Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2201160119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867834

RESUMO

Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)-rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates.


Assuntos
Acanthaceae , Ácidos Graxos Monoinsaturados , Proteínas de Plantas , Estearoil-CoA Dessaturase , Acanthaceae/metabolismo , Proteína de Transporte de Acila/metabolismo , Evolução Molecular , Ácidos Graxos Monoinsaturados/metabolismo , Mutagênese , Óleos de Plantas/química , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Estearoil-CoA Dessaturase/análise , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
2.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493353

RESUMO

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/química
3.
J Am Chem Soc ; 145(47): 25726-25736, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963181

RESUMO

We report complex formation between the chloroacetamide 2,6-diazaadamantane nitroxide radical (ClA-DZD) and cucurbit[7]uril (CB-7), for which the association constant in water, Ka = 1.9 × 106 M-1, is at least 1 order of magnitude higher than the previously studied organic radicals. The radical is highly immobilized by CB-7, as indicated by the increase in the rotational correlation time, τrot, by a factor of 36, relative to that in the buffer solution. The X-ray structure of ClA-DZD@CB-7 shows the encapsulated DZD guest inside the undistorted CB-7 host, with the pendant group protruding outside. Upon addition of CB-7 to T4 Lysozyme (T4L) doubly spin-labeled with the iodoacetamide derivative of DZD, we observe the increase in τrot and electron spin coherence time, Tm, along with the narrowing of interspin distance distributions. Sensitivity of the DEER measurements at 83 K increases by a factor 4-9, compared to the common spin label such as MTSL, which is not affected by CB-7. Interspin distances of 3 nm could be reliably measured in water/glycerol up to temperatures near the glass transition/melting temperature of the matrix at 200 K, thus bringing us closer to the goal of supramolecular recognition-enabled long-distance DEER measurements at near physiological temperatures. The X-ray structure of DZD-T4L 65 at 1.12 Å resolution allows for unambiguous modeling of the DZD label (0.88 occupancy), indicating an undisturbed structure and conformation of the protein.


Assuntos
Proteínas , Água , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Água/química
4.
J Biol Chem ; 297(5): 101283, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626646

RESUMO

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mitocôndrias , Oxigenases de Função Mista , Filogenia , Ubiquinona , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
5.
J Neurochem ; 162(3): 245-261, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713360

RESUMO

Human DJ-1 is a cytoprotective protein whose absence causes Parkinson's disease and is also associated with other diseases. DJ-1 has an established role as a redox-regulated protein that defends against oxidative stress and mitochondrial dysfunction. Multiple studies have suggested that DJ-1 is also a protein/nucleic acid deglycase that plays a key role in the repair of glycation damage caused by methylglyoxal (MG), a reactive α-keto aldehyde formed by central metabolism. Contradictory reports suggest that DJ-1 is a glyoxalase but not a deglycase and does not play a major role in glycation defense. Resolving this issue is important for understanding how DJ-1 protects cells against insults that can cause disease. We find that DJ-1 reduces levels of reversible adducts of MG with guanine and cysteine in vitro. The steady-state kinetics of DJ-1 acting on reversible hemithioacetal substrates are fitted adequately with a computational kinetic model that requires only a DJ-1 glyoxalase activity, supporting the conclusion that deglycation is an apparent rather than a true activity of DJ-1. Sensitive and quantitative isotope-dilution mass spectrometry shows that DJ-1 modestly reduces the levels of some irreversible guanine and lysine glycation products in primary and cultured neuronal cell lines and whole mouse brain, consistent with a small but measurable effect on total neuronal glycation burden. However, DJ-1 does not improve cultured cell viability in exogenous MG. In total, our results suggest that DJ-1 is not a deglycase and has only a minor role in protecting neurons against methylglyoxal toxicity.


Assuntos
Estresse Oxidativo , Aldeído Pirúvico , Animais , Glicosilação , Guanina , Humanos , Camundongos , Neurônios/metabolismo , Proteína Desglicase DJ-1/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo
6.
Mol Med ; 28(1): 32, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272622

RESUMO

BACKGROUND: Sepsis induces group 2 innate lymphoid cell (ILC2) expansion in the lung. However, the origin of these lung-recruited ILC2 and the mechanism of ILC2 expansion are unclear. This study aims to determine the origin of lung-recruited ILC2 and its underlying mechanism in sepsis. METHODS: Sepsis was induced by cecal ligation and puncture (CLP) model in wild-type, IL-33-deficient and ST2-deficient mice. The frequency, cell number and C-X-C chemokine receptor 4 (CXCR4) expression of ILC2 in bone marrow (BM), blood and lung were measured by flow cytometry. In the in vitro studies, purified ILC2 progenitor (ILC2p) were challenged with IL-33 or G protein-coupled receptor kinase 2 (GRK2) inhibitor, the CXCR4 expression and GRK2 activity were detected by confocal microscopy or flow cytometry. RESULTS: We show that IL-33 acts through its receptor, ST2, on BM ILC2p to induce GRK2 expression and subsequent downregulation of cell surface expression of CXCR4, which results in decreasing retention of ILC2p in the BM and promoting expansion of ILC2 in the lung. Importantly, we demonstrate that reduced IL-33 level in aging mice contributes to impaired ILC2 mobilization from BM and accumulation in the lung following sepsis. CONCLUSION: This study identifies a novel pathway in regulating ILC2p mobilization and expansion during sepsis and indicates BM as the main source of ILC2 in the lung following sepsis.


Assuntos
Interleucina-33 , Sepse , Animais , Quinase 2 de Receptor Acoplado a Proteína G , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1 , Pulmão/metabolismo , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Sepse/metabolismo
7.
Ann Surg ; 276(3): 554-561, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35837893

RESUMO

BACKGROUND: Studies indicate that coronavirus disease 2019 (COVID-19) infection before or soon after operations increases mortality, but they do not comment on the appropriate timing for interventions after diagnosis. OBJECTIVE: We sought to determine what the safest time would be for COVID-19 diagnosed patients to undergo major operative interventions. METHODS: High-risk operations, between January 2020 and May 2021, were identified from the Veterans Affairs COVID-19 Shared Data Resource. Current Procedural Terminology (CPT) codes were used to exact match COVID-19 positive cases (n=938) to negative controls (n=7235). Time effects were calculated as a continuous variable and then grouped into 2-week intervals. The primary outcome was 90-day, all-cause postoperative mortality. RESULTS: Ninety-day mortality in cases and controls was similar when the operation was performed within 9 weeks or longer after a positive test; but significantly higher in cases versus controls when the operation was performed within 7 to 8 weeks (12.3% vs 4.9%), 5 to 6 weeks (10.3% vs 3.3%), 3 to 4 weeks (19.6% vs 6.7%), and 1 to 2 weeks (24.7% vs 7.4%) from diagnosis. Among patients who underwent surgery within 8 weeks from diagnosis, 90-day mortality was 16.6% for cases versus 5.8% for the controls ( P <0.001). In this cohort, we assessed interaction between case status and any symptom ( P =0.93), and case status and either respiratory symptoms or fever ( P =0.29), neither of which were significant statistically. CONCLUSIONS: Patients undergoing major operations within 8 weeks after a positive test have substantially higher postoperative 90-day mortality than CPT-matched controls without a COVID-19 diagnosis, regardless of presenting symptoms.


Assuntos
COVID-19 , COVID-19/diagnóstico , Teste para COVID-19 , Estudos de Coortes , Humanos , Período Pós-Operatório
8.
9.
Proc Natl Acad Sci U S A ; 116(51): 25634-25640, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31801874

RESUMO

How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.


Assuntos
Cristalografia por Raios X/métodos , Enzimas , Catálise , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Enzimas/química , Enzimas/metabolismo , Enzimas/ultraestrutura , Hidroliases/química , Hidroliases/metabolismo , Hidroliases/ultraestrutura , Modelos Moleculares , Conformação Proteica
10.
Biochemistry ; 60(47): 3555-3565, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34729986

RESUMO

Enzymes have in vivo life spans. Analysis of life spans, i.e., lifetime totals of catalytic turnovers, suggests that nonsurvivable collateral chemical damage from the very reactions that enzymes catalyze is a common but underdiagnosed cause of enzyme death. Analysis also implies that many enzymes are moderately deficient in that their active-site regions are not naturally as hardened against such collateral damage as they could be, leaving room for improvement by rational design or directed evolution. Enzyme life span might also be improved by engineering systems that repair otherwise fatal active-site damage, of which a handful are known and more are inferred to exist. Unfortunately, the data needed to design and execute such improvements are lacking: there are too few measurements of in vivo life span, and existing information about the extent, nature, and mechanisms of active-site damage and repair during normal enzyme operation is too scarce, anecdotal, and speculative to act on. Fortunately, advances in proteomics, metabolomics, cheminformatics, comparative genomics, and structural biochemistry now empower a systematic, data-driven approach for identifying, predicting, and validating instances of active-site damage and its repair. These capabilities would be practically useful in enzyme redesign and improvement of in-use stability and could change our thinking about which enzymes die young in vivo, and why.


Assuntos
Biocatálise , Estabilidade Enzimática , Domínio Catalítico , Biologia de Sistemas
11.
Biochemistry ; 60(8): 584-596, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33583181

RESUMO

We report the co-crystal structure of the (catalytic Cys)-to-Ala mutant of the deubiquitinase domain of the Legionella pneumophila effector SdeA (SdeADUB) with its ubiquitin (Ub) product. Most of the intermolecular interactions are preserved in this product-bound structure compared to that of the previously characterized complex of SdeADUB with the suicide inhibitor ubiquitin vinylmethyl ester (Ub-VME), whose structure models the acyl-enzyme thioester intermediate. Nuclear magnetic resonance (NMR) titration studies show a chemical shift perturbation pattern that suggests that the same interactions also exist in solution. Isothermal titration calorimetry and NMR titration data reveal that the affinity of wild-type (WT) SdeADUB for Ub is significantly lower than that of the Cys-to-Ala mutant. This is potentially due to repulsive interaction between the thiolate ion of the catalytic Cys residue in WT SdeADUB and the carboxylate group of the C-terminal Gly76 residue in Ub. In the context of SdeADUB catalysis, this electrostatic repulsion arises after the hydrolysis of the scissile isopeptide bond in the acyl-enzyme intermediate and the consequent formation of the C-terminal carboxylic group in the Ub fragment. We hypothesize that this electrostatic repulsion may expedite the release of the Ub product by SdeADUB. We note that similar repulsive interactions may also occur in other deubiquitinases and hydrolases of ubiquitin-like protein modifiers and may constitute a fairly general mechanism of product release within this family. This is a potentially important feature for a family of enzymes that form extensive protein-protein interactions during enzyme-substrate engagement.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ubiquitinas/metabolismo , Catálise , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Conformação Proteica , Ubiquitinação
12.
J Biol Chem ; 295(41): 14236-14247, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32796037

RESUMO

DUF328 family proteins are present in many prokaryotes; however, their molecular activities are unknown. The Escherichia coli DUF328 protein YaaA is a member of the OxyR regulon and is protective against oxidative stress. Because uncharacterized proteins involved in prokaryotic oxidative stress response are rare, we sought to learn more about the DUF328 family. Using comparative genomics, we found a robust association between the DUF328 family and genes involved in DNA recombination and the oxidative stress response. In some proteins, DUF328 domains are fused to other domains involved in DNA binding, recombination, and repair. Cofitness analysis indicates that DUF328 family genes associate with recombination-mediated DNA repair pathways, particularly the RecFOR pathway. Purified recombinant YaaA binds to dsDNA, duplex DNA containing bubbles of unpaired nucleotides, and Holliday junction constructs in vitro with dissociation equilibrium constants of 200-300 nm YaaA binds DNA with positive cooperativity, forming multiple shifted species in electrophoretic mobility shift assays. The 1.65-Å resolution X-ray crystal structure of YaaA reveals that the protein possesses a new fold that we name the cantaloupe fold. YaaA has a positively charged cleft and a helix-hairpin-helix DNA-binding motif found in other DNA repair enzymes. Our results demonstrate that YaaA is a new type of DNA-binding protein associated with the oxidative stress response and that this molecular function is likely conserved in other DUF328 family members.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Dobramento de Proteína , Cristalografia por Raios X , Reparo do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estresse Oxidativo , Domínios Proteicos
13.
Med Care ; 59(7): 639-645, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900272

RESUMO

BACKGROUND: National surgical quality improvement (QI) programs use periodic, risk-adjusted evaluation to identify hospitals with higher than expected perioperative mortality. Rapid, accurate identification of poorly performing hospitals is critical for avoiding potentially preventable mortality and represents an opportunity to enhance QI efforts. METHODS: Hospital-level analysis using Veterans Affairs (VA) Surgical Quality Improvement Program data (2011-2016) to compare identification of hospitals with excess, risk-adjusted 30-day mortality using observed-to-expected (O-E) ratios (ie, current gold standard) and cumulative sum (CUSUM) with V-mask. Various V-mask slopes and radii were evaluated-slope of 2.5 and radius of 1.0 was used as the base case. RESULTS: Hospitals identified by CUSUM and quarterly O-E were identified midway into a quarter [median 47 days; interquartile range (IQR): 24-61 days before quarter end] translating to a median of 129 (IQR: 60-187) surgical cases and 368 (IQR: 145-681) postoperative inpatient days occurring after a CUSUM signal, but before the quarter end. At hospitals identified by CUSUM but not O-E, a median of 2 deaths within a median of 5 days triggered a signal. In some cases, these clusters extended beyond CUSUM identification date with as many as 8 deaths undetected using O-E. Sensitivity and negative predictive values for CUSUM relative to O-E were 71.9% (95% confidence interval: 66.2%-77.1%) and 95.5% (94.4%-96.4%), respectively. CONCLUSIONS: CUSUM evaluation identifies hospitals with clusters of mortality in excess of expected more rapidly than periodic analysis. CUSUM represents an analytic tool national QI programs could utilize to provide participating hospitals with data that could facilitate more proactive implementation of local interventions to help reduce potentially avoidable perioperative mortality.


Assuntos
Mortalidade Hospitalar , Hospitais de Veteranos , Avaliação de Resultados em Cuidados de Saúde/métodos , Período Perioperatório , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Melhoria de Qualidade , Risco Ajustado , Estados Unidos
14.
Plant Cell ; 30(12): 2910-2921, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429224

RESUMO

Land plants possess the unique capacity to derive the benzenoid moiety of the vital respiratory cofactor, ubiquinone (coenzyme Q), from phenylpropanoid metabolism via ß-oxidation of p-coumarate to form 4-hydroxybenzoate. Approximately half of the ubiquinone in plants comes from this pathway; the origin of the rest remains enigmatic. In this study, Phe-[Ring-13C6] feeding assays and gene network reconstructions uncovered a connection between the biosynthesis of ubiquinone and that of flavonoids in Arabidopsis (Arabidopsis thaliana). Quantification of ubiquinone in Arabidopsis and tomato (Solanum lycopersicum) mutants in flavonoid biosynthesis pinpointed the corresponding metabolic branch-point as lying between flavanone-3-hydroxylase and flavonoid-3'-hydroxylase. Further isotopic labeling and chemical rescue experiments demonstrated that the B-ring of kaempferol is incorporated into ubiquinone. Moreover, heme-dependent peroxidase activities were shown to be responsible for the cleavage of B-ring of kaempferol to form 4-hydroxybenzoate. By contrast, kaempferol 3-ß-d-glucopyranoside, dihydrokaempferol, and naringenin were refractory to peroxidative cleavage. Collectively, these data indicate that kaempferol contributes to the biosynthesis of a vital respiratory cofactor, resulting in an extraordinary metabolic arrangement where a specialized metabolite serves as a precursor for a primary metabolite. Evidence is also provided that the ubiquinone content of tomato fruits can be manipulated via deregulation of flavonoid biosynthesis.


Assuntos
Quempferóis/metabolismo , Plantas/metabolismo , Ubiquinona/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Parabenos/metabolismo
15.
Arch Biochem Biophys ; 704: 108869, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819447

RESUMO

Parkinson's disease (PD) is one of the fastest-growing neurodegenerative disorders of increasing global prevalence. It represents the second most common movement disorder after tremor and the second most common neurodegenerative disorder after Alzheimer's disease. The incidence rate of idiopathic PD increases steadily with age, however, some variants of autosomal recessive inheritance are present with an early age-at-onset (ARPD). Approximately 50 percent of ARPD cases have been linked to bi-allelic mutations in genes encoding Parkin, DJ-1, and PINK1. Each protein has been implicated in maintaining proper mitochondrial function, which is particularly important for neuronal health. Aberrant post-translational modifications of these proteins may disrupt their cellular functions and thus contributing to the development of idiopathic PD. Some post-translational modifictions can be attributed to the dysregulation of potentially harmful reactive oxygen and nitrogen species inside the cell, which promote oxidative and nitrosative stress, respectively. Unlike oxidative modifications, the covalent modification by Nitric Oxide under nitrosative stress, leading to S-nitrosylation of Parkin, DJ-1; and PINK1, is less studied. Here, we review the available literature on S-nitrosylation of these three proteins, their implications in the pathogenesis of PD, and provide an overview of currently known, denitrosylating systems in eukaryotic cells.


Assuntos
Óxido Nítrico/metabolismo , Estresse Nitrosativo , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Humanos , Mutação , Óxido Nítrico/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
16.
Biochem J ; 477(9): 1745-1757, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32301498

RESUMO

Formaldehyde (HCHO) is a reactive carbonyl compound that formylates and cross-links proteins, DNA, and small molecules. It is of specific concern as a toxic intermediate in the design of engineered pathways involving methanol oxidation or formate reduction. The interest in engineering these pathways is not, however, matched by engineering-relevant information on precisely why HCHO is toxic or on what damage-control mechanisms cells deploy to manage HCHO toxicity. The only well-defined mechanism for managing HCHO toxicity is formaldehyde dehydrogenase-mediated oxidation to formate, which is counterproductive if HCHO is a desired pathway intermediate. We therefore sought alternative HCHO damage-control mechanisms via comparative genomic analysis. This analysis associated homologs of the Escherichia coli pepP gene with HCHO-related one-carbon metabolism. Furthermore, deleting pepP increased the sensitivity of E. coli to supplied HCHO but not other carbonyl compounds. PepP is a proline aminopeptidase that cleaves peptides of the general formula X-Pro-Y, yielding X + Pro-Y. HCHO is known to react spontaneously with cysteine to form the close proline analog thioproline (thiazolidine-4-carboxylate), which is incorporated into proteins and hence into proteolytic peptides. We therefore hypothesized that certain thioproline-containing peptides are toxic and that PepP cleaves these aberrant peptides. Supporting this hypothesis, PepP cleaved the model peptide Ala-thioproline-Ala as efficiently as Ala-Pro-Ala in vitro and in vivo, and deleting pepP increased sensitivity to supplied thioproline. Our data thus (i) provide biochemical genetic evidence that thioproline formation contributes substantially to HCHO toxicity and (ii) make PepP a candidate damage-control enzyme for engineered pathways having HCHO as an intermediate.


Assuntos
Endopeptidases , Escherichia coli , Formaldeído/metabolismo , Prolina/metabolismo , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formaldeído/toxicidade , Genes Bacterianos , Genoma Bacteriano , Tiazolidinas/metabolismo
17.
J Biol Chem ; 294(19): 7821-7832, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30918025

RESUMO

Archaea are a distinct and deeply rooted lineage that harbor eukaryotic-like mechanisms, including several that manage chromosome function. In previous work, the thermoacidophilic crenarchaeon, Sulfolobus solfataricus, was subjected to adaptive laboratory evolution to produce three strains, called SARC, with a new heritable trait of super acid resistance. These strains acquired heritable conserved transcriptomes, yet one strain contained no mutations. Homologous recombination without allele replacement at SARC acid resistance genes caused changes in both phenotype and expression of the targeted gene. As recombination displaces chromatin proteins, their involvement was predicted in the SARC trait. Native chromatin proteins are basic and highly abundant and undergo post-translational modification through lysine monomethylation. In this work, their modification states were investigated. In all SARC lines, two chromatin proteins, Cren7 and Sso7d, were consistently undermethylated, whereas other chromatin proteins were unaltered. This pattern was heritable in the absence of selection and independent of transient exposure to acid stress. The bulk of Sso7d was undermethylated at three contiguous N-terminal lysine residues but not at central or C-terminal regions. The N-terminal region formed a solvent-exposed patch located on the opposite side of the binding domain associated with the DNA minor groove. By analogy to eukaryotic histones, this patch could interact with other chromosomal proteins and be modulated by differential post-translational modification. Previous work established an epigenetic-like mechanism of adaptation and inheritance in S. solfataricus The identification of heritable epigenetic marks in this work further supports the occurrence of an epigenetic process in archaea.


Assuntos
Proteínas Arqueais , Proteínas de Ligação a DNA , Evolução Molecular Direcionada , Epigênese Genética , Regulação da Expressão Gênica em Archaea , Locos de Características Quantitativas , Sulfolobus solfataricus , Adaptação Fisiológica , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Transcriptoma
18.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L791-L804, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313618

RESUMO

Pulmonary emphysema is characterized by alveolar type II (ATII) cell death, destruction of alveolar wall septa, and irreversible airflow limitation. Cigarette smoke induces oxidative stress and is the main risk factor for this disease development. ATII cells isolated from nonsmokers, smokers, and patients with emphysema were used for this study. ATII cell apoptosis in individuals with this disease was detected. DJ-1 and S100A8 have cytoprotective functions against oxidative stress-induced cell injury. Reduced DJ-1 and S100A8 interaction was found in ATII cells in patients with emphysema. The molecular function of S100A8 was determined by an analysis of the oxidation status of its cysteine residues using chemoselective probes. Decreased S100A8 sulfination was observed in emphysema patients. In addition, its lower levels correlated with higher cell apoptosis induced by cigarette smoke extract in vitro. Cysteine at position 106 within DJ-1 is a central redox-sensitive residue. DJ-1 C106A mutant construct abolished the cytoprotective activity of DJ-1 against cell injury induced by cigarette smoke extract. Furthermore, a molecular and complementary relationship between DJ-1 and S100A8 was detected using gain- and loss-of-function studies. DJ-1 knockdown sensitized cells to apoptosis induced by cigarette smoke extract, and S100A8 overexpression provided cytoprotection in the absence of DJ-1. DJ-1 knockout mice were more susceptible to ATII cell apoptosis induced by cigarette smoke compared with wild-type mice. Our results indicate that the impairment of DJ-1 and S100A8 function may contribute to cigarette smoke-induced ATII cell injury and emphysema pathogenesis.


Assuntos
Células Epiteliais Alveolares/patologia , Apoptose , Calgranulina A/metabolismo , Proteína Desglicase DJ-1/metabolismo , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/patologia , Idoso , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Calgranulina A/genética , Citoproteção , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estresse Oxidativo , Proteína Desglicase DJ-1/genética , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos
19.
Ann Surg ; 270(6): 1079-1089, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29697444

RESUMO

OBJECTIVE: To quantify the number of US hospitals that would meet "Take the Volume Pledge" (TVP) volume thresholds and compare outcomes at hospitals meeting and not meeting TVP thresholds. SUMMARY BACKGROUND DATA: TVP aims to regionalize complex cancer resections to hospitals meeting established annual average volume thresholds. There is little data describing the potential impact on patient access if this initiative were broadly implemented or the relationship between these volume thresholds and quality of oncologic care. METHODS: Hospitals in the National Cancer Database (2006-2012) performing esophagectomy (n = 968), proctectomy (n = 1250), or pancreatectomy (n = 1068) were categorized based on frequency meeting TVP thresholds: always low volume (LV); low annual average and intermittently low volume (ILV); high annual average and intermittently high volume (IHV); always high volume (HV). Multivariable generalized estimating equations were used to evaluate the association between hospital TVP category, oncologic care processes, and perioperative outcomes. RESULTS: Few hospitals met annual TVP thresholds (HV or IHV)-esophagectomy 1.6%; proctectomy 19.7%; pancreatectomy 6.6%. The majority of esophagectomy (77.8%) and pancreatectomy (53.4%) and 48.1% of proctectomy patients received care at hospitals not meeting annual TVP thresholds (LV or ILV). While performance for all three procedures was generally better at ILV, IHV, and HV hospitals relative to LV hospitals, there were few differences (none of which were consistent) when comparing ILV, IHV, and HV hospitals to each other. CONCLUSIONS AND RELEVANCE: Few hospitals would meet TVP volume thresholds for complex cancer resections with little difference in outcomes between ILV, IHV, and HV hospitals. While a policy to regionalize complex surgical care may have merit, it could also compromise patient autonomy and limit access to care if patients are unable or unwilling to travel.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/estatística & dados numéricos , Neoplasias Gastrointestinais/cirurgia , Acessibilidade aos Serviços de Saúde , Idoso , Feminino , Hospitais com Alto Volume de Atendimentos , Hospitais com Baixo Volume de Atendimentos , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Utilização de Procedimentos e Técnicas , Estudos Retrospectivos
20.
J Synchrotron Radiat ; 26(Pt 4): 958-966, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274417

RESUMO

Cysteine is a rare but functionally important amino acid that is often subject to covalent modification. Cysteine oxidation plays an important role in many human disease processes, and basal levels of cysteine oxidation are required for proper cellular function. Because reactive cysteine residues are typically ionized to the thiolate anion (Cys-S-), their formation of a covalent bond alters the electrostatic and steric environment of the active site. X-ray-induced photo-oxidation to sulfenic acids (Cys-SOH) can recapitulate some aspects of the changes that occur under physiological conditions. Here we propose how site-specific cysteine photo-oxidation can be used to interrogate ensuing changes in protein structure and dynamics at atomic resolution. Although this powerful approach can connect cysteine covalent modification to global protein conformational changes and function, careful biochemical validation must accompany all such studies to exclude misleading artifacts. New types of X-ray crystallography experiments and powerful computational methods are creating new opportunities to connect conformational dynamics to catalysis for the large class of systems that use covalently modified cysteine residues for catalysis or regulation.


Assuntos
Cristalografia por Raios X/métodos , Cisteína/química , Proteínas/química , Catálise , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica , Reprodutibilidade dos Testes , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA