Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(5): 506-509, 2021 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-33974268

RESUMO

Tooth agenesis is the most common form of congenital craniofacial dysplasia seen in stomatology clinics, which may be caused by genetic and/or environmental factors. Tooth development is regulated by a series of signaling pathways, and variants in any of these strictly balanced signaling cascades can result in tooth agenesis and/or other oral defects. Notably, variants of genes of the Wnt/beta-catenin signaling pathway are important cause for both non-syndromic and syndromic tooth agenesis. This article has provided a review for the molecular genetics of tooth agenesis associated with Wnt/beta-catenin signaling pathway, which may shed lights on the etiology and molecular mechanism of this disease.


Assuntos
Anodontia , Dente , Anodontia/genética , Pesquisa em Genética , Humanos , Proteínas Wnt/genética , Via de Sinalização Wnt/genética
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(6): 795-798, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35347920

RESUMO

A child with methylmalonic acidemia and homocysteinemia cblX type presented focal seizures and epileptic spasms in early infancy, but the tandem mass spectrometry tests showed negative results during neonatal screening or acute attack. Despite treated with a variety of antiepileptic drugs, the child died at age of The blood spot sample of the patient was retrospectively tested with ultrahigh performance liquid chromatography-tandem mass spectrometry, and the increased levels of methylmalonic acid and homocysteine were revealed. Whole exome sequencing showed that the proband had a c.202C>G(p.Q68E) hemizygous mutation in gene, which was inherited from his mother.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Espectrometria de Massas em Tandem , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Criança , Humanos , Hiper-Homocisteinemia , Recém-Nascido , Estudos Retrospectivos
3.
J Inherit Metab Dis ; 43(3): 467-477, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31845334

RESUMO

To evaluate the feasibility of incorporating genetic screening for neonatal intrahepatic cholestasis, caused by citrin deficiency (NICCD), into the current newborn screening (NBS) program. We designed a high-throughput iPLEX genotyping assay to detect 28 SLC25A13 mutations in the Chinese population. From March 2018 to June 2018, 237 630 newborns were screened by tandem mass spectrometry at six hospitals. Newborns with citrulline levels between 1/2 cutoff and cutoff values of the upper limit were recruited for genetic screening using the newly developed assay. The sensitivity and specificity of the iPLEX genotyping assay both reached 100% in clinical practice. Overall, 29 364 (12.4%) newborns received further genetic screening. Five patients with conclusive genotypes were successfully identified. The most common SLC25A13 mutation was c.851_854del, with an allele frequency of 60%. In total, 658 individuals with one mutant allele were identified as carriers. Eighteen different mutations were observed, yielding a carrier rate of 1/45. Notably, Quanzhou in southern China had a carrier rate of up to 1/28, whereas Jining in northern China had a carrier rate higher than that of other southern and border cities. The high throughput iPLEX genotyping assay is an effective and reliable approach for NICCD genotyping. The combined genetic screening could identify an additional subgroup of patients with NICCD, undetectable by conventional NBS. Therefore, this study demonstrates the viability of incorporating genetic screening for NICCD into the current NBS program.


Assuntos
Colestase Intra-Hepática/etiologia , Colestase Intra-Hepática/genética , Citrulinemia/complicações , Proteínas de Transporte da Membrana Mitocondrial/genética , China , Feminino , Frequência do Gene , Testes Genéticos , Técnicas de Genotipagem , Humanos , Recém-Nascido , Masculino , Mutação , Triagem Neonatal
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(2): 170-174, 2020 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-32034748

RESUMO

OBJECTIVE: To explore the basis for a child with multiple malformations and correlate her genotype with phenotype. METHODS: The child was subjected to G-banding chromosomal analysis first, and low-coverage massively parallel copy number variation sequencing (CNV-seq) was used to define the aberrant region. The results were verified by fluorescence in situ hybridization (FISH). RESULTS: The child was found to have a karyotype of 46,XX,3pter+?. CNV-seq has identified a 13.5 Mb duplication at 10p13p15.3(60 466-13 556 655) and a 636 kb microdeletion at 3p26.3 (60 064-695 821). Her karyotype was the refore specified as 46, XX, ish der(3) t(3;10) (10p+,3pdim) by FISH. Both of her parents were normal, which suggested an de novo origin of the above variant. CONCLUSION: The de novo 10p13p15.3 duplication probably underlies the mental retardation, development delay, dysmorphism, and gastroesophageal reflux in the child. The CHL1 gene from the 3p26.3 region may play an important role in the formation and function of the brain, which may underlie the intellectual deficit in this child.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Múltiplas/genética , Criança , Bandeamento Cromossômico , Deleção Cromossômica , Cromossomos Humanos , Variações do Número de Cópias de DNA , Feminino , Humanos , Hibridização in Situ Fluorescente , Fenótipo
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(10): 1154-1157, 2020 Oct 10.
Artigo em Chinês | MEDLINE | ID: mdl-32924124

RESUMO

OBJECTIVE: To explore the genetic basis for a child with mental retardation. METHODS: The child was subjected to next generation sequencing (NGS). Candidate variant was analyzed with bioinformatic software. RESULTS: NGS revealed that the child has carried a de novo heterozygous c.4035G>C (p.Gln1345His) variant of the ARID1B gene. The variant was unreported previously and may cause instability of the protein structure. CONCLUSION: The de novo missense variant of ARID1B gene may underlie the mental retardation in the child. Above result has enabled genetic counseling and prenatal diagnosis for her family.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência Intelectual , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Criança , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/genética
6.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(5): 574-580, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33210482

RESUMO

OBJECTIVE: To analyze the clinical phenotype and genetic characteristics of a family with combined oxidative phosphorylation deficiency 1 (COXPD-1). METHODS: The whole exome sequencing was performed in parents of the proband; and the genetic defects were verified by Sanger sequencing technology in the dried blood spot of the proband, the amniotic fluid sample of the little brother of proband, and the peripheral blood of the parents. RESULTS: Whole exome sequencing and Sanger validation showed compound heterozygous mutations of GFM1 gene c.688G>A(p.G230S) and c.1576C>T (p.R526X) in both the proband and her little brother, and the c.1576C>T of GFM1 variant was first reported. The two patients were died in early infancy, and presented with metabolic acidosis, high lactic acid, abnormal liver function, feeding difficulties, microcephaly, development retardation and epilepsy. CONCLUSIONS: GFM1 gene c.688G>A and c.1576C>T compound heterozygous mutations are the cause of this family of COXPD-1.


Assuntos
Encefalopatia Hepática , Erros Inatos do Metabolismo , Proteínas Mitocondriais , Fator G para Elongação de Peptídeos , Evolução Fatal , Feminino , Encefalopatia Hepática/genética , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/genética , Proteínas Mitocondriais/genética , Mutação , Fator G para Elongação de Peptídeos/genética , Sequenciamento do Exoma
7.
Med Sci Monit ; 23: 6107-6113, 2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29276937

RESUMO

BACKGROUND Hepatocellular carcinoma (HCC) is the most important cause of cancer-related deaths worldwide. Pirfenidone is an orally available small molecule with therapeutic potential for fibrotic diseases. MATERIAL AND METHODS In this study, we analyzed the effects of different pirfenidone concentrations on the proliferation of HepG2 HCC cells using Cell Counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was performed to measure the apoptotic effects of pirfenidone on HepG2 cells. Western blot analysis was performed to detect the expression of ß-catenin and p-ß-catenin. RESULTS Pirfenidone inhibited proliferation and promoted HepG2 cell apoptosis. In addition, Western blot results indicated that pirfenidone suppressed b-catenin expression in HepG2 cells. To assess the mechanism, we treated HepG2 cells with pirfenidone, and pirfenidone plus the ß-catenin activator, SB-216763. The results revealed that SB-216763 accelerated proliferation and inhibited apoptosis in HepG2 cells treated with pirfenidone. Western blot results showed that SB-216763 upregulated ß-catenin expression in HepG2 cells treated with pirfenidone. CONCLUSIONS In conclusions, pirfenidone may be a potential drug for HCC treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Piridonas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Piridonas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , beta Catenina/efeitos dos fármacos , beta Catenina/metabolismo
8.
Zhonghua Yi Xue Za Zhi ; 94(11): 866-8, 2014 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-24854759

RESUMO

OBJECTIVE: To discuss the establishment of acute cerebral infarction model in rabbits and evaluate the value of computed tomographic perfusion (CTP) imaging. METHODS: A total of 12 healthy adult New Zealand white rabbits were used. The model was established through femoral artery puncture and injecting autoblood clot into internal carotid artery through an inserted micro-catheter to occlude the artery. Digital subtraction angiography (DSA) cerebral angiography and CTP imaging were performed at 2 and 6 hours post-embolization. RESULTS: Super-selective catheterization of internal carotid artery and an injection of auto-blood clots were successfully accomplished in all rabbits and the success rate was 100%. DSA showed that middle cerebral artery and anterior cerebral artery narrowed. At 2 hours post-embolism, CTP showed cerebral blood flow (CBF) and cerebral blood volume (CBV) decreased and mean transit time (MTT) and time to peak (TTP) increased in cerebral ischemia area. Compared with the contralateral mirror area, CBF and CBV decreased in infarct area and MTT and TTP elongated with significant statistical difference at 2 and 6 hours (P < 0.01). CONCLUSION: The model of acute cerebral ischemia may be effectively established in rabbits. This micro-invasive technique is easily manipulated with a high success rate. And CTP is an effective way of diagnosing acute cerebral infarction.


Assuntos
Infarto Cerebral , Modelos Animais de Doenças , Coelhos , Tomografia Computadorizada por Raios X , Animais , Infarto Cerebral/diagnóstico por imagem , Imagem de Perfusão
9.
Structure ; 32(6): 654-661.e3, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38579705

RESUMO

There are three key components at the core of the mpox virus (MPXV) DNA polymerase holoenzyme: DNA polymerase F8, processivity factors A22, and the Uracil-DNA glycosylase E4. The holoenzyme is recognized as a vital antiviral target because MPXV replicates in the cytoplasm of host cells. Nucleotide analogs such as cidofovir and cytarabine (Ara-C) have shown potential in curbing MPXV replication and they also display promise against other poxviruses. However, the mechanism behind their inhibitory effects remains unclear. Here, we present the cryo-EM structure of the DNA polymerase holoenzyme F8/A22/E4 bound with its competitive inhibitor Ara-C-derived cytarabine triphosphate (Ara-CTP) at an overall resolution of 3.0 Å and reveal its inhibition mechanism. Ara-CTP functions as a direct chain terminator in proximity to the deoxycytidine triphosphate (dCTP)-binding site. The extra hydrogen bond formed with Asn665 makes it more potent in binding than dCTP. Asn665 is conserved among eukaryotic B-family polymerases.


Assuntos
Microscopia Crioeletrônica , DNA Polimerase Dirigida por DNA , Modelos Moleculares , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Sítios de Ligação , Ligação Proteica , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Antivirais/química , Antivirais/farmacologia , Poxviridae/química , Poxviridae/genética , Poxviridae/metabolismo , Citidina Trifosfato/metabolismo , Citidina Trifosfato/química
10.
Sci Adv ; 10(13): eadl3685, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552027

RESUMO

The solute carrier 13 (SLC13) family comprises electrogenic sodium ion-coupled anion cotransporters, segregating into sodium ion-sulfate cotransporters (NaSs) and sodium ion-di- and-tricarboxylate cotransporters (NaDCs). NaS1 and NaDC1 regulate sulfate homeostasis and oxidative metabolism, respectively. NaS1 deficiency affects murine growth and fertility, while NaDC1 affects urinary citrate and calcium nephrolithiasis. Despite their importance, the mechanisms of substrate recognition and transport remain insufficiently characterized. In this study, we determined the cryo-electron microscopy structures of human NaS1, capturing inward-facing and combined inward-facing/outward-facing conformations within a dimer both in apo and sulfate-bound states. In addition, we elucidated NaDC1's outward-facing conformation, encompassing apo, citrate-bound, and N-(p-amylcinnamoyl) anthranilic acid (ACA) inhibitor-bound states. Structural scrutiny illuminates a detailed elevator mechanism driving conformational changes. Notably, the ACA inhibitor unexpectedly binds primarily anchored by transmembrane 2 (TM2), Loop 10, TM11, and TM6a proximate to the cytosolic membrane. Our findings provide crucial insights into SLC13 transport mechanisms, paving the way for future drug design.


Assuntos
Simportadores , Animais , Humanos , Camundongos , Regulação Alostérica , Citratos/metabolismo , Microscopia Crioeletrônica , Sódio/metabolismo , Sulfatos/metabolismo , Simportadores/metabolismo
11.
Adv Healthc Mater ; 12(27): e2301080, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37436138

RESUMO

Currently, the treatment strategy for bone metastasis is mainly to inhibit the growth of tumor cells and the activity of osteoclasts, while ignoring the influence of the tumor stromal microenvironment (TSM) on the progression of bone metastasis. Herein, a dual-target liquid metal (LM)-based drug delivery system (DDS) with favorable photothermal performance is designed to spatially program the delivery of multiple therapeutic agents to enhance the treatment of bone metastasis through TSM remodeling. Briefly, mesoporous silicon-coated LM is integrated into zeolitic imidazolate framework-8 (ZIF-8) with both bone-seeking and tumor-targeting capacities. Curcumin (Cur), a tumor microenvironment modulator, is encapsulated into ZIF-8, and doxorubicin (DOX) is enclosed inside mesoporous silicon. Specific accumulation of the LM-based DDS in bone metastases first relieves the tumor stroma by releasing Cur in response to the acidic tumor microenvironment and then releases DOX deep into the tumor under near-infrared light irradiation. The combined strategy of the LM-based DDS and mild photothermal therapy has been shown to effectively restrain cross-talk between osteoclasts and tumor cells by inhibiting the secretion of transforming growth factor-ß, degrading extracellular matrix components, and increasing infiltration of CD4+ and CD8+ T cells, which provides a promising strategy for the treatment of bone metastases.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Terapia Fototérmica , Silício , Linfócitos T CD8-Positivos , Microambiente Tumoral , Doxorrubicina/uso terapêutico , Fototerapia , Neoplasias Ósseas/tratamento farmacológico , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
12.
Sci Adv ; 9(16): eadg2331, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075110

RESUMO

The ongoing global pandemic caused by a variant of the monkeypox (or mpox) virus (MPXV) has prompted widespread concern. The MPXV DNA polymerase holoenzyme, consisting of F8, A22, and E4, is vital for replicating the viral genome and represents a crucial target for the development of antiviral drugs. However, the assembly and working mechanism for the DNA polymerase holoenzyme of MPXV remains elusive. Here, we present the cryo-electron microscopy (cryo-EM) structure of the DNA polymerase holoenzyme at an overall resolution of 3.5 Å. Unexpectedly, the holoenzyme is assembled as a dimer of heterotrimers, of which the extra interface between the thumb domain of F8 and A22 shows a clash between A22 and substrate DNA, suggesting an autoinhibition state. Addition of exogenous double-stranded DNA shifts the hexamer into trimer exposing DNA binding sites, potentially representing a more active state. Our findings provide crucial steps toward developing targeted antiviral therapies for MPXV and related viruses.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Microscopia Crioeletrônica , DNA Polimerase Dirigida por DNA
13.
Viruses ; 15(6)2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376697

RESUMO

The Omicron variants of SARS-CoV-2 have emerged as the dominant strains worldwide, causing the COVID-19 pandemic. Each Omicron subvariant contains at least 30 mutations on the spike protein (S protein) compared to the original wild-type (WT) strain. Here we report the cryo-EM structures of the trimeric S proteins from the BA.1, BA.2, BA.3, and BA.4/BA.5 subvariants, with BA.4 and BA.5 sharing the same S protein mutations, each in complex with the surface receptor ACE2. All three receptor-binding domains of the S protein from BA.2 and BA.4/BA.5 are "up", while the BA.1 S protein has two "up" and one "down". The BA.3 S protein displays increased heterogeneity, with the majority in the all "up" RBD state. The different conformations preferences of the S protein are consistent with their varied transmissibility. By analyzing the position of the glycan modification on Asn343, which is located at the S309 epitopes, we have uncovered the underlying immune evasion mechanism of the Omicron subvariants. Our findings provide a molecular basis of high infectivity and immune evasion of Omicron subvariants, thereby offering insights into potential therapeutic interventions against SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , Evasão da Resposta Imune , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
14.
Acta Biomater ; 157: 578-592, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442822

RESUMO

Although mild photothermal therapy (mild-PTT) avoids treatment bottleneck of the traditional PTT, the application of mild-PTT in deep and internal tumors is severely restricted due to thermal resistance, limited irradiation area and penetration depth. In addition, bone resorption caused by tumor colonization in distal bone tissue exacerbates tumor progression. Here, a strategy was developed for the treatment of bone metastasis and alleviation of bone resorption, which was based on liquid metal (LM) nanoparticle to resist thermal resistance induced by mild-PTT via autophagy activation. Briefly, LM and autophagy activator (Curcumin, Cur) were loaded into zeolitic imidazolate framework-8 (ZIF-8), which was then functionalized with hyaluronic acid/alendronate (CLALN). CLALN exhibited good photothermal performance, drug release ability under acidic environment, specifical recognition and aggregation at bone metastasis sites. CLALN combined with mild-PPT dramatically inhibited tumor progress by inducing the impaired autophagy and reduced the expression of programmed cell death ligand 1 (PD-L1) protein triggered by mild-PTT, resisting thermal resistance and alleviating the immunosuppression. Besides, CLALN combined with mild-PPT effectively alleviated osteolysis compared with only CLALN or mild-PPT. Our experiments demonstrated that this multi-functional LM-based nanoparticle combined with autophagy activation provided a promising therapeutic strategy for bone metastasis treatment. STATEMENT OF SIGNIFICANCE: Due to the limited light penetration, photothermal therapy (PTT) has limited inhibitory effect on tumor cells colonized in the bone. In addition, nonspecific heat diffusion of PTT may accidentally burn normal tissues and damage peripheral blood vessels, which can block the accumulation of drugs in deep tumors. Here, a multifunctional liquid metal based mild-PTT delivery system is designed to inhibit tumor growth and bone resorption by modulating the bone microenvironment and activating autophagy "on demand". It can overcome the treatment bottleneck of traditional PTT and improve the treatment effect of mild-PTT by resisting photothermal resistance and immune suppression. In addition, it also exhibits favorable heat/acid-responsive drug release performance and can specifically target tumor cells at the site of bone metastases.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Osteólise , Humanos , Feminino , Neoplasias da Mama/patologia , Fototerapia , Terapia Fototérmica , Osteólise/terapia , Nanopartículas Metálicas/uso terapêutico , Neoplasias Ósseas/terapia , Autofagia , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Clin Chim Acta ; 547: 117459, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390946

RESUMO

BACKGROUND: Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder worldwide. However, the underlying etiology remains unclear in most patients. METHODS: The newborn screening was performed for TSH in dried blood spots. Serum TSH, T3, T4, free T3(FT3) and free T4 (FT4) were detected for the recalled children. High-throughput sequencing were applied to detect 29 known CH genes. The statistical analyses were performed to analyze the differences between biochemical data, thyroid volume, clinical prognosis and genetic results for 97 patients who had one or more variants in CH related genes. RESULTS: DUOX2 gene had the highest variant rate, followed by TG, TPO and TSHR gene. The "DUOX2 biallelic variants" group was associated with "Goiter", while "DUOX2 monoallelic variants" group was associated with "Agenesis". In addition, the TSH levels and initial L-T4 dose were significantly higher in "TPO biallelic variants" group than those in "DUOX2 and TSHR biallelic variants" groups. CONCLUSIONS: Our study showed dyshormonogenesis (DH) might be the leading pathophysiology of CH in Chinese populations. DUOX2 gene mostly caused goiter, but also could be associated with hypoplasia. TPO might play a more irreplaceable role than DUOX2. The digenic variants combination indicated the complexity of genetic etiology in CH.


Assuntos
Hipotireoidismo Congênito , Humanos , Recém-Nascido , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Triagem Neonatal , Oxidases Duais/genética , Mutação , Fenótipo , Genótipo , Tireotropina
16.
Colloids Surf B Biointerfaces ; 219: 112826, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115265

RESUMO

Tumor bone metastasis is still difficult to cure despite the development of various treatment strategies. Drug delivery systems can improve the poor biological distribution of anticancer drugs in tumors. But only a very small number of nanoparticles can cross the physiological barrier to reach the tumor. In addition, the progression of bone metastasis is influenced by tumor cells, osteoclasts and bone matrix. To address these problems, a bone and tumor dual targeted nanocarrier was developed by utilizing NF-κB inhibitor loaded into zeolitic imidazolate framework-8 (ZIF-8) (CZ), which was then coated with hyaluronic acid/alendronate (HA/ALN). The CZ prepared by two-step method had high loading capacity, and the loading efficiency of Cur was to be 47.55 ± 4.03%. HA/ALN functionalization avoided explosive release of reagents and improved the stability of nanoparticles. The dual targeted ZIF-8 nanoparticle (CZ@HA/ALN) had a pH-triggered drug release performance, which effectively inhibited breast cancer cells growth and osteoclastogenesis in vitro. Uptake experiments showed that the conjugation of ALN with HA did not affect targeting ability of HA. Moreover, HA/ALN functionalized nanoparticles were more aggregated at bone metastasis sites than HA functionalized nanoparticles. CZ@HA/ALN could block the PD-1 immune check point, leading to Raw 264.7 cells differentiation into anti-tumor macrophage rather than osteoclast. The antitumor experiments in vivo exhibited that the dual targeted ZIF-8 nanoparticle effectively inhibited bone resorption and tumor progress, thereby improving the bone microenvironment. Therefore, this single but versatile nanoparticle provided a promising therapeutic scheme for bone metastasis treatment.

17.
iScience ; 25(6): 104431, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35607524

RESUMO

The different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted most public concern because they caused "wave and wave" COVID-19 pandemic. The initial step of viral infection is mediated by the SARS-CoV-2 Spike (S) protein, which mediates the receptor recognition and membrane fusion between virus and host cells. Neutralizing antibodies (nAbs) targeting the S protein of SARS-CoV-2 have become promising candidates for clinical intervention strategy, while multiple studies have shown that different variants have enhanced infectivity and antibody resistance. Here, we explore the structure and function of STS165, a broadly inter-Spike bivalent nAb against SARS-CoV-2 variants and even SARS-CoV, contributing to further understanding of the working mechanism of nAbs.

18.
Cell Discov ; 8(1): 36, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35443747

RESUMO

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) has aroused concerns over their increased infectivity and transmissibility, as well as decreased sensitivity to SARS-CoV-2-neutralizing antibodies (NAbs) and the current coronavirus disease 2019 (COVID-19) vaccines. Such exigencies call for the development of pan-sarbecovirus vaccines or inhibitors to combat the circulating SARS-CoV-2 NAb-escape variants and other sarbecoviruses. In this study, we isolated a broadly NAb against sarbecoviruses named GW01 from a donor who recovered from COVID-19. Cryo-EM structure and competition assay revealed that GW01 targets a highly conserved epitope in a wide spectrum of different sarbecoviruses. However, we found that GW01, the well-known sarbecovirus NAb S309, and the potent SARS-CoV-2 NAbs CC12.1 and REGN10989 only neutralize about 90% of the 56 tested currently circulating variants of SARS-CoV-2 including Omicron. Therefore, to improve efficacy, we engineered an IgG-like bispecific antibody GW01-REGN10989 (G9) consisting of single-chain antibody fragments (scFv) of GW01 and REGN10989. We found that G9 could neutralize 100% of NAb-escape mutants (23 out of 23), including Omicron variant, with a geometric mean (GM) 50% inhibitory concentration of 8.8 ng/mL. G9 showed prophylactic and therapeutic effects against SARS-CoV-2 infection of both the lung and brain in hACE2-transgenic mice. Site-directed mutagenesis analyses revealed that GW01 and REGN10989 bind to the receptor-binding domain in different epitopes and from different directions. Since G9 targets the epitopes for both GW01 and REGN10989, it was effective against variants with resistance to GW01 or REGN10989 alone and other NAb-escape variants. Therefore, this novel bispecific antibody, G9, is a strong candidate for the treatment and prevention of infection by SARS-CoV-2, NAb-escape variants, and other sarbecoviruses that may cause future emerging or re-emerging coronavirus diseases.

19.
Front Pediatr ; 9: 712276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504815

RESUMO

Introduction: The risk of mortality is higher in pediatric intensive care units (PICU). To prevent mortality in critically ill infants, optimal clinical management and risk stratification are required. Aims and Objectives: To assess the accuracy of PELOD-2, PIM-3, and PRISM-III/IV scores to predict outcomes in pediatric patients. Results: A total of 29 studies were included for quantitative synthesis in meta-analysis. PRISM-III/IV scoring showed pooled sensitivity of 0.78; 95% CI: 0.72-0.83 and pooled specificity of 0.75; 95% CI: 0.68-0.81 with 84% discrimination performance (SROC 0.84, 95% CI: 0.80-0.87). In the case of PIM-3, pooled sensivity 0.75; 95% CI 0.71-0.79 and pooled specificity 0.76; 95% CI 0.73-0.79 were observed with good discrimination power (SROC, 0.82, 95% CI 0.78-0.85). PELOD-2 scoring system had pooled sensitivity of 0.78 (95% CI: 0.71-0.83) and combined specificity of 0.75 (95% CI: 0.68-0.81), as well as good discriminating ability (SROC 0.83, 95% CI: 0.80-0.86) for mortality prediction in PICU patients. Conclusion: PRISM-III/IV, PIM-3, and PELOD-2 had good performance for mortality prediction in PICU but with low to moderate certainty of evidence. More well-designed studies are needed for the validation of the study results.

20.
Front Mol Neurosci ; 14: 699574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489640

RESUMO

Epilepsy is one of the most common neurological disorders in pediatric patients with other underlying neurological defects. Identifying the underlying etiology is crucial for better management of the disorder. We performed trio-whole exome sequencing in 221 pediatric patients with epilepsy. Probands were divided into seizures with developmental delay/intellectual disability (DD/ID) and seizures without DD/ID groups. Pathogenic (P) or likely pathogenic (LP) variants were identified in 71/110 (64.5%) patients in the seizures with DD/ID group and 21/111 (18.9%) patients in the seizures without DD/ID group (P < 0.001). Eighty-seven distinct P/LP single nucleotide variants (SNVs)/insertion deletions (Indels) were detected, with 55.2% (48/87) of them being novel. All aneuploidy and P/LP copy number variants (CNVs) larger than 100 Kb were identifiable by both whole-exome sequencing and copy number variation sequencing (CNVseq) in 123 of individuals (41 pedigrees). Ten of P/LP CNVs in nine patients and one aneuploidy variant in one patient (Patient #56, #47, XXY) were identified by CNVseq. Herein, we identified seven genes (NCL, SEPHS2, PA2G4, SLC35G2, MYO1C, GPR158, and POU3F1) with de novo variants but unknown pathogenicity that were not previously associated with epilepsy. Potential effective treatment options were available for 32 patients with a P/LP variant, based on the molecular diagnosis. Genetic testing may help identify the molecular etiology of early onset epilepsy and DD/ID and further aid to choose the appropriate treatment strategy for patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA