Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 299(3): 103002, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773803

RESUMO

Plasma thymidine levels in rodents are higher than in other mammals including humans, possibly due to a different pattern and lower level of thymidine phosphorylase expression. Here, we generated a novel knock-in (KI) mouse line with high systemic expression of human thymidine phosphorylase to investigate this difference in nucleotide metabolism in rodents. The KI mice showed growth retardation around weaning and died by 4 weeks of age with a decrease in plasma thymidine level compared with the litter-control WT mice. These phenotypes were completely or partially rescued by administration of the thymidine phosphorylase inhibitor 5-chloro-6-(2-iminopyrrolidin-1-yl) methyl-2,4(1H,3H)-pyrimidinedione hydrochloride or thymidine, respectively. Interestingly, when thymidine phosphorylase inhibitor administration was discontinued in adult animals, KI mice showed deteriorated grip strength and locomotor activity, decreased bodyweight, and subsequent hind-limb paralysis. Upon histological analyses, we observed axonal degeneration in the spinal cord, muscular atrophy with morphologically abnormal mitochondria in quadriceps, retinal degeneration, and abnormality in the exocrine pancreas. Moreover, we detected mitochondrial DNA depletion in multiple tissues of KI mice. These results indicate that the KI mouse represents a new animal model for mitochondrial diseases and should be applicable for the study of differences in nucleotide metabolism between humans and mice.


Assuntos
Encefalomiopatias Mitocondriais , Miopatias Mitocondriais , Animais , Humanos , Camundongos , DNA Mitocondrial/metabolismo , Transtornos do Crescimento/genética , Mamíferos/metabolismo , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/patologia , Nucleotídeos , Timidina , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo
2.
Cancer Sci ; 112(1): 422-432, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33140501

RESUMO

Deficiency in DNA repair proteins confers susceptibility to DNA damage, making cancer cells vulnerable to various cancer chemotherapies. 5-Fluorouracil (5-FU) is an anticancer nucleoside analog that both inhibits thymidylate synthase (TS) and causes DNA damage via the misincorporation of FdUTP and dUTP into DNA under the conditions of dTTP depletion. However, the role of the DNA damage response to its antitumor activity is still unclear. To determine which DNA repair pathway contributes to DNA damage caused by 5-FU and uracil misincorporation, we examined cancer cells treated with 2'-deoxy-5-fluorouridine (FdUrd) in the presence of TAS-114, a highly potent inhibitor of dUTPase that restricts aberrant base misincorporation. Addition of TAS-114 increased FdUTP and dUTP levels in HeLa cells and facilitated 5-FU and uracil misincorporation into DNA, but did not alter TS inhibition or 5-FU incorporation into RNA. TAS-114 showed synergistic potentiation of FdUrd cytotoxicity and caused aberrant base misincorporation, leading to DNA damage and induced cell death even after short-term exposure to FdUrd. Base excision repair (BER) and homologous recombination (HR) were found to be involved in the DNA repair of 5-FU and uracil misincorporation caused by dUTPase inhibition in genetically modified chicken DT40 cell lines and siRNA-treated HeLa cells. These results suggested that BER and HR are major pathways that protect cells from the antitumor effects of massive incorporation of 5-FU and uracil. Further, dUTPase inhibition has the potential to maximize the antitumor activity of fluoropyrimidines in cancers that are defective in BER or HR.


Assuntos
Reparo do DNA/efeitos dos fármacos , Floxuridina/farmacologia , Pirimidinas/farmacologia , Pirofosfatases/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Galinhas , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Timidilato Sintase/antagonistas & inibidores
3.
Mol Cancer Ther ; 17(8): 1683-1693, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748212

RESUMO

5-Fluorouracil (5-FU) is an antimetabolite and exerts antitumor activity via intracellularly and physiologically complicated metabolic pathways. In this study, we designed a novel small molecule inhibitor, TAS-114, which targets the intercellular metabolism of 5-FU to enhance antitumor activity and modulates catabolic pathway to improve the systemic availability of 5-FU. TAS-114 strongly and competitively inhibited deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), a gatekeeper protein preventing aberrant base incorporation into DNA, and enhanced the cytotoxicity of fluoropyrimidines in cancer cells; however, it had little intrinsic activity. In addition, TAS-114 had moderate and reversible inhibitory activity on dihydropyrimidine dehydrogenase (DPD), a catabolizing enzyme of 5-FU. Thus, TAS-114 increased the bioavailability of 5-FU when coadministered with capecitabine in mice, and it significantly improved the therapeutic efficacy of capecitabine by reducing the required dose of the prodrug by dual enzyme inhibition. Enhancement of antitumor efficacy caused by the addition of TAS-114 was retained in the presence of a potent DPD inhibitor containing oral fluoropyrimidine (S-1), indicating that dUTPase inhibition plays a major role in enhancing the antitumor efficacy of fluoropyrimidine-based therapy. In conclusion, TAS-114, a dual dUTPase/DPD inhibitor, demonstrated the potential to improve the therapeutic efficacy of fluoropyrimidine. Dual inhibition of dUTPase and DPD is a novel strategy for the advancement of oral fluoropyrimidine-based chemotherapy for cancer treatment. Mol Cancer Ther; 17(8); 1683-93. ©2018 AACR.


Assuntos
Fluoruracila/uso terapêutico , Pirofosfatases/antagonistas & inibidores , Animais , Fluoruracila/farmacologia , Humanos , Camundongos , Camundongos Nus , Ratos
4.
Artigo em Inglês | MEDLINE | ID: mdl-15892261

RESUMO

1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)uracil (EUrd) is an antimetabolite that strongly inhibits RNA synthesis and shows a broad antitumor activity in vitro and in vivo. In mouse mammary tumor FM3A cells, EUrd is sequentially phosphorylated to its 5'-triphosphate, EUTP, a major metabolite, and the RNA synthesis is inhibited proportionally to its intracellular accumulation. To study the inhibitory mechanisms of EUrd on RNA synthesis, we have performed the kinetic analysis of EUTP on RNA polymerization using isolated nuclei RNA synthesis was inhibited competitively by EUTP. The inhibition constant, Ki was much lower than the Km value of UTP (Ki value of EUTP, 84 nM; Km value of UTP, 13 microM), indicating that the high affinity of EUTP could contribute to the specific inhibition of RNA synthesis. As a result of RNA synthesis inhibition, EUrd, but not ara-C, induced shrinkage of nucleoli, which are the main sites for RNA synthesis in FM3A cells. Thus, the strong affinity of EUTP to RNA polymerase and specific inhibition of RNA synthesis could contribute to its antitumor effect. EUrd is expected to be a new antitumor drug, possessing a strong inhibitory effect on the synthesis of RNA.


Assuntos
Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA/biossíntese , Uridina/análogos & derivados , Animais , Linhagem Celular Tumoral , Feminino , Cinética , Camundongos , Inibidores da Síntese de Ácido Nucleico/metabolismo , RNA/metabolismo , Uridina/metabolismo , Uridina/farmacologia
5.
Int J Oncol ; 46(6): 2327-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901475

RESUMO

Trifluridine (FTD) and 2'-deoxy-5-fluorouridine (FdUrd), a derivative of 5-fluorouracil (5-FU), are antitumor agents that inhibit thymidylate synthase activity and their nucleotides are incorporated into DNA. However, it is evident that several differences occur in the underlying antitumor mechanisms associated with these nucleoside analogues. Recently, TAS-102 (composed of FTD and tipiracil hydrochloride, TPI) was shown to prolong the survival of patients with colorectal cancer who received a median of 2 prior therapies, including 5-FU. TAS-102 was recently approved for clinical use in Japan. These data suggest that the antitumor activities of TAS-102 and 5-FU proceed via different mechanisms. Thus, we analyzed their properties in terms of thymidine salvage pathway utilization, involving membrane transporters, a nucleoside kinase, a nucleotide-dephosphorylating enzyme, and DNA polymerase α. FTD incorporated into DNA with higher efficiency than FdUrd did. Both FTD and FdUrd were transported into cells by ENT1 and ENT2 and were phosphorylated by thymidine kinase 1, which showed a higher catalytic activity for FTD than for FdUrd. deoxyUTPase (DUT) did not recognize dTTP and FTD-triphosphate (F3dTTP), whereas deoxyuridine-triphosphate (dUTP) and FdUrd-triphosphate (FdUTP) were efficiently degraded by DUT. DNA polymerase α incorporated both F3dTTP and FdUTP into DNA at sites aligned with adenine on the opposite strand. FTD-treated cells showed differing nuclear morphologies compared to FdUrd-treated cells. These findings indicate that FTD and FdUrd are incorporated into DNA with different efficiencies due to differences in the substrate specificities of TK1 and DUT, causing abundant FTD incorporation into DNA.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/genética , DNA de Neoplasias/química , Fluoruracila/farmacologia , Timidina Quinase/metabolismo , Trifluridina/farmacologia , Uracila/análogos & derivados , Antimetabólitos Antineoplásicos/farmacocinética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Combinação de Medicamentos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Fluoruracila/farmacocinética , Células HCT116 , Humanos , Masculino , Pirofosfatases/metabolismo , Pirrolidinas , Especificidade por Substrato , Timina , Trifluridina/farmacocinética , Uracila/farmacocinética , Uracila/farmacologia
6.
Int J Mol Med ; 13(2): 249-55, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14719131

RESUMO

TAS-102 is a combination drug consisting of alpha,alpha,alpha-trifluorothymidine (FTD) and thymidine phosphorylase inhibitor (TPI). FTD is converted to F3TMP by thymidine kinase and inhibits the thymidylate synthetase (TS) activity by binding to TS. In addition, FTD triphosphate form, F3TTP is incorporated into DNA, which leads to cytocidal effects. Therefore, the incorporation of FTD into DNA is expected to be an important factor, discriminating it from 5-FU showing TS inhibitory activity as their main mechanism of action. To assess a clinically more effective regimen protocol, the intracellular metabolism and the incorporation of FTD into DNA were investigated using human cancer cell lines in vitro and in vivo. FTD was incorporated into DNA in a time-dependent manner, but not in a concentration-dependent manner. FTD was the most efficiently incorporated into DNA after treatment with a several-micro molar level of FTD for around 8 h. The intracellular F3TTP was rapidly eliminated from tumor cells, as soon as FTD was washed out from the culture medium, whereas the FTD incorporated into DNA was retained by 80% or more even at 24 h after a washing-out procedure. When TAS-102 was administered into tumor-bearing mice once daily or three times daily at 3-h intervals at a dose of 150 mg/kg/day for one or 3 consecutive days, incorporation of FTD into tumor DNA by divided dosing significantly higher than that of single dosing. Based on our findings, the antitumor effects of TAS-102 against 3 different human cancer cell xenografts into mice were examined. The divided daily dosing resulted in enhancement of the antitumor effects of TAS-102 without any additional side effects. It is concluded that multiple daily dosing may result in better clinical benefits of TAS-102, when compared with single daily dosing and TAS-102 is a promising candidate for not only FU-sensitive but also FU-resistant cancer patients.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Timidina Fosforilase/antagonistas & inibidores , Trifluridina/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Fatores de Tempo , Transplante Heterólogo , Trifluridina/farmacocinética
7.
Cancer Chemother Pharmacol ; 73(3): 577-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24452393

RESUMO

PURPOSE: TAS-114 is a first-in-class oral deoxyuridine triphosphatase (dUTPase) inhibitor, which acts as a modulator of the pyrimidine nucleotide metabolic pathway. This was a first-in-human, phase 1 study that investigated the pharmacokinetics (PK) and safety of single-agent TAS-114 when it was given at single and multiple doses. METHODS: For the single-dose cohort (n = 25), healthy male volunteers received a single dose of TAS-114 at 6, 18, 60, 150, and 300 mg. The magnitude of dihydropyrimidine dehydrogenase (DPD) inhibition and the food effect on TAS-114 PK were also investigated. For the multiple-dose cohort (n = 10), subjects received TAS-114 for 14 days consecutively. RESULTS: In the dose-escalating single-dose cohort, the disposition of TAS-114 followed linear kinetics. The elimination half-life was approximately 2 h. The urine excretion rate and food effect were minimal. A significant increase in uracil Cmax was observed at administered doses of 150 mg or higher of TAS-114, suggesting that significant inhibition of DPD occurred at these doses. No apparent CYP3A4 auto-induction was observed in the multiple-dose cohort. No significant safety concerns at these dose levels were noted after single and multiple dosing. CONCLUSIONS: TAS-114 has shown both a favorable safety and pharmacokinetic profile after single and repeated doses. TAS-114 was considered to possess a moderate DPD inhibitory effect. These findings will facilitate clinical studies of the combination chemotherapies in cancer patients and may reduce the safety risk in the frail cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pirofosfatases/antagonistas & inibidores , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Estudos de Coortes , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Fluoruracila/farmacocinética , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
8.
Oncol Rep ; 32(6): 2319-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25230742

RESUMO

TAS-102 is a novel oral nucleoside antitumor agent containing trifluridine (FTD) and tipiracil hydrochloride (TPI). The compound improves overall survival of colorectal cancer (CRC) patients who are insensitive to standard chemotherapies. FTD possesses direct antitumor activity since it inhibits thymidylate synthase (TS) and is itself incorporated into DNA. However, the precise mechanisms underlying the incorporation into DNA and the inhibition of TS remain unclear. We found that FTD-dependent inhibition of TS was similar to that elicited by fluorodeoxyuridine (FdUrd), another clinically used nucleoside analog. However, washout experiments revealed that FTD-dependent inhibition of TS declined rapidly, whereas FdUrd activity persisted. The incorporation of FTD into DNA was significantly higher than that of other antitumor nucleosides. Additionally, orally administered FTD had increased antitumor activity and was incorporated into DNA more effectively than continuously infused FTD. When TAS-102 was administered, FTD gradually accumulated in tumor cell DNA, in a TPI-independent manner, and significantly delayed tumor growth and prolonged survival, compared to treatment with 5-FU derivatives. TAS-102 reduced the Ki-67-positive cell fraction, and swollen nuclei were observed in treated tumor tissue. The amount of FTD incorporation in DNA and the antitumor activity of TAS-102 in xenograft models were positively and significantly correlated. These results suggest that TAS-102 exerts its antitumor activity predominantly due to its DNA incorporation, rather than as a result of TS inhibition. The persistence of FTD in the DNA of tumor cells treated with TAS-102 may underlie its ability to prolong survival in cancer patients.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , DNA de Neoplasias/genética , Trifluridina/administração & dosagem , Uracila/análogos & derivados , Administração Oral , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Combinação de Medicamentos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pirrolidinas , Timina , Trifluridina/metabolismo , Uracila/administração & dosagem , Uracila/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Med Chem ; 55(7): 2960-9, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22404301

RESUMO

Recently, deoxyuridine triphosphatase (dUTPase) has emerged as a potential target for drug development as part of a new strategy of 5-fluorouracil-based combination chemotherapy. We have initiated a program to develop potent drug-like dUTPase inhibitors based on structure-activity relationship (SAR) studies of uracil derivatives. N-Carbonylpyrrolidine- and N-sulfonylpyrrolidine-containing uracils were found to be promising scaffolds that led us to human dUTPase inhibitors (12k) having excellent potencies (IC(50) = 0.15 µM). The X-ray structure of a complex of 16a and human dUTPase revealed a unique binding mode wherein its uracil ring and phenyl ring occupy a uracil recognition region and a hydrophobic region, respectively, and are stacked on each other. Compounds 12a and 16a markedly enhanced the growth inhibition activity of 5-fluoro-2'-deoxyuridine against HeLa S3 cells in vitro (EC(50) = 0.27-0.30 µM), suggesting that our novel dUTPase inhibitors could contribute to the development of chemotherapeutic strategies when used in combination with TS inhibitors.


Assuntos
Antineoplásicos/síntese química , Pirofosfatases/antagonistas & inibidores , Pirrolidinas/síntese química , Uracila/análogos & derivados , Uracila/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Floxuridina/farmacologia , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Pirrolidinas/química , Pirrolidinas/farmacologia , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade , Timidilato Sintase/antagonistas & inibidores , Uracila/química , Uracila/farmacologia
10.
J Med Chem ; 55(7): 2970-80, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22339362

RESUMO

Inhibition of human deoxyuridine triphosphatase (dUTPase) has been identified as a promising approach to enhance the efficacy of 5-fluorouracil (5-FU)-based chemotherapy. This study describes the development of a novel class of dUTPase inhibitors based on the structure-activity relationship (SAR) studies of uracil derivatives. Starting from the weak inhibitor 7 (IC(50) = 100 µM), we developed compound 26, which is the most potent human dUTPase inhibitor (IC(50) = 0.021 µM) reported to date. Not only does compound 26 significantly enhance the growth inhibition activity of 5-fluoro-2'-deoxyuridine (FdUrd) against HeLa S3 cells in vitro (EC(50) = 0.075 µM) but also shows robust antitumor activity against MX-1 breast cancer xenograft model in mice when administered orally with a continuous infusion of 5-FU. This is the first in vivo evidence that human dUTPase inhibitors enhance the antitumor activity of TS inhibitors. On the basis of these findings, it was concluded that compound 26 is a promising candidate for clinical development.


Assuntos
Antineoplásicos/síntese química , Pirofosfatases/antagonistas & inibidores , Pirrolidinas/síntese química , Sulfonamidas/síntese química , Uracila/análogos & derivados , Uracila/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Floxuridina/farmacologia , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Transplante de Neoplasias , Conformação Proteica , Pirrolidinas/farmacocinética , Pirrolidinas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Timidilato Sintase/antagonistas & inibidores , Transplante Heterólogo , Uracila/farmacocinética , Uracila/farmacologia
11.
J Med Chem ; 55(11): 5483-96, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22607122

RESUMO

Human deoxyuridine triphosphatase (dUTPase) inhibition is a promising approach to enhance the efficacy of thymidylate synthase (TS) inhibitor based chemotherapy. In this study, we describe the discovery of a novel class of human dUTPase inhibitors based on the conformation restriction strategy. On the basis of the X-ray cocrystal structure of dUTPase and its inhibitor compound 7, we designed and synthesized two conformation restricted analogues, i.e., compounds 8 and 9. These compounds exhibited increased in vitro potency compared with the parent compound 7. Further structure-activity relationship (SAR) studies identified a compound 43 with the highest in vitro potency (IC(50) = 39 nM, EC(50) = 66 nM). Furthermore, compound 43 had a favorable oral PK profile and exhibited potent antitumor activity in combination with 5-fluorouracil (5-FU) in the MX-1 breast cancer xenograft model. These results suggested that a dUTPase inhibitor may have potential for clinical usage.


Assuntos
Antineoplásicos/síntese química , Pirofosfatases/antagonistas & inibidores , Sulfonamidas/síntese química , Uracila/análogos & derivados , Administração Oral , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Fluoruracila/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Transplante Heterólogo , Uracila/síntese química , Uracila/farmacocinética , Uracila/farmacologia
12.
J Med Chem ; 55(14): 6427-37, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22715973

RESUMO

Deoxyuridine triphosphatase (dUTPase) has emerged as a potential target for drug development as a 5-fluorouracil-based combination chemotherapy. We describe the design and synthesis of a novel class of human dUTPase inhibitors, 1,2,3-triazole-containing uracil derivatives. Compound 45a, which possesses 1,5-disubstituted 1,2,3-triazole moiety that mimics the amide bond of tert-amide-containing inhibitor 6b locked in a cis conformation showed potent inhibitory activity, and its structure-activity relationship studies led us to the discovery of highly potent inhibitors 48c and 50c (IC(50) = ~0.029 µM). These derivatives dramatically enhanced the growth inhibition activity of 5-fluoro-2'-deoxyuridine against HeLa S3 cells in vitro (EC(50) = ~0.05 µM). In addition, compound 50c exhibited a markedly improved pharmacokinetic profile as a result of the introduction of a benzylic hydroxy group and significantly enhanced the antitumor activity of 5-fluorouracil against human breast cancer MX-1 xenograft model in mice. These data indicate that 50c is a promising candidate for combination cancer chemotherapies with TS inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Pirofosfatases/antagonistas & inibidores , Triazóis/farmacologia , Triazóis/farmacocinética , Uracila/química , Amidas/química , Animais , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Estabilidade de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Timidilato Sintase/antagonistas & inibidores , Triazóis/química , Triazóis/metabolismo
13.
Cancer Chemother Pharmacol ; 63(5): 837-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18668243

RESUMO

PURPOSE: 1-(3-C-Ethynyl-beta-D: -ribo-pentofuranosyl)cytosine (ECyd), a ribonucleoside analog, has a potent cytotoxic activity against cancer cells. The present studies have been performed to elucidate the overall mechanisms of ECyd-induced apoptotic cell death. METHODS: Cultured cells of mouse mammary carcinoma FM3A and human fibrosarcoma HT 1080 lines were used. The efficacy of RNA synthesis inhibition by ECyd was assessed by kinetic analysis using nuclei isolated from FM3A cells. RNA status in ECyd-treated cells was investigated by Northern blots, and the cleavage sites of RNA were identified by rapid amplification of 5' cDNA ends (5'-RACE). The effect of protein functions on the ECyd-induced apoptotic pathway was analyzed by siRNA and immunohistochemical techniques. Apoptotic cells were detected by TdT-mediated dUTP-biotin Nick End Labeling (TUNEL) assay. RESULTS: ECyd induces inhibition of RNA synthesis in vitro and in vivo, which appears to be a major cause for the apoptosis. It is known that ECyd is converted inside the cell into its 5'-triphosphate (ECTP). We have now found in test-tube experiments that ECTP strongly inhibits the activity of RNA polymerase I by competing with CTP. In the absence of robust RNA synthesis, the cellular RNAs would be destined to break down. RNase L was found to be playing a role in the breakdown: thus, the 28S rRNA-fragmentation pattern observed for the ECyd-treated cells was very similar to that observable in an in vitro treatment of the 28S ribosomes with RNase L. Association of RNase L with the cytotoxic action of ECyd was confirmed by use of the siRNA-mediated suppression of the cellular RNase L. Thus, the cells in which the RNase L was knocked-down were highly resistant to the cytotoxic action of ECyd. Further events, downstream of the RNase L action that can lead to the eventual apoptosis, would conceivably involve the phosphorylation of c-jun N-terminal kinase and subsequent decrease in mitochondrial membrane-potential. Evidence to support this flow of events was obtained by siRNA-experiments. CONCLUSION: The results from this study demonstrated that RNase L is activated after the inhibition of RNA polymerase, and induces mitochondria-dependent apoptotic pathway. We propose this new role for RNase L in the apoptotic mechanism. These findings may open up the possibility of finding new targets for anticancer agents.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citidina/análogos & derivados , Endorribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Animais , Ligação Competitiva , Northern Blotting , Western Blotting , Citidina/farmacologia , Endorribonucleases/genética , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/enzimologia , Fibrossarcoma/patologia , Humanos , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Ribossômico 28S/metabolismo , Transfecção
14.
Nucleic Acids Symp Ser (Oxf) ; (51): 435-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18029773

RESUMO

RNase L functions as a tumor suppressor protein due to its role in apoptosis during viral infections and various agents treatment. RNase L-mediated apoptosis is accompanied by cytochrome c release from mitochondria and requires caspase-3 activity. It was reported that RNase L is involved in JNK activation during viral infections, and that JNK is essential for apoptosis in response to RNase L activation. However, the proximal signals of RNase L that trigger JNK activation have not as yet been identified, and it is possible that the interactions between RNase L and other proteins play an important role in the RNase L-JNK apoptotic signal pathway. To investigate this hypothesis, we attempted to identify the proteins associated with RNase L using coimmunoprecipitation. In this study, we found that RNase L was associated with other proteins. Here we identified the protein X by LC-MS/MS analysis. We demonstrated that this association was increased in the presence of activated RNase L. Moreover, Protein X was phosphorylated during the activation of RNase L by treatment with cytotoxic agent, ECyd, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl) cytosine and 2-5A. To reveal the role of protein X in RNase L-mediated apoptosis, we decreased the level of protein X by a small interfering RNA (siRNA). As a result, protein X deficient cells became resistant to the apoptosis mediated by RNase L, suggesting that protein X is related to RNase L-mediated apoptosis following JNK activation. Therefore, in this study, we report the identification of a novel protein, protein X that transduces between RNase L and JNK signals.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Citidina/análogos & derivados , Endorribonucleases/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA/biossíntese , Citidina/farmacologia , Ativação Enzimática , Imunoprecipitação , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
15.
Nucleic Acids Symp Ser (Oxf) ; (50): 103-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17150838

RESUMO

RNase L is an endoribonuclease that requires 2'-5' oligoadenylate to cleave single-stranded RNA. Although the antiviral effects of RNase L are well known because of its viral RNA degradation activity recently but it has been suggested that RNase L is concerned in mitochondrial-caspase dependent apoptotic signaling pathway induced by a number of anticancer agents. Moreover, it has variety of functions including translation and transcription of proteins. In this report, we found that 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl) cytosine (ECyd), which inhibits RNA synthesis through competitive inhibition of RNA polymerase I induced 28S rRNA fragmentation. The cleavage pattern of rRNA induced by ECyd was similar and the cleavage sites were identical to those cleaved by RNase L. Additionaly, apoptosis induced by ECyd was elevated following the protein expression of RNase L in the tumor cells when treated with IFN-alpha2a which was known to induce RNase L expression. To identify the role of RNase L in apoptosis induced by ECyd, we detected the decreased level of RNase L by several folds in the tumor cell lines through a small interfering RNA (siRNA). These results indicated that RNase L might integrate apoptotic signals induced by ECyd and provide the possibility to be a novel clinical target for cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Citidina/análogos & derivados , Endorribonucleases/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA/biossíntese , Linhagem Celular Tumoral , Citidina/farmacologia , Humanos , RNA Polimerase I/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Nucleic Acids Res Suppl ; (2): 241-2, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12903195

RESUMO

We investigated the molecular mechanisms of cell death induced by 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106), a potent inhibitor of RNA synthesis, using mouse mammary tumor FM3A cells and human fibrosarcoma HT1080 cells. ECyd induced the characteristics of apoptosis on these cells, such as morphological changes, DNA fragmentations and caspase-3-like protease activation. General caspases inhibitor, Z-Asp-CH2-DCB inhibited cell death. Interestingly, we also found that ECyd induced rRNA fragmentation. The cleavage pattern of rRNA resembled in that mediated by RNase L. On the other hands, it was suggested that caspase-1, 3, 8 and 9 concerned with ECyd-induced apoptosis through mitochondria. ECyd-induced rRNA fragmentation was inhibited by general caspases inhibitor (Z-Asp-CH2-DCB) and caspase-5 inhibitor (Z-WEHD-fmk). So it is clear that caspase-5 (ICErel III/TY), member of ICE (Interleukin-1 beta-converting enzyme) protease, activated pathway concerned with ECyd-induced rRNA fragmentation. These results indicate that antitumor mechanisms of ECyd are involved in caspase-dependent activation of RNase L. rRNA fragmentation may occur one of the death events, as a result of inhibition of RNA synthesis and play an important role in the antitumor activity of ECyd.


Assuntos
Antineoplásicos/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Animais , Endorribonucleases/metabolismo , Hidrólise , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA