Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(23): 9544-9550, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36442685

RESUMO

A key issue in the development of high-performance semiconductor devices is the ability to properly measure active dopants at the nanometer scale. In a p-n junction, the abruptness of the dopant profile around the metallurgical junction directly influences the electric field. Here, a contacted nominally symmetric and highly doped (NA = ND = 9 × 1018 cm-3) silicon p-n specimen is studied through in situ biased four-dimensional scanning transmission electron microscopy (4D-STEM). Measurements of electric field, built-in voltage, depletion region width, and charge density are combined with analytical equations and finite-element simulations in order to evaluate the quality of the junction interface. It is shown that all the junction parameters measured are compatible with a linearly graded junction. This hypothesis is also consistent with the evolution of the electric field with bias as well as off-axis electron holography data. These results demonstrate that in situ biased 4D-STEM can allow a better understanding of the electrostatics of semiconductor p-n junctions with nm-scale resolution.

2.
Nanotechnology ; 33(25)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276681

RESUMO

The early stage of growth of semiconductor nanowires is studied in the case where the sidewall adatoms have a short diffusion length due to a strong desorption. Experimental results are described for the growth of ZnSe nanowires by molecular beam epitaxy. They are discussed and interpreted using the Burton-Cabrera-Frank description of the propagation of steps along the sidewalls, and compared to other II-VI and III-V nanowires. The role of the growth parameters and the resulting shape of the nanowires (cylinder, cone, or both combined) are highlighted.

3.
Nanotechnology ; 33(3)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34633307

RESUMO

Here, we use electron beam induced current (EBIC) in a scanning transmission electron microscope to characterize the structure and electronic properties of Al/SiGe and Al/Si-rich/SiGe axial nanowire heterostructures fabricated by thermal propagation of Al in a SiGe nanowire. The two heterostructures behave as Schottky contacts with different barrier heights. From the sign of the beam induced current collected at the contacts, the intrinsic semiconductor doping is determined to be n-type. Furthermore, we find that the silicon-rich double interface presents a lower barrier height than the atomically sharp SiGe/Al interface. With an applied bias, the Si-rich region delays the propagation of the depletion region and presents a reduced free carrier diffusion length with respect to the SiGe nanowire. This behaviour could be explained by a higher residual doping in the Si-rich area. These results demonstrate that scanning transmission electron microscopy EBIC is a powerful method for mapping and quantifying electric fields in micrometer- and nanometer-scale devices.

4.
Nanotechnology ; 32(35)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34030148

RESUMO

We developed a new class of mono- or few-layered two-dimensional polymers based on dinuclear (arene)ruthenium nodes, obtained by combining the imine condensation with an interfacial chemistry process, and use a modified Langmuir-Schaefer method to transfer them onto solid surfaces. Robust nano-sheets of two-dimensional polymers including dinuclear complexes of heavy ruthenium atoms as nodes were synthesised. These nano-sheets, whose thickness is of a few tens of nanometers, were suspended onto solid porous membranes. Then, they were thoroughly characterised with a combination of local probes, including Raman spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy in imaging and diffraction mode.

5.
Nanotechnology ; 32(8): 085606, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33147580

RESUMO

The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN nanotubes.

6.
Nano Lett ; 20(1): 314-319, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31851824

RESUMO

Quantum dots inserted in semiconducting nanowires are an interesting platform for the fabrication of single photon devices. To fully understand the physical properties of these objects, we need to correlate the optical, transport, and structural properties on the same nanostructure. In this work, we study the spectral tunability of the emission of a single quantum dot in a GaN nanowire by applying external bias. The nanowires are dispersed and contacted on electron beam transparent Si3N4 membranes, so that transmission electron microscopy observations, photocurrent, and micro-photoluminescence measurements under bias can be performed on the same specimen. The emission from a single dot blue or red shifts when the external electric field compensates or enhances the internal electric field generated by the spontaneous and piezoelectric polarization. A detailed study of two nanowire specimens emitting at 327.5 and 307.5 nm shows spectral shifts at rates of 20 and 12 meV/V, respectively. Theoretical calculations facilitated by the modeling of the exact heterostructure provide a good description of the experimental observations. When the bias-induced band bending is strong enough to favor tunneling of the electron in the dot toward the stem or the cap, the spectral shift saturates and additional transitions associated with charged excitons can be observed.

7.
Nanotechnology ; 31(47): 472001, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32503014

RESUMO

Understanding the interplay between the structure, composition and opto-electronic properties of semiconductor nano-objects requires combining transmission electron microscopy (TEM) based techniques with electrical and optical measurements on the very same specimen. Recent developments in TEM technologies allow not only the identification and in-situ electrical characterization of a particular object, but also the direct visualization of its modification in-situ by techniques such as Joule heating. Over the past years, we have carried out a number of studies in these fields that are reviewed in this contribution. In particular, we discuss here i) correlated studies where the same unique object is characterized electro-optically and by TEM, ii) in-situ Joule heating studies where a solid-state metal-semiconductor reaction is monitored in the TEM, and iii) in-situ biasing studies to better understand the electrical properties of contacted single nanowires. In addition, we provide detailed fabrication steps for the silicon nitride membrane-chips crucial to these correlated and in-situ measurements.

8.
Nano Lett ; 19(12): 8365-8371, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31613639

RESUMO

A promising approach of making high quality contacts on semiconductors is a silicidation (for silicon) or germanidation (for germanium) annealing process, where the metal enters the semiconductor and creates a low resistance intermetallic phase. In a nanowire, this process allows one to fabricate axial heterostructures with dimensions depending only on the control and understanding of the thermally induced solid-state reaction. In this work, we present the first observation of both germanium and copper diffusion in opposite directions during the solid-state reaction of Cu contacts on Ge nanowires using in situ Joule heating in a transmission electron microscope. The in situ observations allow us to follow the reaction in real time with nanometer spatial resolution. We follow the advancement of the reaction interface over time, which gives precious information on the kinetics of this reaction. We combine the kinetic study with ex situ characterization using model-based energy dispersive X-ray spectroscopy (EDX) indicating that both Ge and Cu diffuse at the surface of the created Cu3Ge segment and the reaction rate is limited by Ge surface diffusion at temperatures between 360 and 600 °C. During the reaction, germanide crystals typically protrude from the reacted NW part. However, their formation can be avoided using a shell around the initial Ge NW. Ha direct Joule heating experiments show slower reaction speeds indicating that the reaction can be initiated at lower temperatures. Moreover, they allow combining electrical measurements and heating in a single contacting scheme, rendering the Cu-Ge NW system promising for applications where very abrupt contacts and a perfectly controlled size of the semiconducting region is required. Clearly, in situ TEM is a powerful technique to better understand the reaction kinetics and mechanism of metal-semiconductor phase formation.

9.
Nano Lett ; 19(5): 2897-2904, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30908919

RESUMO

To fully exploit the potential of semiconducting nanowires for devices, high quality electrical contacts are of paramount importance. This work presents a detailed in situ transmission electron microscopy (TEM) study of a very promising type of NW contact where aluminum metal enters the germanium semiconducting nanowire to form an extremely abrupt and clean axial metal-semiconductor interface. We study this solid-state reaction between the aluminum contact and germanium nanowire in situ in the TEM using two different local heating methods. Following the reaction interface of the intrusion of Al in the Ge nanowire shows that at temperatures between 250 and 330 °C the position of the interface as a function of time is well fitted by a square root function, indicating that the reaction rate is limited by a diffusion process. Combining both chemical analysis and electron diffraction we find that the Ge of the nanowire core is completely exchanged by the entering Al atoms that form a monocrystalline nanowire with the usual face-centered cubic structure of Al, where the nanowire dimensions are inherited from the initial Ge nanowire. Model-based chemical mapping by energy dispersive X-ray spectroscopy (EDX) characterization reveals the three-dimensional chemical cross-section of the transformed nanowire with an Al core, surrounded by a thin pure Ge (∼2 nm), Al2O3 (∼3 nm), and Ge containing Al2O3 (∼1 nm) layer, respectively. The presence of Ge containing shells around the Al core indicates that Ge diffuses back into the metal reservoir by surface diffusion, which was confirmed by the detection of Ge atoms in the Al metal line by EDX analysis. Fitting a diffusion equation to the kinetic data allows the extraction of the diffusion coefficient at two different temperatures, which shows a good agreement with diffusion coefficients from literature for self-diffusion of Al.

10.
Nanotechnology ; 29(2): 025710, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28994395

RESUMO

Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons [1-3], ions [4] or field ionization effects [5-7] study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1 × 1018 cm-3 and negative sidewall surface charge of 2.5 × 1012 cm-2 of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed.

11.
Nanotechnology ; 29(25): 255204, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29558360

RESUMO

Nanowire photodetectors are investigated because of their compatibility with flexible electronics, or for the implementation of on-chip optical interconnects. Such devices are characterized by ultrahigh photocurrent gain, but their photoresponse scales sublinearly with the optical power. Here, we present a study of single-nanowire photodetectors displaying a linear response to ultraviolet illumination. Their structure consists of a GaN nanowire incorporating an AlN/GaN/AlN heterostructure, which generates an internal electric field. The activity of the heterostructure is confirmed by the rectifying behavior of the current-voltage characteristics in the dark, as well as by the asymmetry of the photoresponse in magnitude and linearity. Under reverse bias (negative bias on the GaN cap segment), the detectors behave linearly with the impinging optical power when the nanowire diameter is below a certain threshold (≈80 nm), which corresponds to the total depletion of the nanowire stem due to the Fermi level pinning at the sidewalls. In the case of nanowires that are only partially depleted, their nonlinearity is explained by a nonlinear variation of the diameter of their central conducting channel under illumination.

12.
Nano Lett ; 17(11): 6954-6960, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28961016

RESUMO

Intersubband optoelectronic devices rely on transitions between quantum-confined electron levels in semiconductor heterostructures, which enables infrared (IR) photodetection in the 1-30 µm wavelength window with picosecond response times. Incorporating nanowires as active media could enable an independent control over the electrical cross-section of the device and the optical absorption cross-section. Furthermore, the three-dimensional carrier confinement in nanowire heterostructures opens new possibilities to tune the carrier relaxation time. However, the generation of structural defects and the surface sensitivity of GaAs nanowires have so far hindered the fabrication of nanowire intersubband devices. Here, we report the first demonstration of intersubband photodetection in a nanowire, using GaN nanowires containing a GaN/AlN superlattice absorbing at 1.55 µm. The combination of spectral photocurrent measurements with 8-band k·p calculations of the electronic structure supports the interpretation of the result as intersubband photodetection in these extremely short-period superlattices. We observe a linear dependence of the photocurrent with the incident illumination power, which confirms the insensitivity of the intersubband process to surface states and highlights how architectures featuring large surface-to-volume ratios are suitable as intersubband photodetectors. Our analysis of the photocurrent characteristics points out routes for an improvement of the device performance. This first nanowire based intersubband photodetector represents a technological breakthrough that paves the way to a powerful device platform with potential for ultrafast, ultrasensitive photodetectors and highly efficient quantum cascade emitters with improved thermal stability.

13.
Nano Lett ; 17(7): 4231-4239, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613893

RESUMO

We present a study of GaN single-nanowire ultraviolet photodetectors with an embedded GaN/AlN superlattice. The heterostructure dimensions and doping profile were designed in such a way that the application of positive or negative bias leads to an enhancement of the collection of photogenerated carriers from the GaN/AlN superlattice or from the GaN base, respectively, as confirmed by electron beam-induced current measurements. The devices display enhanced response in the ultraviolet A (≈ 330-360 nm)/B (≈ 280-330 nm) spectral windows under positive/negative bias. The result is explained by correlation of the photocurrent measurements with scanning transmission electron microscopy observations of the same single nanowire and semiclassical simulations of the strain and band structure in one and three dimensions.

14.
Chemistry ; 23(46): 10969-10973, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28577324

RESUMO

A class of two-dimensional (2D) covalent organometallic polymers, with nanometer-scale crosslinking, was obtained by arene(ruthenium) sulfur chemistry. Their ambivalent nature, with positively charged crosslinks and lypophylic branches is the key to the often sought-for and usually hard-to-achieve solubility of 2D polymers in various kinds of solvents. Solubility is here controlled by the planarity of the polymer, which in turn controls Coulomb interactions between the polymer layers. High planarity is achieved for high symmetry crosslinks and short, rigid branches. Owing to their solubility, the polymers are easily processable, and can be handled as powder, deposited on surfaces by mere spin-coating, or suspended across membranes by drop-casting. The novel 2D materials are potential candidates as flexible membranes for catalysis, cancer therapy, and electronics.

15.
Nanotechnology ; 28(25): 255602, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28475104

RESUMO

GaAs-based nanowires (NWs) can be grown without extrinsic catalyst using the Ga-assisted vapor-liquid-solid method in an epitaxy reactor, on Si(111) substrates covered with native oxide. Despite its wide use, the conventional method fails to provide a good control over uniformity, reproducibility, and yield of vertical NWs. The nucleation of GaAs NWs is very sensitive to the properties of the native oxide such as chemical composition, roughness and porosity. Consequently, samples grown under the same conditions on Si(111) substrates from different manufacturing batches often produce dramatically different growth results. In order to remove the dependence on wafer batch, a controlled chemical oxidation process is developed to replace the native oxide on Si(111) substrate with a reproducible chemical oxide. A high yield (exceeding 90%) of vertical GaAs NWs is achieved with excellent uniformity on chemical oxide-covered substrate. As an added advantage, the crystalline quality is significantly improved over that of GaAs NWs grown on native oxide-covered substrate, and pure zinc blende crystal structure can be achieved with minimal defects. In addition, the chemical oxide can be used as a template for producing different combinations of NW densities and sizes in parallel on the same wafer using the same growth conditions.

16.
Nano Lett ; 16(5): 3260-7, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27104371

RESUMO

We have characterized the photodetection capabilities of single GaN nanowires incorporating 20 periods of AlN/GaN:Ge axial heterostructures enveloped in an AlN shell. Transmission electron microscopy confirms the absence of an additional GaN shell around the heterostructures. In the absence of a surface conduction channel, the incorporation of the heterostructure leads to a decrease of the dark current and an increase of the photosensitivity. A significant dispersion in the magnitude of dark currents for different single nanowires is attributed to the coalescence of nanowires with displaced nanodisks, reducing the effective length of the heterostructure. A larger number of active nanodisks and AlN barriers in the current path results in lower dark current and higher photosensitivity and improves the sensitivity of the nanowire to variations in the illumination intensity (improved linearity). Additionally, we observe a persistence of the photocurrent, which is attributed to a change of the resistance of the overall structure, particularly the GaN stem and cap sections. As a consequence, the time response is rather independent of the dark current.

17.
ACS Appl Mater Interfaces ; 16(15): 19350-19358, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563742

RESUMO

Understanding the electronic transport of metal-semiconductor heterojunctions is of utmost importance for a wide range of emerging nanoelectronic devices like adaptive transistors, biosensors, and quantum devices. Here, we provide a comparison and in-depth discussion of the investigated Schottky heterojunction devices based on Si and Ge nanowires contacted with pure single-crystal Al. Key for the fabrication of these devices is the selective solid-state metal-semiconductor exchange of Si and Ge nanowires into Al, delivering void-free, single-crystal Al contacts with flat Schottky junctions, distinct from the bulk counterparts. Thereof, a systematic comparison of the temperature-dependent charge carrier injection and transport in Si and Ge by means of current-bias spectroscopy is visualized by 2D colormaps. Thus, it reveals important insights into the operation mechanisms and regimes that cannot be exploited by conventional single-sweep output and transfer characteristics. Importantly, it was found that the Al-Si system shows symmetric effective Schottky barrier (SB) heights for holes and electrons, whereas the Al-Ge system reveals a highly transparent contact for holes due to Fermi level pinning close to the valence band with charge carrier injection saturation due to a thinned effective SB. Moreover, thermionic field emission limits the overall electron conduction, indicating a distinct SB for electrons.

18.
ACS Nano ; 16(3): 4397-4407, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276038

RESUMO

The growth of ZnTe nanowires and ZnTe-CdTe nanowire heterostructures is studied by in situ transmission electron microscopy. We describe the shape and the change of shape of the solid gold nanoparticle during vapor-solid-solid growth. We show the balance between one monolayer and two monolayer steps, which characterizes the vapor-liquid-solid and vapor-solid-solid growth modes of ZnTe. We discuss the likely role of the mismatch strain and lattice coincidence between gold and ZnTe on the predominance of two monolayer steps during vapor-solid-solid growth and on the subsequent self-regulation of the step dynamics. Finally, the formation of an interface between CdTe and ZnTe is described.

19.
ACS Nano ; 15(11): 18135-18141, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34705418

RESUMO

The functional diversification and adaptability of the elementary switching units of computational circuits are disruptive approaches for advancing electronics beyond the static capabilities of conventional complementary metal-oxide-semiconductor-based architectures. Thereto, in this work the one-dimensional nature of monocrystalline and monolithic Al-Ge-based nanowire heterostructures is exploited to deliver charge carrier polarity control and furthermore to enable distinct programmable negative differential resistance at runtime. The fusion of electron and hole conduction together with negative differential resistance in a universal adaptive transistor may enable energy-efficient reconfigurable circuits with multivalued operability that are inherent components of emerging artificial intelligence electronics.

20.
Adv Mater ; 33(39): e2101989, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365674

RESUMO

Superconductor-semiconductor-superconductor heterostructures are attractive for both fundamental studies of quantum phenomena in low-dimensional hybrid systems as well as for future high-performance low power dissipating nanoelectronic and quantum devices. In this work, ultrascaled monolithic Al-Ge-Al nanowire heterostructures featuring monocrystalline Al leads and abrupt metal-semiconductor interfaces are used to probe the low-temperature transport in intrinsic Ge (i-Ge) quantum dots. In particular, demonstrating the ability to tune the Ge quantum dot device from completely insulating, through a single-hole-filling quantum dot regime, to a supercurrent regime, resembling a Josephson field effect transistor with a maximum critical current of 10 nA at a temperature of 390 mK. The realization of a Josephson field-effect transistor with high junction transparency provides a mechanism to study sub-gap transport mediated by Andreev states. The presented results reveal a promising intrinsic Ge-based architecture for hybrid superconductor-semiconductor devices for the study of Majorana zero modes and key components of quantum computing such as gatemons or gate tunable superconducting quantum interference devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA