Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 8(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096725

RESUMO

Recently, specific dry-cured hams have started to be produced in San Daniele and Parma areas. The ingredients are similar to protected denomination of origin (PDO) produced in San Daniele or Parma areas, and include pork leg, coming from pigs bred in the Italian peninsula, salt and spices. However, these specific new products cannot be marked as a PDO, either San Daniele or Parma dry cured ham, because they are seasoned for 6 months, and the mark PDO is given only to products seasoned over 13 months. Consequently, these products are called short-seasoned dry-cured ham (SSDCH) and are not branded PDO. During their seasoning period, particularly from the first drying until the end of the seasoning period, many molds, including Eurotium spp. and Penicillium spp., can grow on the surface and work together with other molds and tissue enzymes to produce a unique aroma. Both of these strains typically predominate over other molds. However, molds producing ochratoxins, such as Aspergillus ochraceus and Penicillium nordicum, can simultaneously grow and produce ochratoxin A (OTA). Consequently, these dry-cured hams may represent a potential health risk for consumers. Recently, Aspergillus westerdijkiae has been isolated from SSDCHs, which could represent a potential problem for consumers. Therefore, the aim of this study was to inhibit A. westerdijkiae using Debaryomyces hansenii or Lactobacillus buchneri or a mix of both microorganisms. Six D. hansenii and six L. buchneri strains were tested in vitro for their ability to inhibit A. westerdijkiae. The strains D. hansenii (DIAL)1 and L. buchneri (Lb)4 demonstrated the highest inhibitory activity and were selected for in situ tests. The strains were inoculated or co-inoculated on fresh pork legs for SSDCH production with OTA-producing A. westerdijkiae prior to the first drying and seasoning. At the end of seasoning (six months), OTA was not detected in the SSDCH treated with both microorganisms and their combination. Because both strains did not adversely affect the SSDCH odor or flavor, the combination of these strains are proposed for use as starters to inhibit OTA-producing A. westerdijkiae.

2.
Meat Sci ; 164: 108103, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32145603

RESUMO

The reduction of ingoing amounts of nitrate and nitrite in dry fermented sausages was studied together with the impact of Debaryomyces hansenii inoculation on aroma generation. Three different formulations of sausages were manufactured: control (C), reduced in nitrate and nitrite ingoing amounts (R) and reduced R inoculated with D. hansenii (RY). Changes in physicochemical and microbiological parameters, volatile compounds and aroma were investigated at different drying times. Nitrite/nitrate reduction did not seem to affect microbial growth but affected their metabolic activity. Moreover, nitrite/nitrate reduction decreased lipid oxidation and generation of derived volatile compounds. Yeast inoculation limited lipid oxidation and prevented nitrite oxidation. Sausage aroma profile was positively affected by D. hansenii inoculation which contributed to the generation of potent aroma compounds like ethyl ester compounds and 3-methylbutanal. Long drying time impacted sausage aroma profile as well as yeast metabolism. Yeast inoculation counteracted the negative influence of nitrite/nitrate reduction due to its antioxidant capacity, aroma generation and hindered nitrite oxidation.


Assuntos
Debaryomyces , Produtos da Carne/análise , Odorantes , Animais , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Nitratos/análise , Nitritos/análise , Suínos , Compostos Orgânicos Voláteis/análise
3.
Int J Biol Macromol ; 119: 1077-1082, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30031822

RESUMO

Nowadays, the biological control of various yeast and mold pathogens that cause diseases in humans, animals, and plants is an increasing of interest. The discovery of novel agents allows prevention of infectious diseases and post-harvest losses reported every year. In the study, we aimed to investigate the production, purification, and characterization as well as in vivo biocontrol efficiency of killer toxins produced by Debaryomyces hansenii strains TEM8 and TEM17. The molecular mass of the killer toxins was 31.5 kDa and they showed high stability at pHs between 2.5 and 5.5 and up to 37 °C. Their internal amino acid sequences matched the DEHA2G18766g (CAG90862.1) from D. hansenii CBS767, which is similar to Saccharomyces cerevisiae YGR282C BGL2 endo-beta-1,3-glucanase. The yeasts and their purified killer toxins significantly inhibited the growth of plant pathogenic fungi Alternaria brassicicola, Alternaria citri, Aspergillus niger and Rhizopus stolonifer in fruits. The findings of this paper have recommended these yeast strains and their toxins as effective biocontrol agents against fungi that cause post-harvest diseases.


Assuntos
Ascomicetos/química , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Micotoxinas/química , Micotoxinas/farmacologia , Sequência de Aminoácidos , Agentes de Controle Biológico/isolamento & purificação , Ativação Enzimática , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Micotoxinas/isolamento & purificação , Proteólise , Temperatura
4.
Int J Food Microbiol ; 268: 73-80, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335227

RESUMO

The environmental conditions reached during the ripening of dry-cured meat products favour the proliferation of moulds on their surface. Some of these moulds are hazardous to consumers because of their ability to produce ochratoxin A (OTA). Biocontrol using Debaryomyces hansenii could be a suitable strategy to prevent the growth of ochratoxigenic moulds and OTA accumulation in dry-cured meat products. The aim of this work was to evaluate the ability of two strains of D. hansenii to control the growth and OTA production of Penicillium verrucosum in a meat model under water activities (aw) values commonly reached during the dry-cured meat product ripening. The presence of D. hansenii strains triggered a lengthening of the lag phase and a decrease of the growth rate of P. verrucosum in meat-based media at 0.97 and 0.92 aw. Both D. hansenii strains significantly reduced OTA production (between 85.16 and 92.63%) by P. verrucosum in the meat-based medium at 0.92 aw. Neither absorption nor detoxification of OTA by D. hansenii strains seems to be involved. However, a repression of the expression of the non-ribosomal peptide synthetase (otanpsPN) gene linked to the OTA biosynthetic pathway was observed in the presence of D. hansenii. To confirm the protective role of D. hansenii strains, they were inoculated together with P. verrucosum Pv45 in dry-fermented sausage and dry-cured ham slices. Although P. verrucosum Pv45 counts were not affected by the presence of D. hansenii in both meat matrices, a reduction of OTA amount was observed. Therefore, the effect of D. hansenii strains on OTA accumulation should be attributed to a reduction at transcriptional level. Consequently, native D. hansenii can be useful as biocontrol agent in dry-cured meat products for preventing the hazard associated with the presence of OTA.


Assuntos
Agentes de Controle Biológico/metabolismo , Debaryomyces/metabolismo , Produtos da Carne/análise , Ocratoxinas/biossíntese , Penicillium/metabolismo , Animais , Fermentação , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Penicillium/crescimento & desenvolvimento , Peptídeo Sintases/metabolismo , Suínos , Leveduras/metabolismo
5.
Meat Sci ; 123: 1-7, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27579788

RESUMO

Yeast inoculation of dry fermented sausages manufactured with entire male fat was evaluated as a strategy to improve sausage quality. Four different formulations with entire male/gilt back fat and inoculated/non-inoculated with Debaryomyces hansenii were manufactured. The use of entire male back fat produced the highest weight losses, hardness and chewiness in dry sausages. Consumers clearly distinguished samples according to drying time and D. hansenii inoculation while the use of entire/gilt back fat was not highly perceived. The presence of androstenone and skatole was close to their sensory thresholds. Androstenone was not degraded during the process but skatole was affected by yeast inoculation. D. hansenii growth on the surface regulated water release during ripening, reduced hardness and chewiness in entire male sausages and resulted with similar texture to gilt sausages. Yeast inoculation inhibited lipid oxidation providing fruity odours and less oxidized fatty sausages in the sensory analysis. The effectiveness of yeast to mask boar taint was demonstrated by sensory analysis.


Assuntos
Tecido Adiposo/química , Produtos da Carne/análise , Saccharomycetales , Leveduras , Adulto , Androsterona/análise , Cor , Comportamento do Consumidor , Dessecação , Gorduras na Dieta/análise , Feminino , Microbiologia de Alimentos , Qualidade dos Alimentos , Humanos , Lactobacillus , Masculino , Pessoa de Meia-Idade , Escatol/química , Olfato , Cloreto de Sódio na Dieta/análise , Staphylococcus , Paladar , Substâncias Reativas com Ácido Tiobarbitúrico/análise
6.
Int J Food Microbiol ; 212: 16-24, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25765533

RESUMO

Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages.


Assuntos
Fermentação , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Produtos da Carne/normas , Leveduras/fisiologia , Animais , Biodiversidade , Reatores Biológicos , Meios de Cultura , Ésteres/análise , Produtos da Carne/análise , Olfato , Suínos , Leveduras/química , Leveduras/genética , Leveduras/isolamento & purificação
7.
Meat Sci ; 96(4): 1469-77, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423452

RESUMO

Debaryomyces hansenii strains, M4 and P2, isolated from natural fermented sausages were inoculated in slow fermented sausages to study their effect on processing parameters, microbial population, volatile compound and sensory characteristics. The inoculation of D. hansenii strains, M4 and P2, did not affect the ripening process as no differences in pH and Aw were detected. The dominance of the inoculated yeast strains along the process was followed by RAPDs of M13 minisatellite. The inoculated yeasts, P2 and M4, were recovered at the end of the ripening process although P2 appeared in higher counts than M4. The sausages inoculated with P2 resulted in a decrease in lipid oxidation values (TBARS) and a reduction of lipid-oxidation derived aldehydes in addition to a highest acid compound abundance. M4 inoculated sausages resulted in highest sulphur containing compound abundance. However, no differences in consumer acceptance were detected. Moreover, both yeast strains were responsible for the generation of ethyl methyl-branched ester compounds in the dry-cured sausages.


Assuntos
Comportamento do Consumidor , Fermentação , Microbiologia de Alimentos , Produtos da Carne/análise , Saccharomycetales , Compostos Orgânicos Voláteis/análise , Ácidos/metabolismo , Aldeídos/metabolismo , Dessecação , Ésteres/metabolismo , Manipulação de Alimentos , Humanos , Peroxidação de Lipídeos , Produtos da Carne/microbiologia , Produtos da Carne/normas , Saccharomycetales/classificação , Especificidade da Espécie , Compostos de Enxofre/metabolismo , Leveduras/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA