sintases/metabolismo , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Transporte/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas F-Box , Ligases/metabolismo , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases Associadas a Fase S , Proteínas Ligases SKP Culina F-Box , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases
20.
Science ; 284(5414): 657-61, 1999 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-10213691

RESUMO

The von Hippel-Lindau (VHL) tumor suppressor gene is mutated in most human kidney cancers. The VHL protein is part of a complex that includes Elongin B, Elongin C, and Cullin-2, proteins associated with transcriptional elongation and ubiquitination. Here it is shown that the endogenous VHL complex in rat liver also includes Rbx1, an evolutionarily conserved protein that contains a RING-H2 fingerlike motif and that interacts with Cullins. The yeast homolog of Rbx1 is a subunit and potent activator of the Cdc53-containing SCFCdc4 ubiquitin ligase required for ubiquitination of the cyclin-dependent kinase inhibitor Sic1 and for the G1 to S cell cycle transition. These findings provide a further link between VHL and the cellular ubiquitination machinery.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina , Proteínas F-Box , Ligases , Peptídeo Sintases/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina , Elonguina , Proteína 7 com Repetições F-Box-WD , Proteínas Fúngicas/metabolismo , Fígado , Masculino , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases Associadas a Fase S , Proteínas Ligases SKP Culina F-Box , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA