Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Electrophoresis ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415778

RESUMO

The work describes the use of SYBR Gold to improve the detection sensitivity of plasmid DNA topoisomers by capillary gel electrophoresis with laser induced fluorescence in an uncoated capillary. The impact of different dyes, including ethidium bromide, SYBR Green and SYBR Gold, was compared based on detection and separation of DNA plasmid topoisomers. Use of SYBR Gold enabled improvement of detection sensitivity by 15-fold while maintaining good separation resolution of the different topoisomers. The baseline dropped with the use SYBR Gold but was overcome by the employment of a capillary with longer ineffective length (40 vs. 20 cm). Separation resolution and reproducibility were impacted by the concentration of SYBR Gold and hydroxypropyl methylcellulose. With the use of a short capillary (10 cm effective length and 50 cm total length), fast separations of supercoiled, linear, open circular, and other isoforms were accomplished within 8 min. Appropriate capillary cleaning with 0.1 M sodium hydroxide/0.1 M hydrochloric acid and capillary storage with 0.1 M hydrochloric acid ensured good separation reproducibility of 217 runs during an extended period of use.

2.
Electrophoresis ; 44(19-20): 1607-1614, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551057

RESUMO

SDS capillary gel electrophoresis is a widely used in the biopharma and the biomedical fields for rapid size separation of proteins. However, very limited information is available on the use of dilute and ultra-dilute sieving matrices for SDS-protein analysis. Here, background electrolytes (BGEs) containing 1%-0% dextran were used in borate-based BGE to separate a protein sizing ladder (PSL) ≤225 kDa and the intact and subunit forms of a therapeutic monoclonal antibody (mAb). The separation performance for the PSL and mAb components differed significantly with decreasing dextran concentration. Ferguson and reptation plots were used to elucidate the separation mechanism. Highly diluted dextran solutions resulted in linear Ferguson plots for both solute types (cf. Ogston theory) in spite of this model assumes a rigid pore structure, thus cannot describe the separation mechanism in ultra-dilute polymer solutions with no reticulations. The saddle differences between the resolution of the PSL and the intact/subunit mAb forms in ultra-dilute dextran-borate matrices suggested the importance of shape selectivity, manifested by the adequate separation of the SDS covered intact as well as light and heavy chain subunits of the therapeutic mAb even at zero dextran concentration.


Assuntos
Boratos , Dextranos , Dodecilsulfato de Sódio/química , Eletroforese Capilar/métodos , Proteínas/análise
3.
Electrophoresis ; 44(3-4): 462-471, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353919

RESUMO

During the production of cell and gene therapy products, residual host cell DNA (HCD) could cause safety risks of the biological products, and the longer the residual HCD fragment, the greater the risk to the human body. For this reason, it was necessary to develop an effective method for the size distribution analysis of residual HCD fragments with high accuracy and sensitivity. In this study, capillary gel electrophoresis with laser-induced fluorescence detector (CGE-LIF) was used to analyze the size distribution of residual HCD fragments in lentivirus products. The results confirmed that lentiviral RNA genome could interfere with the size distribution analysis of residual HCD fragments. By optimizing the amount of RNase I and digestion time in sample pretreatment process, the interfere of RNA genome could be avoided. The specificity, precision, accuracy, linear range, the detection of limit (LOD), and the quantification of limit (LOQ) of CGE-LIF method were also validated. The results showed that the CGE-LIF method had a good performance both in terms of specificity and reproducibility. The intra- and inter-day relative standard deviations of migration time and corrected peak area were all less than 1% and 2%, respectively. The 200 bp DNA marker had a good linearity between 50 and 1000 pg/ml. The LOD and LOQ of 200 bp DNA marker were 2.59 and 8.64 pg/ml, respectively. In addition, this method was successfully used to analyze the size distribution analysis of residual HCD fragments in lentivirus products with different production processes.


Assuntos
DNA , Lentivirus , Humanos , Reprodutibilidade dos Testes , Marcadores Genéticos , Reação em Cadeia da Polimerase/métodos , DNA/análise , Eletroforese Capilar/métodos
4.
Electrophoresis ; 43(11): 1174-1182, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289414

RESUMO

In the production of novel biological products, plasmids are often engineered into delivery vectors for target genes, which can be used directly as vaccines or as intermediate products for gene/cell therapy. Plasmid DNA exists in several topological forms such as supercoiled, linear, and open circular. As supercoiled plasmid shows the highest efficiency in transfecting eukaryotic cells, the content of supercoiled plasmids becomes an important indicator of plasmid quality. CGE is an effective analysis method for separating different topological structures of plasmids. For the purpose of providing plasmid manufacturers and regulatory agencies with an efficient and readily used tool for monitoring the quality of plasmids, this article identifies the optimal separation and detection conditions of CGE, presents a platform-based plasmid analytical method, and uses plasmid of different sizes to verify the feasibility of this method. In terms of detector, the LIF detector has obvious advantages over the ultraviolet detector in sensitivity and resolution. Using the optimal CE condition (10× gel buffer), baseline separation of different topological forms and impurities can be achieved for different plasmid sizes (5.9, 7.8, 15.4 kb). In addition, 6.5 kb plasmid was used to compare the different separation technologies such as CGE-LIF, ion exchange chromatography and agarose gel electrophoresis. The result shows that CGE-LIF can provide better resolution and quantitation accuracy than ion exchange chromatography and agarose gel electrophoresis. CGE-LIF, as a quick and convenient method to separate and quantify plasmids, has the advantages of high sensitivity, high resolution, and high quantitative accuracy. Therefore, it is ideal for analysis of plasmids with different sizes, and it can also be used as a platform method for manufacturers and regulatory agencies to monitor the purity and stability of plasmids.


Assuntos
Eletroforese Capilar , Cromatografia por Troca Iônica/métodos , Eletroforese em Gel de Ágar/métodos , Eletroforese Capilar/métodos , Plasmídeos/genética , Isoformas de Proteínas
5.
Electrophoresis ; 43(9-10): 1107-1117, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821392

RESUMO

With recent FDA approval of two recombinant adeno-associated virus (rAAV)-based gene therapies, these vectors have proven that they are suitable to address monogenic diseases. However, rAAVs are relatively new modalities, and their production and therapy costs significantly exceed those of conventional biologics. Thus, significant efforts are made to improve the processes, methods, and techniques used in manufacturing and quality control (QC). Here, we evaluate transmission electron microscopy (TEM), analytical ultracentrifugation (AUC), and two modes of capillary electrophoresis (CE) for their ability to analyze the DNA encapsidated by rAAVs. While TEM and AUC are well-established methods for rAAV, capillary gel electrophoresis (CGE) has been just recently proposed for viral genome sizing. The data presented reflect that samples are very complex, with various DNA species incorporated in the virus, including small fragments as well as DNA that is larger than the targeted transgene. CGE provides a good insight in the filling of rAAVs, but the workflow is tedious and the method is not applicable for the determination of DNA titer, since a procedure for the absolute quantification (e.g., calibration) is not yet established. For estimating the genome titer, we propose a simplified capillary zone electrophoresis approach with minimal sample preparation and short separation times (<5 min/run). Our data show the benefits of using the four techniques combined, since each of them alone is prone to delivering ambiguous results. For this reason, a clear view of the rAAV interior can only be provided by using several analytical methods simultaneously.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Eletroforese Capilar , Ultracentrifugação
6.
Anal Bioanal Chem ; 414(1): 713-720, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34693472

RESUMO

The topology of DNA is a critical quality attribute for plasmid-based pharmaceuticals, making quantification of trace levels of plasmid topoisomers an important analytical priority. An automated and cost-effective method based on capillary gel electrophoresis laser-induced fluorescence detection is described. The method outlined in this report is significant because it is easily implemented by any laboratory for which routine analyses of plasmid topology are critical for the development of new plasmid-based therapies as well as for quality control of gene therapies utilizing supercoiled DNA. Detection of topoisomers was achieved by incorporating ethidium bromide in the separation medium. The detector response was improved by 3 orders of magnitude by utilizing a 605-nm optical filter with a 15-nm bandwidth. Separations of linear, open circle, supercoiled, and multimer DNA plasmids ranging from 4.2 to 10.5 kbp were accomplished in under 6 min using an unmodified fused silica capillary (50-µm internal diameter). The background electrolyte was comprised of 0.5% gel, which was hydroxypropylmethyl cellulose, 1 mM ethylenediaminetetraacetic acid, and 50 mM N-(2-acetamido)-2-aminoethanesulfonic acid (pH of 6.25). The separations, which balanced the bulk electroosmotic flow, the electrophoretic mobility of the DNA, and gel sieving were dependent upon the pH of the electrolyte and the gel concentration. Reproducibility was dependent upon the procedure used to prepare the gel as well as other factors including the ethidium bromide concentration and capillary conditioning. A single unmodified capillary operated for more than 150 runs had an across-day migration time precision of 1% relative standard deviation and percent area precision of 10% relative standard deviation.


Assuntos
Capilares , Dióxido de Silício , Capilares/química , DNA/genética , Eletroforese Capilar/métodos , Lasers , Reprodutibilidade dos Testes
7.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613616

RESUMO

The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Oligonucleotídeos/química , DNA , DNA de Cadeia Simples
8.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500281

RESUMO

Protein therapeutics have recently gained high importance in general health care along with applied clinical research. Therefore, it is important to understand the structure-function relationship of these new generation drugs. Asparagine-bound carbohydrates represent an important critical quality attribute of therapeutic glycoproteins, reportedly impacting the efficacy, immunogenicity, clearance rate, stability, solubility, pharmacokinetics and mode of action of the product. In most instances, these linked N-glycans are analyzed in their unconjugated form after endoglycosidase-mediated release, e.g., PNGase F-mediated liberation. In this paper, first, N-glycan release kinetics were evaluated using our previously reported in-house produced 6His-PNGase F enzyme. The resulting deglycosylation products were quantified by sodium dodecyl sulfate capillary gel electrophoresis to determine the optimal digestion time. Next, the effect of sample glucose content was investigated as a potential endoglycosidase activity modifier. A comparative Michaelis-Menten kinetics study was performed between the 6His-PNGase F and a frequently employed commercial PNGase F product with and without the presence of glucose in the digestion reaction mixture. It was found that 1 mg/mL glucose in the sample activated the 6His-PNGase F enzyme, while did not affect the release efficiency of the commercial PNGase F. Capillary isoelectric focusing revealed subtle charge heterogeneity differences between the two endoglycosidases, manifested by the lack of extra acidic charge variants in the cIEF trace of the 6His-PNGase F enzyme, which might have possibly influenced the glucose-mediated enzyme activity differences.


Assuntos
Glucose , Polissacarídeos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Polissacarídeos/metabolismo , Eletroforese Capilar/métodos , Glicoproteínas/metabolismo , Glicosídeo Hidrolases
9.
Electrophoresis ; 42(24): 2615-2618, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33165939

RESUMO

The association of immunoglobulin G (IgG) glycosylation changes with various human diseases and physiological conditions is well established. Since the mechanistical explanation of the regulation of IgG glycosylation and its functional role in these various states is still missing, the eyes of the biomedical community are now turned towards animal models, which enable intervention studies necessary for conclusions on causality. Mice are recognized and used as a good experimental model for human IgG glycosylation. However, smaller blood volumes, low IgG concentrations at young ages (which are most often used in mice experiments) and multiple sampling protocols during the course of longitudinal studies would profit from a robust workflow for mouse IgG glycome analysis from minute amounts of starting material, collected through a simple sampling procedure. For this purpose, we have developed a protocol for analysis of total N-glycans of IgG isolated from mouse dried blood spots (DBS), which we report here. We show that mouse DBS are a good source of material for IgG N-glycan analysis by multiplexed capillary gel electrophoresis with laser-induced fluorescence (xCGE-LIF).


Assuntos
Imunoglobulina G , Animais , Teste em Amostras de Sangue Seco , Eletroforese Capilar , Glicosilação , Imunoglobulina G/sangue , Camundongos , Polissacarídeos/química
10.
Anal Bioanal Chem ; 413(6): 1595-1603, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33558961

RESUMO

Industrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2'-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2'- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control.


Assuntos
Suplementos Nutricionais/análise , Eletroforese Capilar/métodos , Aditivos Alimentares/análise , Análise de Alimentos/métodos , Leite Humano/metabolismo , Oligossacarídeos/análise , Ácidos Bóricos/química , Carboidratos/química , Fermentação , Glicosilação , Humanos , Hidrodinâmica , Oligossacarídeos/química , Reprodutibilidade dos Testes
11.
Electrophoresis ; 41(13-14): 1245-1252, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297333

RESUMO

In the biopharmaceutical industry, CE-SDS assesses the purity, heterogeneity, and stability of therapeutic proteins. However, for mAb-1 and mAb-2, typical CE-SDS under reducing conditions produced atypical protein peak profiles, which led to biased purity results, thus were not acceptable for biologics manufacturing. This bias was caused by the formation of method-induced higher molecular weight artifacts, the levels of which correlated with protein concentration. Here we show that adding sodium tetradecyl and hexadecyl sulfates to the sample and the sieving gel buffer solutions was required to prevent formation of aggregate artifacts and to maintain detergent:protein uniformity, suggesting their importance during the sample preparation steps of heat denaturation and subsequent cooling as well as during capillary migration. For these proteins, we show that this uniformity was likely due to the ability of these detergents to bind proteins with markedly higher affinities compared to SDS. "CE-SCX S" methods (where CE-SCX S is CGE using detergent composed of a sodium sulfate head group and a hydrocarbon tail, with "CX " representing various tail lengths), were developed with a sodium tetradecyl sulfate sample buffer and a sodium hexadecyl sulfate containing sieving gel buffer that minimized artifacts and provided robust characterization and release results for mAb-1 and mAb-2.


Assuntos
Artefatos , Eletroforese Capilar/métodos , Proteínas/análise , Proteínas/química , Tetradecilsulfato de Sódio/química , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Detergentes/química , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Agregados Proteicos
12.
Electrophoresis ; 41(16-17): 1400-1404, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32462661

RESUMO

In this study, we investigated a combination of nonaqueous CE with capillary gel electrophoresis to achieve highly efficient analysis of metal nanoclusters. In the nonaqueous capillary gel electrophoresis (NACGE), PVA and hydroxypropyl methylcellulose were dissolved in DMSO. In addition, to enhance the entanglement of the polymer chains, Li+ ions were also added. By employing the PVA-DMSO-Li+ solution, we studied the effects of the molecular weight, the degree of hydrolysis, and the concentration of the polymers and Li+ on the separation. As a result, good separations of standard mononuclear metal complexes and tetrairon nanoclusters were achieved by NACGE.


Assuntos
Dimetil Sulfóxido/química , Eletroforese Capilar/métodos , Lítio/química , Nanoestruturas/análise , Hidrólise , Derivados da Hipromelose , Metais/química , Nanoestruturas/química , Álcool de Polivinil
13.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557948

RESUMO

Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.


Assuntos
Leite Humano/química , Oligossacarídeos/química , Isótopos de Carbono/química , Catálise , Glicosiltransferases/química , Humanos , Isótopos de Nitrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nucleotídeos de Uracila/química
14.
Electrophoresis ; 39(2): 311-325, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949023

RESUMO

Over the last decade, capillary electrophoresis gained tremendous importance, because it became an indispensible tool for the quality control of biologics, e.g. therapeutic antibodies. Consequently, there has been a continuous development within the CE market. Microchip techniques have been established in the last years. Further trends are complete solutions for specific applications by the usage of reagent kits. Step by step instructions and facilitated handling of the instruments are becoming more common. This work focuses on the sized-based protein analysis with CE-SDS. The instruments CE 7100 by Agilent Technologies, LabChip® GXII Touch HT by PerkinElmer, Maurice S. by Protein Simple and PrinCE NextI870 by Prince Technologies have been evaluated, mainly analyzing protein mixtures of different molecular weights in long series. Published data of the PA 800 plus by SCIEX are also included in the tabled results. Precision, reliability, flexibility, and speed have been identified as the most important performance parameters, others such as resolution, sensitivity, linearity, ease of use and sustainability have also been considered. All tested instruments have shown an excellent performance. Depending on application and necessities, each user can find the most appropriate one.


Assuntos
Eletroforese Capilar , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Eletroforese Capilar/normas
15.
Electrophoresis ; 38(3-4): 521-524, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27862039

RESUMO

Acupuncture sample injection is a simple method to deliver well-defined nanoliter-scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost-effective acupuncture sample injection method can be used for PDMS microchip-based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA-HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.


Assuntos
Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Modelos Teóricos , Agulhas , Terapia por Acupuntura , Bacteriófago phi X 174/genética , DNA/análise , DNA/genética , DNA/isolamento & purificação , Vidro
16.
Electrophoresis ; 38(20): 2610-2621, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28842921

RESUMO

In this paper, we describe development of a high-throughput, highly sensitive method based on Lab Chip CGE-SDS platform for purity determination and characterization of virus-like particle (VLP) vaccines. A capillary gel electrophoresis approach requiring about 41 s per sample for analysis and demonstrating sensitivity to protein initial concentrations as low as 20 µg/mL, this method has been used previously to evaluate monoclonal antibodies, but this application for lot release assay of VLPs using this platform is unique. The method was qualified and shown to be accurate for the quantitation of VLP purity. Assay repeatability was confirmed to be less than 2% relative standard deviation of the mean (% RSD) with interday precision less than 2% RSD. The assay can evaluate purified VLPs in a concentration range of 20-249 µg/mL for VEE and 20-250 µg/mL for EEE and WEE VLPs.


Assuntos
Eletroforese Capilar/métodos , Vírus da Encefalite Equina do Leste/isolamento & purificação , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Vírus da Encefalite Equina do Oeste/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Fluorescência , Corantes Fluorescentes/química , Humanos , Sensibilidade e Especificidade , Vacinas de Partículas Semelhantes a Vírus/química
17.
Electrophoresis ; 37(17-18): 2313-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27377286

RESUMO

The WFS1 gene is one of the thoroughly investigated targets in diabetes research, variants of the gene were suggested to be the genetic components of the common forms (type 1 and type 2) of diabetes. Our project focused on the analysis of polymorphisms (rs4689388, rs148797429, rs4273545) localized in the WFS1 promoter region. Although submarine gel electrophoresis based approaches were also employed in the genetic tests, it was demonstrated that multicapillary electrophoresis offers a state of the art approach for reliable high-throughput SNP and VNTR analysis. Association studies were carried out in a case-control setup. Luciferase reporter assay was employed to test the effect of the investigated loci on the activity of gene expression in vitro. Significant association could be demonstrated between all three polymorphisms and type 2 diabetes in both allele- and genotype-wise settings even using Bonferroni correction. It is notable; however, that the three loci were in strong linkage disequilibrium, thus the observed associations cannot be considered as separate effects. Molecular analyses showed that the rs4273545 GT SNP played a role in the regulation of transcription in vitro. However, this effect took place only in the presence of the region including the rs148797429 site, although this latter locus did not have its own impact on the regulation of gene expression. The paper provides genotyping protocols readily applicable in any multiplex SNP and VNTR analyses, moreover confirms and extends previous results about the role of WFS1 polymorphisms in the genetic risk of diabetes mellitus.


Assuntos
Eletroforese Capilar/métodos , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Eletroforese em Gel de Ágar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Regiões Promotoras Genéticas
18.
Electrophoresis ; 37(22): 2913-2921, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27570211

RESUMO

3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) is a sensitive fluorogenic dye, used for derivatization of proteins for SDS-CGE with LIF detection (SDS-CGE-LIF) at silver staining sensitivity (ng/mL). FQ labels proteins at primary amines, found at lysines and N-termini, which vary in number and accessibility for different proteins. This work investigates the accuracy of estimation of protein concentration with SDS-CGE-LIF in real biological samples, where a different protein must be used as a standard. Sixteen purified proteins varying in molecular weight, structure, and sequence were labeled with FQ at constant mass concentration applying a commonly used procedure for SDS-CGE-LIF. The fluorescence of these proteins was measured using a spectrofluorometer and found to vary with a RSD of 36%. This compares favorably with other less sensitive methods for estimation of protein concentration such as SDS-CGE-UV and SDS-PAGE-Coomassie and is vastly superior to the equivalently sensitive silver stain. Investigation into the number of labels bound with UHPLC-ESI-QTOF-MS revealed large variations in the labeling efficiency (percentage of labels to the number of labeling sites given by the sequence) for different proteins (from 3 to 30%). This explains the observation that fluorescence per mole of protein was not proportional to the number of lysines in the sequence.


Assuntos
Eletroforese Capilar/métodos , Corantes Fluorescentes/química , Furanos/química , Proteínas/análise , Quinolinas/química , Dodecilsulfato de Sódio/química , Eletroforese em Gel de Poliacrilamida/métodos , Modelos Lineares , Proteínas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
J Sep Sci ; 39(16): 3230-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27307099

RESUMO

A voltage-programming-based capillary gel electrophoresis method with a laser-induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin-converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin-converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin-converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage-programming capillary gel electrophoresis method with laser-induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease-related specific DNA molecules.


Assuntos
Análise Mutacional de DNA/métodos , Eletroforese Capilar/métodos , Peptidil Dipeptidase A/genética , Polimorfismo Genético , Análise Mutacional de DNA/instrumentação , Eletroforese Capilar/instrumentação , Humanos , Mutação INDEL , Peptidil Dipeptidase A/química , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
20.
J Sci Food Agric ; 96(5): 1659-65, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25996551

RESUMO

BACKGROUND: The potential presence of undeclared animal by-products in pet foods is not subject to routine examination. Previously published methods for species-based identification of animal by-products have not been used routinely owing to inconsistent results. The present study evaluated the utility of several approaches for accurate identification of animal by-products in 11 commercial brands of canine canned foods. RESULTS: Canine canned foods from several countries were analysed by ELISA, PCR-RFLP coupled with slab-gel electrophoresis (SGE) and capillary gel electrophoresis (CGE) to test for evidence of by-products derived from cattle, chicken, sheep or pig. While CGE-based analysis detected all (24) animal-derived by-products that were reported for the 11 test samples, SGE and ELISA detected only 22/24 (92%) and 14/24 (58%) of labelled by-products, respectively. In addition, undeclared animal by-products were found using all three analytical approaches with CGE detecting more positives (19) than SGE (17) or ELISA (5). CONCLUSION: Significant disparities were evident between the labelled contents and the detected content of animal by-products. CGE-based testing for PCR products appears to provide greater sensitivity and accuracy than either SGE or ELISA-based methods. As testing of commercial products becomes more reliable and mainstream, manufacturers will need to develop more thorough and accurate labelling protocols.


Assuntos
Ração Animal/análise , Cães , Eletroforese/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Reação em Cadeia da Polimerase/veterinária , Polimorfismo de Fragmento de Restrição , Animais , Eletroforese/métodos , Reação em Cadeia da Polimerase/métodos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA