Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Virol ; 97(12): e0150123, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982618

RESUMO

IMPORTANCE: The type-I interferon (IFN-I) signaling pathway is the first line of antiviral innate immunity. It must be precisely regulated against virus-induced damage. The tightly regulated mechanisms of action of host genes in the antiviral innate immune signaling pathway are still worth studying. Here, we report a novel role of DLG1 in positively regulating the IκB kinase epsilon (IKKε)-mediated IFN-I signaling response against negative-stranded RNA virus replication, whereas the RNA virus inhibits the expression of DLG1 for immune escape. Importantly, the E3 ligase March2 interacts with and promotes K27-linked polyubiquitination of IKKε, and p62 is a cargo receptor that recognizes ubiquitinated IKKε for eventual autophagic degradation. Together, the current findings elucidate the role of DLG1 in the antiviral IFN-I signaling pathway and viral infection repression.


Assuntos
Autofagia , Proteína 1 Homóloga a Discs-Large , Quinase I-kappa B , Imunidade Inata , Vírus de RNA de Sentido Negativo , Proteína Sequestossoma-1 , Viroses , Humanos , Proteína 1 Homóloga a Discs-Large/metabolismo , Quinase I-kappa B/metabolismo , Imunidade Inata/imunologia , Vírus de RNA de Sentido Negativo/crescimento & desenvolvimento , Vírus de RNA de Sentido Negativo/imunologia , Poliubiquitina/metabolismo , Proteína Sequestossoma-1/antagonistas & inibidores , Transdução de Sinais , Viroses/imunologia , Animais , Linhagem Celular
2.
J Virol ; 97(3): e0001123, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36877072

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the worldwide coronavirus disease 2019 (COVID-19) pandemic. The novel SARS-CoV-2 ORF8 protein is not highly homologous with known proteins, including accessory proteins of other coronaviruses. ORF8 contains a 15-amino-acid signal peptide in the N terminus that localizes the mature protein to the endoplasmic reticulum. Oligomannose-type glycosylation has been identified at the N78 site. Here, the unbiased molecular functions of ORF8 are also demonstrated. Via an immunoglobulin-like fold in a glycan-independent manner, both exogenous and endogenous ORF8 interacts with human calnexin and HSPA5. The key ORF8-binding sites of Calnexin and HSPA5 are indicated on the globular domain and the core substrate-binding domain, respectively. ORF8 induces species-dependent endoplasmic reticulum stress-like responses in human cells exclusively via the IRE1 branch, including intensive HSPA5 and PDIA4 upregulation, with increases in other stress-responding effectors, including CHOP, EDEM and DERL3. ORF8 overexpression facilitates SARS-CoV-2 replication. Both stress-like responses and viral replication induced by ORF8 have been shown to result from triggering the Calnexin switch. Thus, ORF8 serves as a key unique virulence gene of SARS-CoV-2, potentially contributing to COVID-19-specific and/or human-specific pathogenesis. IMPORTANCE Although SARS-CoV-2 is basically regarded as a homolog of SARS-CoV, with their genomic structure and the majority of their genes being highly homologous, the ORF8 genes of SARS-CoV and SARS-CoV-2 are distinct. The SARS-CoV-2 ORF8 protein also shows little homology with other viral or host proteins and is thus regarded as a novel special virulence gene of SARS-CoV-2. The molecular function of ORF8 has not been clearly known until now. Our results reveal the unbiased molecular characteristics of the SARS-CoV-2 ORF8 protein and demonstrate that it induces rapidly generated but highly controllable endoplasmic reticulum stress-like responses and facilitates virus replication by triggering Calnexin in human but not mouse cells, providing an explanation for the superficially known in vivo virulence discrepancy of ORF8 between SARS-CoV-2-infected patients and mouse.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Calnexina/genética , SARS-CoV-2/genética , Replicação Viral
3.
Small ; 19(12): e2206225, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587970

RESUMO

Using CO2 , water, and sunlight to produce solar fuel is a very attractive process, which can synchronously reduce carbon and convert solar energy into hydrocarbons. However, photocatalytic CO2 reduction is often limited by the low selectivity of reduction products and poor photocatalytic activity. In this study, S-scheme Bi5 O7 I-OVs/Cd0.5 Zn0.5 S (Bi5 O7 I-OVs/CZS-0.5) heterojunction with strong interfacial electric field (IEF) is prepared by in situ growth method. The performance of reduction CO2 to CO is studied by continuous flow photothermal catalytic (PTC) CO2 reduction platform. 12.5% Bi5 O7 I-OVs/CZS-0.5 shows excellent CO yield of 58.6 µmol g-1  h-1 and selectivity of 98.4%, which are 35.1 times than that of CZS-0.5 under visible light. The charge transfer path of the S-scheme through theoretical calculation (DFT), in situ irradiation Kelvin probe force microscope (ISI-KPFM) and in situ irradiation X-ray photoelectron spectroscopy (ISI-XPS) analysis, is verified. The study can provide useful guidance and reference for improving activity by oxygen vacancy induced strong IEF and the development of a continuous flow PTC CO2 reduction system.

4.
J Virol ; 96(1): e0169521, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643429

RESUMO

The replication of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is closely associated with the endoplasmic reticulum (ER) of infected cells. The unfolded protein response (UPR), which is mediated by ER stress (ERS), is a typical outcome in coronavirus-infected cells and is closely associated with the characteristics of coronaviruses. However, the interaction between virus-induced ERS and coronavirus replication is poorly understood. Here, we demonstrate that infection with the betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) induced ERS and triggered all three branches of the UPR signaling pathway both in vitro and in vivo. In addition, ERS suppressed PHEV replication in mouse neuro-2a (N2a) cells primarily by activating the protein kinase R-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α) axis of the UPR. Moreover, another eIF2α phosphorylation kinase, interferon (IFN)-induced double-stranded RNA-dependent protein kinase (PKR), was also activated and acted cooperatively with PERK to decrease PHEV replication. Furthermore, we demonstrate that the PERK/PKR-eIF2α pathways negatively regulated PHEV replication by attenuating global protein translation. Phosphorylated eIF2α also promoted the formation of stress granules (SGs), which in turn repressed PHEV replication. In summary, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets (e.g., PERK, PKR, and eIF2α) for antiviral drugs. IMPORTANCE Coronavirus diseases are caused by different coronaviruses of importance in humans and animals, and specific treatments are extremely limited. ERS, which can activate the UPR to modulate viral replication and the host innate response, is a frequent occurrence in coronavirus-infected cells. PHEV, a neurotropic betacoronavirus, causes nerve cell damage, which accounts for the high mortality rates in suckling piglets. However, it remains incompletely understood whether the highly developed ER in nerve cells plays an antiviral role in ERS and how ERS regulates viral proliferation. In this study, we found that PHEV infection induced ERS and activated the UPR both in vitro and in vivo and that the activated PERK/PKR-eIF2α axis inhibited PHEV replication through attenuating global protein translation and promoting SG formation. A better understanding of coronavirus-induced ERS and UPR activation may reveal the pathogenic mechanism of coronavirus and facilitate the development of new treatment strategies for these diseases.


Assuntos
Betacoronavirus 1/fisiologia , Infecções por Coronavirus/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Grânulos de Estresse/metabolismo , Replicação Viral/fisiologia , eIF-2 Quinase/metabolismo , Animais , Betacoronavirus 1/metabolismo , Linhagem Celular , Infecções por Coronavirus/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático , Camundongos , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Resposta a Proteínas não Dobradas
5.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361422

RESUMO

DNA damage-inducible transcript 3 (DDIT3) plays important roles in endoplasmic reticulum (ER) stress-induced apoptosis and autophagy, but its role in innate immunity is not clear. Here, we report that DDIT3 inhibits the antiviral immune response during bovine viral diarrhea virus (BVDV) infection by targeting mitochondrial antiviral signaling (MAVS) in Madin-Darby bovine kidney (MDBK) cells and in mice. BVDV infection induced high DDIT3 mRNA and protein expression. DDIT3 overexpression inhibited type I interferon (IFN-I) and IFN-stimulated gene production, thereby promoting BVDV replication, while DDIT3 knockdown promoted the antiviral innate immune response to suppress viral replication. DDIT3 promoted NF-κB-dependent ovarian tumor (OTU) deubiquitinase 1 (OTUD1) expression. Furthermore, OTUD1 induced upregulation of the E3 ubiquitin ligase Smurf1 by deubiquitinating Smurf1, and Smurf1 degraded MAVS in MDBK cells in a ubiquitination-dependent manner, ultimately inhibiting IFN-I production. Moreover, knocking out DDIT3 promoted the antiviral innate immune response to reduce BVDV replication and pathological changes in mice. These findings provide direct insights into the molecular mechanisms by which DDIT3 inhibits IFN-I production by regulating MAVS degradation.IMPORTANCE Extensive studies have demonstrated roles of DDIT3 in apoptosis and autophagy during viral infection. However, the role of DDIT3 in innate immunity remains largely unknown. Here, we show that DDIT3 is positively regulated in bovine viral diarrhea virus (BVDV)-infected Madin-Darby bovine kidney (MDBK) cells and could significantly enhance BVDV replication. Importantly, DDIT3 induced OTU deubiquitinase 1 (OTUD1) expression by activating the NF-κB signaling pathway, thus increasing intracellular Smurf1 protein levels to degrade MAVS and inhibit IFN-I production during BVDV infection. Together, these results indicate that DDIT3 plays critical roles in host innate immunity repression and viral infection facilitation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Diarreia Viral Bovina Tipo 1/fisiologia , Imunidade Inata , Fator de Transcrição CHOP/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Replicação Viral , Animais , Antivirais/antagonistas & inibidores , Antivirais/imunologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/patogenicidade , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
6.
J Virol ; 95(18): e0060021, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34106002

RESUMO

Coronaviruses are commonly characterized by a unique discontinuous RNA transcriptional synthesis strategy guided by transcription-regulating sequences (TRSs). However, the details of RNA synthesis in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been fully elucidated. Here, we present a time-scaled, gene-comparable transcriptome of SARS-CoV-2, demonstrating that ACGAAC functions as a core TRS guiding the discontinuous RNA synthesis of SARS-CoV-2 from a holistic perspective. During infection, viral transcription, rather than genome replication, dominates all viral RNA synthesis activities. The most highly expressed viral gene is the nucleocapsid gene, followed by ORF7 and ORF3 genes, while the envelope gene shows the lowest expression. Host transcription dysregulation keeps exacerbating after viral RNA synthesis reaches a maximum. The most enriched host pathways are metabolism related. Two of them (cholesterol and valine metabolism) affect viral replication in reverse. Furthermore, the activation of numerous cytokines emerges before large-scale viral RNA synthesis. IMPORTANCE SARS-CoV-2 is responsible for the current severe global health emergency that began at the end of 2019. Although the universal transcriptional strategies of coronaviruses are preliminarily understood, the details of RNA synthesis, especially the time-matched transcription level of each SARS-CoV-2 gene and the principles of subgenomic mRNA synthesis, are not clear. The coterminal subgenomic mRNAs of SARS-CoV-2 present obstacles in identifying the expression of most genes by PCR-based methods, which are exacerbated by the lack of related antibodies. Moreover, SARS-CoV-2-related metabolic imbalance and cytokine storm are receiving increasing attention from both clinical and mechanistic perspectives. Our transcriptomic research provides information on both viral RNA synthesis and host responses, in which the transcription-regulating sequences and transcription levels of viral genes are demonstrated, and the metabolic dysregulation and cytokine levels identified at the host cellular level support the development of novel medical treatment strategies.


Assuntos
COVID-19/genética , Células Epiteliais/metabolismo , Pulmão/metabolismo , RNA Mensageiro/genética , SARS-CoV-2/isolamento & purificação , Transcriptoma , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/virologia , Humanos , Pulmão/virologia , RNA Mensageiro/metabolismo , Células Vero , Replicação Viral
7.
J Virol ; 95(19): e0015321, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287041

RESUMO

Orf virus (ORFV) is a highly epitheliotropic parapoxvirus with zoonotic significance that induces proliferative lesions in the skin of sheep, goats, and humans. Several viral proteins carried by ORFV, including nuclear factor-κB (NF-κB) inhibitors, play important roles in hijacking host-associated proteins for viral evasion of the host innate immune response. However, the roles of proteins with unknown functions in viral replication and latent infection remain to be explored. Here, we present data demonstrating that the ORF120, an early-late ORFV-encoded protein, activates the NF-κB pathway in the early phase of infection, which implies that ORFV may regulate NF-κB through a biphasic mechanism. A DUAL membrane yeast two-hybrid system and coimmunoprecipitation experiments revealed that the ORF120 protein interacts with Ras-GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1). The overexpression of the ORF120 protein can efficiently increase the expression of G3BP1 and nuclear translocation of NF-κB-p65 in primary ovine fetal turbinate (OFTu) and HeLa cells. The knockdown of G3BP1 significantly decreased ORF120-induced NF-κB activation, indicating that G3BP1 is involved in ORF120-induced NF-κB pathway activation. A dual-luciferase reporter assay revealed that ORF120 could positively regulate the NF-κB pathway through the full-length G3BP1 or the domain of G3BP1RRM+RGG. In conclusion, we demonstrate, for the first time, that the ORF120 protein is capable of positively regulating NF-κB signaling by interacting with G3BP1, providing new insights into ORFV pathogenesis and a theoretical basis for antiviral drug design. IMPORTANCE As part of the host innate response, the nuclear factor-κB (NF-κB) pathway plays a partial antiviral role in nature by regulating the innate immune response. Thus, the NF-κB pathway is probably the most frequently targeted intracellular pathway for subversion by anti-immune modulators that are carried by a wide range of pathogens. Various viruses, including poxviruses, carry several proteins that prepare the host cell for viral replication by inhibiting cytoplasmic events, leading to the initiation of NF-κB transcriptional activity. However, NF-κB activity is hypothesized to facilitate viral replication to a great extent. The significance of our research is in the exploration of the activation mechanism of NF-κB induced by the Orf virus (ORFV) ORF120 protein interacting with G3BP1, which helps not only to explain the ability of ORFV to modulate the immune response through the positive regulation of NF-κB but also to show the mechanism by which the virus evades the host innate immune response.


Assuntos
DNA Helicases/metabolismo , Ectima Contagioso/virologia , NF-kappa B/metabolismo , Vírus do Orf/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , DNA Helicases/química , Células HeLa , Humanos , Vírus do Orf/genética , Vírus do Orf/crescimento & desenvolvimento , Vírus do Orf/patogenicidade , Proteínas de Ligação a Poli-ADP-Ribose/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ovinos , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Ativação Transcricional , Proteínas Virais/genética , Virulência
8.
Mol Cell Biochem ; 477(4): 1113-1126, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35079927

RESUMO

Circular RNAs (circRNAs) are implicated in keloidogenesis and development. We aimed to investigate the role of a new identified phosphodiesterase 7B-derived circRNA (hsa_circ_0002198; henceforth named as PDE7B) in human keloid fibroblasts (HKFs) and to further confirm its mechanism via competing endogenous RNA (ceRNA) network. Transcriptional and translational levels of circPDE7B, microRNA (miR)-661, fibroblast growth factor 2 (FGF2), cleaved caspase3, B-cell lymphoma (bcl)-2, and bcl-2-associated X protein (bax) were detected by real-time quantitative PCR and western blotting. Relationship among circPDE7B, miR-661, and FGF2 was confirmed by bioinformatics algorithm, dual-luciferase reporter assay, RNA immunoprecipitation, RNA pull-down assay, and Spearman's rank correlation analysis. Cell progression was measured by cell counting kit-8 assay, 5-ethynyl-2-deoxyuridine assay, transwell assays, and flow cytometry. Expression of circPDE7B was upregulated in human keloid tissues and HKFs, accompanied with miR-661 downregulation and FGF2 upregulation. High circPDE7B accelerated proliferation, migration, and invasion, and inhibited apoptosis. These effects were paralleled with increased bcl-2 and decreased cleaved caspase3 and bax. Moreover, low circPDE7B played opposite effects to high circPDE7B. Restoring miR-661 could suppress HKFs progression, while blocking miR-661 could facilitate that. Notably, miR-661 was directly sponged by circPDE7B and then directly governed FGF2 gene expression. Deleting miR-661 and re-expressing FGF2 both abrogated the suppression of circPDE7B knockdown in HKFs progression. In conclusion, circPDE7B might contribute to HKFs progression via functioning as ceRNA for miR-661, suggesting a novel circPDE7B/miR-661/FGF2 pathway underlying keloid formation and treatment.


Assuntos
Fator 2 de Crescimento de Fibroblastos/biossíntese , Fibroblastos/metabolismo , Queloide/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Transdução de Sinais , Regulação para Cima , Linhagem Celular , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Queloide/genética , MicroRNAs/genética , RNA Circular/genética
9.
BMC Vet Res ; 17(1): 172, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892731

RESUMO

BACKGROUND: Canine distemper virus (CDV) is an enveloped negative-strand RNA virus that exhibits a high mutation rate and continuously expands the range of hosts. Notably, CDV has infected giant panda with spill over from viral reservoirs in canines. Giant pandas (Ailuropoda melanoleuca), especially captive pandas, are known to be susceptible to natural infection with CDV. The high fatality rate of CDV poses a serious threat to the safety of the giant panda population. However, vaccines or drugs for canine distemper in giant pandas have not been developed to date. Therefore, a rapid test that can achieve accurate onsite detection of CDV is important to enable the timely implementation of control measures. In this study, we established a nucleic acid visualization assay for targeting the CDV N gene by using combines reverse transcription recombinase polymerase amplification with a closed vertical flow visualization strip (RT-RPA-VF). RESULTS: The RT-RPA-VF assay does not require sophisticated equipment, and it was determined to provide rapid detection at 35 °C for 30 min, while the limit of detection was 5 × 101 copies/µl RNA transcripts and 100.5 TCID50 ml- 1 viruses. The results showed that the assay was high specific to CDV and had no cross-reactivity with other viruses infecting the giant panda. Compared with RT-qPCR, RT-RPA-VF assay had a sensitivity of 100% and a specificity of 100% in 29 clinical samples. The coincidence rate between RT-RPA-VF and RT-qPCR was 100% (kappa = 1), indicating that the RT-RPA-VF assay possessed good diagnostic performance on clinical samples. CONCLUSIONS: The RT-RPA-VF provides a novel alternative for the simple, sensitive, and specific identification of CDV and showed great potential for point of care diagnostics for captive and wild giant panda.


Assuntos
Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/isolamento & purificação , Cinomose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/veterinária , Ursidae/virologia , Animais , Cinomose/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transcrição Reversa , Sensibilidade e Especificidade
10.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541856

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic virus that causes diffuse neuronal infection with neurological damage and high mortality. Virus-induced cytoskeletal dynamics are thought to be closely related to this type of nerve damage. Currently, the regulation pattern of the actin cytoskeleton and its molecular mechanism remain unclear when PHEV enters the host cells. Here, we demonstrate that entry of PHEV into N2a cells induces a biphasic remodeling of the actin cytoskeleton and a dynamic change in cofilin activity. Viral entry is affected by the disruption of actin kinetics or alteration of cofilin activity. PHEV binds to integrin α5ß1 and then initiates the integrin α5ß1-FAK signaling pathway, leading to virus-induced early cofilin phosphorylation and F-actin polymerization. Additionally, Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division cycle 42 (Cdc42), and downstream regulatory gene p21-activated protein kinases (PAKs) are recruited as downstream mediators of PHEV-induced dynamic changes of the cofilin activity pathway. In conclusion, we demonstrate that PHEV utilizes the integrin α5ß1-FAK-Rac1/Cdc42-PAK-LIMK-cofilin pathway to cause an actin cytoskeletal rearrangement to promote its own invasion, providing theoretical support for the development of PHEV pathogenic mechanisms and new antiviral targets.IMPORTANCE PHEV, a member of the Coronaviridae family, is a typical neurotropic virus that primarily affects the nervous system of piglets to produce typical neurological symptoms. However, the mechanism of nerve damage caused by the virus has not been fully elucidated. Actin is an important component of the cytoskeleton of eukaryotic cells and serves as the first obstacle to the entry of pathogens into host cells. Additionally, the morphological structure and function of nerve cells depend on the dynamic regulation of the actin skeleton. Therefore, exploring the mechanism of neuronal injury induced by PHEV from the perspective of the actin cytoskeleton not only helps elucidate the pathogenesis of PHEV but also provides a theoretical basis for the search for new antiviral targets. This is the first report to define a mechanistic link between alterations in signaling from cytoskeleton pathways and the mechanism of PHEV invading nerve cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Betacoronavirus 1/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina alfa5beta1/metabolismo , Degeneração Neural/veterinária , Animais , Linhagem Celular , Infecções por Coronavirus/patologia , Degeneração Neural/virologia , Suínos , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo
11.
Microb Pathog ; 139: 103905, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31790792

RESUMO

Pigeon circovirus (PiCV) is able to infect racing and meat pigeons of all ages and is a key factor that triggers young pigeon disease syndrome (YPDS). PiCV vaccine research has been impeded because PiCV cannot be grown or propagated in cell cultures. Virus-like particles (VLPs), which can be generated by a wide range of expression systems, have been shown to have outstanding immunogenicity and constitute promising vaccines against a wide range of pathogens. Cap protein, which contains neutralizing antibody epitopes, is the only capsid protein of PiCV. In this study, the baculovirus expression system was utilized to express the PiCV Cap protein, which was self-assembled into VLPs with a spherical morphology and diameters of 15-18 nm. Specific antibodies against the Cap protein were induced after BALB/c mice immunized intramuscularly (i.m.) with VLPs combined with adjuvant. Based on these findings, PiCV VLPs may be a promising candidate vaccine against PiCV.


Assuntos
Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Columbidae/virologia , Animais , Anticorpos Antivirais/imunologia , Baculoviridae/genética , Baculoviridae/metabolismo , Doenças das Aves/imunologia , Doenças das Aves/prevenção & controle , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/virologia , Circovirus/genética , Circovirus/imunologia , Columbidae/imunologia , Feminino , Expressão Gênica , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
12.
Bioorg Med Chem Lett ; 30(7): 127021, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057583

RESUMO

Aberrant activation of NLRP3 inflammasome is present in a subset of acute and chronic inflammatory diseases. The NLRP3 inflammasome has been recognized as an attractive therapeutic target for developing novel and specific anti-inflammatory inhibitors. Cellular structure-activity relationship-guided optimization resulted in the identification of 4-oxo-2-thioxo-thiazolidinone derivative 9 as a selective and direct small-molecule inhibitor of NLRP3 with IC50 of 2.4 µM, possessing favorable ex vivo and in vivo pharmacokinetic properties. Compound 9 may represent a lead for the development of anti-inflammatory therapeutics for treating NLRP3-driven diseases.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Tiazolidinas/farmacologia , Animais , Descoberta de Drogas , Células HT29 , Humanos , Inflamassomos/efeitos dos fármacos , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/farmacocinética
13.
Arch Virol ; 165(2): 345-354, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31834525

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a typical neurotropic coronavirus that mainly invades the central nervous system (CNS) in piglets and causes vomiting and wasting disease. Emerging evidence suggests that PHEV alters microRNA (miRNA) expression profiles, and miRNA has also been postulated to be involved in its pathogenesis, but the mechanisms underlying this process have not been fully explored. In this study, we found that PHEV infection upregulates miR-142a-3p RNA expression in N2a cells and in the CNS of mice. Downregulation of miR-142a-3p by an miRNA inhibitor led to a significant repression of viral proliferation, implying that it acts as a positive regulator of PHEV proliferation. Using a dual-luciferase reporter assay, miR-142a-3p was found to bind directly bound to the 3' untranslated region (3'UTR) of Rab3a mRNA and downregulate its expression. Knockdown of Rab3a expression by transfection with an miR-142a-3p mimic or Rab3a siRNA significantly increased PHEV replication in N2a cells. Conversely, the use of an miR-142a-3p inhibitor or overexpression of Rab3a resulted in a marked restriction of viral production at both the mRNA and protein level. Our data demonstrate that miR-142a-3p promotes PHEV proliferation by directly targeting Rab3a mRNA, and this provides new insights into the mechanisms of PHEV-related pathogenesis and virus-host interactions.


Assuntos
Betacoronavirus 1/genética , Proliferação de Células/genética , Infecções por Coronavirus/genética , MicroRNAs/genética , Suínos/virologia , Proteína rab3A de Ligação ao GTP/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Regulação para Baixo/genética , Células HEK293 , Humanos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Regulação para Cima/genética
14.
BMC Vet Res ; 16(1): 72, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127006

RESUMO

BACKGROUND: Bovine parainfluenza virus type 3 (BPIV3) is one of the important viral respiratory agents associated with the bovine respiratory disease complex (BRDC) in cattle. Previous study has demonstrated that infection of BPIV3 causes innate immune response within the host cell. ß-catenin is a key component of the Wnt/ß-catenin signal pathway which is involved in the regulation of interferon-beta (IFN-ß) transcription. Some viruses can activate while others can inhibit the Wnt/ß-catenin signaling pathway. However, the role of ß-catenin in BPIV3 infection remains unclear. RESULTS: Here we found that the expression of ß-catenin mRNA was up-regulated and ß-catenin protein was down-regulated after BPIV3 infection in MDBK cells. Moreover, it was confirmed that overexpression of ß-catenin suppressed BPIV3 replication and knockdown of ß-catenin promoted viral replication, suggesting that ß-catenin inhibits BPIV3 replication. Furthermore, IFN-ß signal pathway and virus titer analysis using the GSK3ß inhibitor (LiCl) revealed that Wnt/ß-catenin can serve as a mechanism to suppress virus replication in infected cells. The results indicated that LiCl promoted the expression and accumulation in the nucleus of ß-catenin, which further promoted the expression of IFN-ß and OSA1 and suppressed BPIV3 replication. Most importantly, BPIV3 down-regulating ß-catenin protein expression was due to degradation of GSK3ß mediated proteasome pathway. CONCLUSIONS: In summary, we discovered the relationship between ß-catenin and BPIV3 replication. These results provided further insight into the study of BPIV3 pathogenesis.


Assuntos
Imunidade Inata , Vírus da Parainfluenza 3 Bovina/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Bovinos , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Cloreto de Lítio/farmacologia , RNA Mensageiro , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/veterinária , Transdução de Sinais , beta Catenina/genética
15.
BMC Vet Res ; 16(1): 114, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295612

RESUMO

BACKGROUND: As a pestivirus of the Flaviviridae family, bovine viral diarrhea virus (BVDV), has imposed a large burden on animal husbandry worldwide, and such virus can be transmitted mainly through direct contact with other infected animals and probably via aerosols. In the present study, we aimed to develop a real-time RT-PCR method for detection of BVDV-1 in aerosol samples. METHODS: A pair of primers specific for highly conserved regions of the BVDV-1 5'-UTR was designed. The standard curve and sensitivity of the developed assay were assessed based on 10-fold serial dilutions of RNA molecular standard. The specificity of the assay was evaluated with other pestiviruses and infectious bovine viruses. The clinical performance was examined by testing 169 aerosol samples. RESULTS: The results showed that a good linear relationship existed between the standard curve and the concentration of template. The lowest detection limit was 5.2 RNA molecules per reaction. This assay was specific for detection of BVDV-1, and no amplification was found for other pestiviruses such as classical swine fever virus (CSFV), border disease virus (BDV), and common infectious bovine viruses, including BVDV-2, infectious bovine rhinotracheitis virus (IBRV), bovine parainfluenza virus type 3 (BPIV-3), bovine respiratory syncytial virus (BRSV), bovine ephemeral fever virus (BEFV) and bovine coronavirus (BcoV). The assay was highly reproducible with low variation coefficient values (CVs) for intra-assay and inter-assay. A total of 169 aerosol samples collected from six dairy herds were tested using this method. The results showed that the positive detection rate of BVDV-1 was 17.2% (29/169), which was significantly higher compared with the conventional RT-PCR. Additionally, the positive samples (n = 29) detected by real-time RT-PCR were verified by BVDV RPA-LFD, and a concordance rate of 100% was obtained between them. CONCLUSIONS: Taken together, we developed a real-time RT-PCR assay for quantitative analysis of BVDV-1 in aerosol samples, and our finding provided valuable insights into the risk on aerosol transmission of BVDV-1.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Genótipo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Regiões 5' não Traduzidas/genética , Aerossóis , Microbiologia do Ar , Animais , Vírus da Diarreia Viral Bovina Tipo 1/classificação , Vírus da Diarreia Viral Bovina Tipo 1/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade
16.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875237

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus and causes neurological dysfunction in the central nervous system (CNS), but the neuropathological mechanism of PHEV remains poorly understood. We report that Unc51-like kinase 1 (Ulk1/Unc51.1) is a pivotal regulator of PHEV-induced neurological disorders and functions to selectively control the initiation of nerve growth factor (NGF)/TrkA endosome trafficking. We first identified the function of Ulk1 by histopathologic evaluation in a PHEV-infected mouse model in which neuronal loss was accompanied by the suppression of Ulk1 expression. Morphogenesis assessments in the primary cortical neurons revealed that overexpression or mutations of Ulk1 modulated neurite outgrowth, collateral sprouting, and endosomal transport. Likewise, Ulk1 expression was decreased following PHEV infection, suggesting that there was a correlation between the neurodegeneration and functional Ulk1 deficiency. We then showed that Ulk1 forms a multiprotein complex with TrkA and the early endosome marker Rab5 and that Ulk1 defects lead to either blocking of NGF/TrkA endocytosis or premature degradation of pTrkA via constitutive activation of the Rab5 GTPase. Further investigation determined that the ectopic expression of Rab5 mutants induces aberrant endosomal accumulation of activated pTrkA, proving that targeting of Ulk1-TrkA-NGF signaling to the retrograde transport route in the neurodegenerative process that underlies PHEV infection is dependent on Rab5 GTPase activity. Therefore, we described a long-distance signaling mechanism of PHEV-driven deficits in neurons and suggested that such Ulk1 repression may result in limited NGF/TrkA retrograde signaling within activated Rab5 endosomes, explaining the progressive failure of neurite outgrowth and survival.IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV) is a neurotropic coronavirus and targets neurons in the nervous system for proliferation, frequently leaving behind grievous neurodegeneration. Structural plasticity disorders occur in the axons, dendrites, and dendritic spines of PHEV-infected neurons, and dysfunction of this neural process may contribute to neurologic pathologies, but the mechanisms remain undetermined. Further understanding of the neurological manifestations underlying PHEV infection in the CNS may provide insights into both neurodevelopmental and neurodegenerative diseases that may be conducive to targeted approaches for treatment. The significance of our research is in identifying an Ulk1-related neurodegenerative mechanism, focusing on the regulatory functions of Ulk1 in the transport of long-distance trophic signaling endosomes, thereby explaining the progressive failure of neurite outgrowth and survival associated with PHEV aggression. This is the first report to define a mechanistic link between alterations in signaling from endocytic pathways and the neuropathogenesis of PHEV-induced CNS disease.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Betacoronavirus 1/crescimento & desenvolvimento , Infecções por Coronavirus/veterinária , Fator de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/veterinária , Receptor trkA/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Camundongos , Doenças Neurodegenerativas/patologia , Transdução de Sinais
17.
Arch Virol ; 164(8): 2023-2029, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111259

RESUMO

We previously obtained mouse-adapted variants of H1N2 avian influenza virus that contained PB2-L134H, PB2-I647L, PB2-D701N, HA-G228S, and M1-D231N mutations. Here, we analyzed the effects of these mutations on viral pathogenicity in a mammalian model. By evaluating the virulence of mouse-adapted H1N2 variants at different generations, we found that the PB2-D701N and HA-G228S mutations both contribute to the virulence of this virus in mammals. Furthermore, we found that the PB2-D701N and HA-G228S mutations both enhance the ability of the virus to replicate in vivo and in vitro and that the PB2-D701N substitution results in an expansion of viral tissue tropism. These results suggest that the PB2-D701N mutation and the HA-G228S mutation are the major mammalian determinants of H1N2 virus. These results help us to understand more about the mechanisms by which influenza viruses adapt to mammals, and monitoring of these mutations can be used in continuous influenza surveillance to assess the pandemic potential of avian influenza virus variants.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N2/genética , Influenza Aviária/virologia , Mutação/genética , Proteínas Virais/genética , Virulência/genética , Adaptação Biológica/genética , Substituição de Aminoácidos/genética , Animais , Aves , Linhagem Celular , Cães , Feminino , Células Madin Darby de Rim Canino , Mamíferos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Fenótipo , Replicação Viral/genética
18.
BMC Vet Res ; 15(1): 154, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101109

RESUMO

BACKGROUND: Pasteurella multocida (P. multocida) is a bacterium that causes bovine respiratory disease (BRD) and haemorrhagic septicaemia (HS) in cattle, buffaloes and bison. Rapid point-of-care diagnosis or regular testing of Pasteurellosis, therefore, could contribute greatly to early detection, and screening infected animal is important. Up to now, there are no published reports on the use of recombinase polymerase amplification (RPA) combined with a lateral flow dipstick (LFD) for P. multocida detection. RESULTS: This study proposes a promising isothermal detection method for P. multocida with the potential to be developed as an on-site test for Pasteurellosis. The method includes an RPA combined with LFD. First, the analytical sensitivity and specificity of P. multocida RPA-LFD were tested. The RPA-LFD, performed at 39 °C, successfully detected P. multocida DNA in 30 min, with a detection limit of up to 120 copies per reaction. Then, the practicability of RPA-LFD was analysed using 62 nasal swabs and 33 fresh lungs samples from 17 different dairy farms. Compared to real-time quantitative PCR (qPCR), the RPA-LFD assay yielded a clinical specificity of 95.15%, positive predictive value (PPV) of 95.15% and 0.958 kappa coefficient. Compared with the culture method, it achieved 100% sensitivity, 67.20% specificity and a 0.572 kappa coefficient. CONCLUSIONS: These results combined with the simple conditions required for the performance of the RPA-LFD assay, have demonstrated the effectiveness and practicability of the method for development into a regular on-site protocol for the diagnosis of Pasteurellosis.


Assuntos
Doenças dos Bovinos/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/veterinária , Infecções por Pasteurella/veterinária , Pasteurella multocida/isolamento & purificação , Animais , Bovinos , DNA Bacteriano/genética , Pulmão/microbiologia , Mucosa Nasal/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções por Pasteurella/diagnóstico , Pasteurella multocida/genética , Sensibilidade e Especificidade
19.
Trop Anim Health Prod ; 51(4): 791-798, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30456692

RESUMO

Bovine viral diarrhea virus (BVDV) is a worldwide spreading pestivirus affecting cattle and other ruminants; however, there have been few reports on epidemiologic investigation of BVDV in eastern China. In this study, bulk tank milk from 36 herds of dairy cattle in eastern China was submitted to serological investigations, 77.8% of herds was BVDV antibody positive. Individual animal status in two herds was further investigated collecting blood samples, the positive ratio was 49.74% and 24.64%, and the average positive ratio of calves, heifers, and lactating cows was 15.94%, 40.16%, and 41.7%, respectively. Moreover, clinical survey was carried out among 8170 dairy cattle from 36 herds, for diarrhea syndrome, respiratory problems and reproductive failure, and pathogens of all clinical cattle were further investigated. The results showed that BVDV was one of the main pathogen, which infected animals combining with various other viruses. Then, nine BVDV strains were isolated; phylogenetic analysis showed that BVDV subtypes currently circulating in eastern China were BVDV 1a and BVDV 1c. In addition, out of 377 cows tested, the 1.86% detected positive to the BVDV antigen. This study provided the foundation of further study on vaccination and control strategies of BVDV in eastern China.


Assuntos
Anticorpos Antivirais/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , China/epidemiologia , Indústria de Laticínios , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Feminino , Leite/virologia , Filogenia , Prevalência , Vacinação/veterinária
20.
BMC Immunol ; 19(1): 40, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563466

RESUMO

BACKGROUND: Oncolytic viruses have been proposed to be employed as a potential treatment of cancer. Well targeted, they will serve the purpose of cracking tumor cells without causing damage to normal cells. In this category of oncolytic viral drugs human pathogens herpes simplex virus (HSV) is especially suitable for the cause. Although most viral infection causes antiviral reaction in the host, HSV has multiple mechanisms to evade those responses. Powerful anti-tumor effect can thus be achieved via genetic manipulation of the HSV genes involved in this evading mechanism, namely deletions or mutations that adapt its function towards a tumor microenvironment. Currently, oncolytic HSV (oHSV) is widely use in clinical; moreover, there's hope that its curative effect will be further enhanced through the combination of oHSV with both traditional and emerging therapeutics. RESULTS: In this review, we provide a summary of the HSV host antiviral response evasion mechanism, HSV expresses immune evasion genes such as ICP34.5, ICP0, Us3, which are involved in inducing and activating host responses, so that the virus can evade the immune system and establish effective long-term latent infection; we outlined details of the oHSV strains generated by removing genes critical to viral replication such as ICP34.5, ICP0, and inserting therapeutic genes such as LacZ, granulocyte macrophage colony-stimulating factor (GM-CSF); security and limitation of some oHSV such G207, 1716, OncoVEX, NV1020, HF10, G47 in clinical application; and the achievements of oHSV combined with immunotherapy and chemotherapy. CONCLUSION: We reviewed the immunotherapy mechanism of the oHSV and provided a series of cases. We also pointed out that an in-depth study of the application of oHSV in cancer treatment will potentially benefits cancer patients more.


Assuntos
Imunoterapia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Simplexvirus/imunologia , Humanos , Vírus Oncolíticos/genética , Simplexvirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA