Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Anal Bioanal Chem ; 414(3): 1359-1373, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839383

RESUMO

A sensitive biosensor capable of detecting trace concentrations of several cancer biomarkers in clinical samples is critical for early detection of cancer because different cancer biomarkers may be expressed at different stages of cancer. Previous multiplex studies using microarrays or color-coded beads had limited multiplex detection in a single well, and difficulty in optimizing and unifying the incubation parameters for all tests made in different wells had posed challenges to small sample size and lengthened assay time. Herein, we proposed a novel approach to achieve multiplex analysis on a single three-dimensional porous calcium alginate bead. Because of the high surface area to volume ratio of the calcium alginate immuno-bead, the sensitivity and linear dynamic range of the as-proposed multiplex analysis method are significantly improved. Based on the direct sandwich immunoassay principle, dual-capturing antibodies were encapsulated into a single 3D porous calcium alginate bead as a proof-of-concept for multiplexity detection of serum-HER2 and serum-CA125 breast cancer biomarkers. High sensitivity was attained, with LODs of 0.004 ng mL-1 for serum HER2, and 0.005 U mL-1 for serum CA125, both of which are below the clinical cutoff values, enabling for early breast cancer diagnosis. Stability tests revealed that the 3D immuno-beads were stable at 4 °C and room temperature (25 °C) for at least 14 days. Most importantly, the results obtained using the developed system were in good agreement with those obtained using standard methods while analyzing real clinical samples. In addition, the analysis required only approximately 30 min, which was much less time than typical ELISA techniques. When endogenous interferences were introduced, no cross-reactivity was observed. We anticipate this approach to be potentially used in the multiplex assays and biosensors.


Assuntos
Alginatos/química , Neoplasias da Mama/sangue , Antígeno Ca-125/sangue , Proteínas de Membrana/sangue , Receptor ErbB-2/sangue , Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos , Feminino , Fluorescência , Humanos , Imunoensaio/métodos , Limite de Detecção , Porosidade
2.
Biochem Biophys Res Commun ; 584: 15-18, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34753063

RESUMO

Identifying reliable biomarkers and ultra-sensitive techniques are crucial for the early detection of neurodegenerative disorders (NDDs) to improve the clinical diagnosis and development of effective disease-modifying treatments. Here, we discussed recent technological advancements that enabled scientists to monitor brain health by detecting biological molecules even at lower levels. These technologies enabled the detection of neurological biomarkers in blood, revolutionizing the diagnosis and prognosis of NDDs. Moreover, it provided a better understanding of disease pathology's long-term effects, resulting in fewer invasive tests, early diagnosis, faster drug development, and possibly more effective therapies as possible outcomes.


Assuntos
Biomarcadores/metabolismo , Diagnóstico Precoce , Imunoensaio/métodos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Sensibilidade e Especificidade , Ubiquitina-Proteína Ligases/metabolismo
3.
Anal Bioanal Chem ; 410(1): 223-233, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29085985

RESUMO

There is an urgent need for the rapid and simultaneous detection of multiple analytes present in a sample matrix. Here, a multiplex immunochromatographic test (multi-ICT) was developed that successfully allowed for the rapid and simultaneous detection of four major nitrofuran metabolites, i.e., 3-amino-2-oxazolidinone (AOZ), semicarbazide (SEM), 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ), and 1-aminohydantoin (AHD), in fish samples. Four different antigens were separately immobilized in four test lines on a nitrocellulose membrane. Goat anti-mouse immunoglobulin (IgG) was used as a control. Sensitive and specific monoclonal antibodies (mAbs) that recognize the corresponding antigens were selected for the assay, and no cross-reactivity between the antibodies in the detection assay was observed. The free analytes in samples or standards were pre-incubated with freeze-dried mAb-gold conjugates to improve the sensitivity of the detection assay. The multi-ICT detection was accomplished in less than 15 min by the naked eye. The cutoff values for the strip test were 0.5 ng/mL for AOZ and 0.75 ng/mL for AHD, SEM, and AMOZ, which were all below the maximum residue levels set by the European Union and China. A high degree of consistency was observed between the multi-ICT method and commercially available enzyme-linked immunosorbent assay (ELISA) kits using spiked, incurred, and "blind" fish samples, indicating the accuracy, reproducibility, and reliability of the novel test strip. This newly developed multi-ICT strip assay is suitable for the rapid and high-throughput screening of four nitrofuran metabolites in fish samples on-site, with no treatment or devices required. Graphical abstract A multiplex immunochromatographic test (multi-ICT) was developed that successfully allowed for the rapid and simultaneous detection of four major nitrofuran metabolites (AOZ, SEM, AMOZ, and AHD) in fish samples.


Assuntos
Cromatografia de Afinidade/métodos , Peixes/metabolismo , Contaminação de Alimentos/análise , Ouro/química , Nanopartículas Metálicas/química , Nitrofuranos/análise , Animais , Anticorpos Monoclonais/química , Imunoconjugados/química , Limite de Detecção , Nitrofuranos/metabolismo , Fitas Reagentes/análise , Reprodutibilidade dos Testes
4.
Proteomics ; 16(4): 674-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26604074

RESUMO

Secreted cytokines and growth factors play a key role in the modulation of stem cell proliferation, differentiation and survival. To investigate the interplay between the changes in their expression levels, we used the newly characterized human amniotic fluid derived-mesenchymal progenitor MePR-2B cell line differentiated to a neuro-glial phenotype and exploited the very high sensitivity and versatility of magnetic beads-based immunoassays. We found that a sub-set of proteins, including the cytokines IL-6, TNFα, IL-15, IFNγ, IL-8, IL-1ra, MCP-1/CCL2, RANTES and the growth factor PDGFbb, underwent a significant down-regulation following neuro-glial differentiation, whereas the expression levels of IL-12 p70, IL-5, IL-7, bFGF, VEGF and G-CSF were increased. The role of MCP-1/CCL2, previously identified as a regulator of neural progenitor stem cell differentiation, has been further investigated at transcriptional level, revealing that both the chemokine and its receptor are co-expressed in MePR-2B cells and that are regulated upon differentiation, suggesting the presence of an autocrine and paracrine loop in differentiating cells. Moreover, we demonstrated that exogenous CCL2 is capable to affect neuro-glial differentiation in MePR-2B cells, thus providing novel evidences for the potential involvement of chemokine-mediated signaling in progenitor/stem cells differentiation processes and fate specification.


Assuntos
Líquido Amniótico/citologia , Quimiocina CCL2/análise , Citocinas/análise , Peptídeos e Proteínas de Sinalização Intercelular/análise , Células-Tronco Mesenquimais/citologia , Neuroglia/citologia , Diferenciação Celular , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neuroglia/metabolismo
5.
Proteomics ; 15(4): 714-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404527

RESUMO

Chemokines and cytokines, primarily known for their roles in the immune and inflammatory response, have also been identified as key components of the neurogenic niche where they are involved in the modulation of neural stem cell proliferation and differentiation. However, a complete understanding of the functional role played in neural differentiation and a comprehensive profiling of these secreted molecules are lacking. By exploiting the multiplexing capability of magnetic bead-based immunoassays, we have investigated the changes of the expression levels of a set of chemokines and cytokines released from the pluripotent neural cell line mes-c-myc A1 following its differentiation from a proliferating phenotype (A1P) toward a neural (A1D) phenotype. We found a subset of molecules exclusively released from A1P, whereas others were differentially detected in A1P and A1D conditioned media. Among them, we identified monocyte chemoattractant protein-1/chemokine ligand 2 (MCP-1/CCL2) as a proneurogenic factor able to affect neuronal differentiation of A1 cells as well as of neuroblasts from primary cultures and to induce the elongation and/or formation of neuritic processes. Altogether, data are suggestive of a main role played by the CCL2/CCR2 signaling pathway and in general of the network of secreted cytokines/chemokines in the differentiation of neural progenitor cells toward a neural fate.


Assuntos
Quimiocina CCL2/metabolismo , Imunoensaio/métodos , Neurogênese/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Animais , Linhagem Celular , Citocinas/análise , Citocinas/química , Citocinas/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Células-Tronco Neurais , Proteínas/análise , Proteínas/metabolismo , Proteoma/análise
6.
J Pharm Biomed Anal ; 243: 116096, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484638

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) lacks objective diagnostic markers. In clinical settings, reliance on subjective judgments can often lead to missed or misdiagnoses. Some biomarkers have been reported to be associated with ADHD, but using one biomarker alone is not enough. To address this, we developed a fluorescent immunoassay platform based on quantum dots (QDs) to detect assay capable of detecting and quantifying multiple biomarkers simultaneously. Specifically, we were able to the simultaneously detect brain-derived neurotrophic factor, tumor necrosis factor-alpha, interleukin-6 and ferritin using different emission spectra QDs. The QD-based multiplexed immunoassay displayed a low detection of limit in the range of 0.021-0.068 pg/mL, and the assay showed satisfactory reproducibility and precision. We then quantified all four targets from ADHD patient's plasma samples, where it showed remarkable consistency with clinical test for ADHD diagnosis. This methodological comparison supports the diagnosis of ADHD using our assay.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Técnicas Biossensoriais , Pontos Quânticos , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Reprodutibilidade dos Testes , Imunoensaio , Biomarcadores
7.
Methods Mol Biol ; 2628: 505-533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781804

RESUMO

Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.


Assuntos
Anticorpos , Soro , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Soro/química , Peptídeos
8.
Biosens Bioelectron ; 215: 114557, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35843130

RESUMO

Digital microfluidics (DMF), facilitating independent manipulation of microliter samples, provides an ideal platform for immunoassay detection; however, suffering limited multiplexity. To address the need, herein we described a digital microfluidics (DMF) platform that realizes spatial barcoding on the Teflon-coated indium tin oxide (ITO) glass side to fulfill highly multiplexed immunoassay (10+) with low-volume samples (∼4 µL) in parallel, representing the highest multiplexing recorded to date for DMF-actuated immunoassay. Planar-based spatial immobilization of multiple capture antibodies was realized on a Teflon-coated ITO glass side, which was then used as the top plate of the DMF device. Droplets containing analytes, secondary antibodies, and fluorescent signaling reporters with low volume, which were electrically manipulated by our DMF control system, were shuttled sequentially along the working electrodes to complete the immuno-reaction. Evaluation of platform performance with recombinant proteins showed excellent sensitivity and reproducibility. To test the feasibility of our platform in analyzing multiplex biomarkers of the immune response, we used lipopolysaccharide-stimulated macrophages as a model system for protein secretion dynamics studies. As a result, temporal profiling of pro-inflammatory cytokine secretion dynamics was obtained. The spatial barcoding strategy presented here is easy-to-operate to enable a more comprehensive evaluation of protein abundance from biological samples, paving the way for new opportunities to realize multiplexity-associated applications with the DMF platform.


Assuntos
Técnicas Biossensoriais , Microfluídica , Anticorpos , Imunoensaio , Politetrafluoretileno , Reprodutibilidade dos Testes
9.
Vaccines (Basel) ; 10(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36423058

RESUMO

Pneumonia accounts for over 20% of deaths worldwide in children aged 1 to 5 years, disproportionately affecting lower- and middle-income countries. Effective, highly multivalent pneumococcal vaccines are available to decrease disease burden, with numerous new vaccines currently under development to serve a variety of worldwide markets. However, pneumococcal conjugate vaccines are among the hardest biologics to manufacture and characterize due to their complexity and heterogeneity. Current characterization methods are often inherently singleplex, requiring separate tests for each serotype present. In addition, identity and quantity are often determined with separate methods. We developed the VaxArray pneumococcal assay for applications in identity, quantity, and stability testing of pneumococcal polysaccharide and pneumococcal conjugate vaccines. The VaxArray pneumococcal assay has a time to result of less than 30 min and is an off-the-shelf multiplexed, microarray-based immunoassay kit that can identify and simultaneously quantify 23 pneumococcal polysaccharide serotypes common to many on-market and in-development vaccines. Here, we highlight the potential of the assay for identity testing by showing high reactivity and serotype specificity to a wide variety of native polysaccharides, CRM197-conjugated polysaccharides, and drug product. The assay also has vaccine-relevant lower limits of quantification in the low-to-mid ng/mL range and can be used for accurate quantification even in adjuvanted vaccines. Excellent correlation to the anthrone assay is demonstrated, with VaxArray resulting in significantly improved precision over this antiquated chemical method.

10.
Vaccine X ; 9: 100113, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34622199

RESUMO

Measles-containing vaccines (MCV), specifically vaccines against measles and rubella (MR), are extremely effective and critical for the eradication of measles and rubella diseases. In developed countries, vaccination rates are high and vaccines are readily available, but continued high prevalence of both diseases in developing countries and surges in measles deaths in recent years have highlighted the need to expand vaccination efforts. To meet demand for additional vaccines at a globally affordable price, it is highly desirable to streamline vaccine production thereby reducing cost and speeding up time to delivery. MR vaccine characterization currently relies on the 50% cell culture infectious dose (CCID50) assay, an endpoint assay with low reproducibility that requires 10-14 days to complete. For streamlining bioprocess analysis and improving measurement precision relative to CCID50, we developed the VaxArray Measles and Rubella assay kit, which is based on a multiplexed microarray immunoassay with a 5-hour time to result. Here we demonstrate vaccine-relevant sensitivity ranging from 345 to 800 IFU/mL up to 100,000 IFU/mL (infectious units per mL) and specificity that allows simultaneous analysis in bivalent vaccine samples. The assay is sensitive to antigen stability and has minimal interference from common vaccine additives. The assay exhibits high reproducibility and repeatability, with 15% CV, much lower than the typical 0.3 log10 error (∼65%) observed for the CCID50 assay. The intact protein concentration measured by VaxArray is reasonably correlated to, but not equivalent to, CCID50 infectivity measurements for harvest samples. However, the measured protein concentration exhibits equivalency to CCID50 for more purified samples, including concentrated virus pools and monovalent bulks, making the assay a useful new tool for same-day analysis of vaccine samples for bioprocess development, optimization, and monitoring.

11.
Diagnostics (Basel) ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992891

RESUMO

The early detection of renal cell carcinoma (RCC) using tumor markers remains an attractive prospect for the potential to downstage the disease. To validate the scale-up clinical performance of potential tumor markers for RCC (as a single marker and as a composite tumor marker composed of nicotinamide N-methyltransferase (NNMT), L-Plastin (LCP1), and non-metastatic cells 1 protein (NM23A)), the scale-up assay was performed. Patients with RCC from multiple domestic institutes were included in the clinical evaluation for reassessment and improvement of the established triple markers of our product. For the diagnostic performance of the composite markers, the best-split cutoff points of each marker (147 pg/mL for NNMT, 1780 pg/mL for LCP1, and 520 pg/mL for NM23A) were installed. Serum levels of NNMT, LCP1, and NM23A were greatly increased in subjects with RCC (p < 0.0001). In 1042 blind sample tests with control individuals (n = 500) and patients with RCC (n = 542), the diagnostic sensitivity and specificity of the composite three-marker assay were 0.871 and 0.894, respectively, and the resulting AUC (Area under Curve) of ROC (Receiver Operating Characteristic) was 0.917. As a single marker, the diagnostic accuracies of NNMT, LCP1, and NM23A, as estimated by ROC, were 0.833, 0.844, and 0.601, respectively. The composite three-marker assay with NNMT, LCP1, and NM23A is a more improved novel serum marker assay for the early detection of RCC in cases of renal mass or unknown condition. The NNMT, LCP1, and NM23A triple marker assay could be a powerful diagnostic tumor marker assay to screen the early stage of RCC.

12.
ACS Sens ; 5(3): 798-806, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32046487

RESUMO

An automated, single microbead-arrayed µ-fluidic immunoassay (AMIA) device is innovatively devised in this study, which enables the highly sensitive and simultaneous detection of multiplex biomarkers with fully automatic operations. The AMIA platform not only achieves automated assay processing and multiplexed target detection by integrating single microbead manipulation, sample loading, multistep washing, and immunoreaction on a microfluidic chip but also confers high sensitivity due to the highly efficient signal enriching effect on a single microbead by the use of only a routine sandwich immunoreaction. As such, as low as the pg/mL level of multiplexed protein biomarkers can be simultaneously determined in a quite small volume of serum (∼20 µL is enough), which can well meet the clinical demand for disease screening and prognosis. What is more, the detection results of several clinically important biomarkers in clinical samples with the AMIA platform exhibit excellent consistency with those obtained by using a standard clinical test. Thus, in virtue of the excellent features in terms of high sensitivity, multiplexing capability, generality, and high degree of automation, the AMIA provides a practical and user-friendly platform for assaying different biomarkers in clinical diagnostics and point-of-care testing.


Assuntos
Antígeno Carcinoembrionário/análise , Dispositivos Lab-On-A-Chip , Antígeno Prostático Específico/análise , alfa-Fetoproteínas/análise , Anticorpos Monoclonais/imunologia , Biomarcadores/análise , Antígeno Carcinoembrionário/imunologia , Imunoensaio , Técnicas Analíticas Microfluídicas , Microesferas , Antígeno Prostático Específico/imunologia , alfa-Fetoproteínas/imunologia
13.
ACS Nano ; 14(1): 229-240, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31849225

RESUMO

Caused by the tick-borne spirochete Borrelia burgdorferi, Lyme disease (LD) is the most common vector-borne infectious disease in North America and Europe. Though timely diagnosis and treatment are effective in preventing disease progression, current tests are insensitive in early stage LD, with a sensitivity of <50%. Additionally, the serological testing currently recommended by the U.S. Center for Disease Control has high costs (>$400/test) and extended sample-to-answer timelines (>24 h). To address these challenges, we created a cost-effective and rapid point-of-care (POC) test for early-stage LD that assays for antibodies specific to seven Borrelia antigens and a synthetic peptide in a paper-based multiplexed vertical flow assay (xVFA). We trained a deep-learning-based diagnostic algorithm to select an optimal subset of antigen/peptide targets and then blindly tested our xVFA using human samples (N(+) = 42, N(-) = 54), achieving an area-under-the-curve (AUC), sensitivity, and specificity of 0.950, 90.5%, and 87.0%, respectively, outperforming previous LD POC tests. With batch-specific standardization and threshold tuning, the specificity of our blind-testing performance improved to 96.3%, with an AUC and sensitivity of 0.963 and 85.7%, respectively.


Assuntos
Imunoensaio , Doença de Lyme/diagnóstico , Aprendizado de Máquina , Papel , Testes Imediatos , Humanos , Doença de Lyme/sangue , Doença de Lyme/imunologia , Tamanho da Partícula , Propriedades de Superfície , Telemedicina
14.
Biosens Bioelectron ; 170: 112646, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33032199

RESUMO

The photothermal biosensing principle is of increasing interest for point-of-care detection, but has rarely been applied in portable analytical devices in a lab-on-a-chip format. Herein, a photothermally responsive poly (methyl methacrylate) (PMMA)/paper hybrid disk (PT-Disk) was developed as a novel photothermal immunoassay device with the integration of a clip-magazine-assembled photothermal biosensing strategy. The PT-Disk consisted of a dissociative thermoresponsive hydrogel-loaded clip unit where the sandwich-type immunoreaction with an iron oxide-to-Prussian blue nanoparticle (PB NP) conversion took place and a magazine bearer for the rotational clip assembly and visual signal outputs. Upon laser irradiation of the clip-magazine-assembled PT-Disk, on-chip photothermal effect of PB NPs triggered both dose-dependent temperature elevation and the subsequent release of dye solutions from the central clip unit to surrounding magazine-bearing paper channels as the result of phase transition of the hydrogels, realizing multiplexed thermal image- and distance-based visual quantitative signal outputs in combination with the preliminary colorimetric readout on the PT-Disk. Using the multiplexed tri-mode signal outputs, the PT-Disk can quantify prostate specific antigen with limits of detection of 1.4-2.8 ng mL-1. This is the first attempt to apply the photothermal biosensing principle in portable PMMA/paper-based analytical devices, which offers not only versatile on-chip visual quantitative signal outputs, but also the implementation of the photothermal biosensing principle in a lab-on-a-chip format.


Assuntos
Técnicas Biossensoriais , Colorimetria , Humanos , Imunoensaio , Dispositivos Lab-On-A-Chip , Masculino , Instrumentos Cirúrgicos
15.
ACS Nano ; 12(6): 5880-5887, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29756761

RESUMO

DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technology's Achilles' heel and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ("digital") regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about 3 orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10× objective lens. This approach does not require any chemical signal enhancement such as silver deposition and scans arrays with a throughput similar to commercial fluorescence scanners. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about 6 orders of magnitude directly from a single scan. As a proof-of-concept digital protein microarray assay, we demonstrated detection of hepatitis B virus surface antigen in buffer with a limit of detection of 3.2 pg/mL. More broadly, the technique's simplicity and high-throughput nature make digital microarrays a flexible platform technology with a wide range of potential applications in biomedical research and clinical diagnostics.

16.
J Matern Fetal Neonatal Med ; 31(19): 2555-2563, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28651466

RESUMO

OBJECTIVE: The primary aim of this study was to identify the association between the local inflammatory response in gingival crevicular fluid measured by the levels of multiple proteins and maternal and intra-amniotic inflammatory responses measured by maternal serum C-reactive protein (CRP) and amniotic fluid interleukin (IL)-6 concentrations, respectively, in women with preterm prelabor rupture of membranes (PPROM). METHODS: A prospective study was performed in which 78 women with singleton pregnancies complicated by PPROM between 24 + 0 and 36 + 6 weeks of gestation were included. Transabdominal amniocenteses were performed at the time of admission. A bedside assessment of amniotic fluid IL-6 was performed. Maternal serum CRP concentration was also measured at the time of admission. Gingival crevicular fluid was collected from the pocket of the selected tooth (the tooth with the deepest pocket) using standard sterile paper strips within 72 h after admission. Twenty-six proteins in the gingival crevicular fluid were assessed by multiplex the Meso-Scale technology. RESULTS: No correlations between the levels of proteins in the gingival crevicular fluid and maternal serum CRP and amniotic fluid IL-6 concentrations were found, except for a weak positive correlation between granulocyte macrophage colony-stimulating factor and CRP. CONCLUSIONS: The local inflammatory response in the gingival crevicular fluid is not related to the maternal and intra-amniotic inflammatory responses in women with PPROM.


Assuntos
Corioamnionite/metabolismo , Líquido do Sulco Gengival/metabolismo , Adulto , Líquido Amniótico/metabolismo , Proteína C-Reativa/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Gravidez , Estudos Prospectivos , Adulto Jovem
17.
Biosens Bioelectron ; 87: 908-914, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664410

RESUMO

A novel bifunctional antibody (BfAb) that could recognize methyl parathion and imidacloprid simultaneously was prepared by a hybrid hybridomas technique. Using the BfAb as the sole recognition reagent, a multiplexed immunochromatographic test strip based on a time-resolved chemiluminescence (CL) strategy was developed for quantitative detection of pesticide residues. Horseradish peroxidase (HRP) and alkaline phosphatase (ALP) were used as the CL probes to label the haptens of methyl parathion and imidacloprid, respectively. After the labeled haptens competed with methyl parathion and imidacloprid to bind with the BfAb immobilized on the test strip, the two CL reactions catalyzed by the enzymes were triggered simultaneously by coreactants injection. Due to the distinct CL kinetics characteristics of HRP and ALP, the signals for methyl parathion and imidacloprid detections were collected at 2.5s and 300s, respectively. The linear ranges for methyl parathion and imidacloprid were both 0.1-250ngmL-1, with detection limits of 0.058ngmL-1 (S/N=3). The whole assay process could be accomplished within 22min. The detection results for spiked traditional Chinese medicine samples demonstrated its application potential. The proposed method provided a low-cost, facile and rapid tool for multiplexed screening of pesticide residues using single antibody.


Assuntos
Anticorpos Biespecíficos/química , Cromatografia de Afinidade/instrumentação , Medicamentos de Ervas Chinesas/química , Imidazóis/análise , Medições Luminescentes/instrumentação , Nitrocompostos/análise , Resíduos de Praguicidas/análise , Técnicas Biossensoriais/instrumentação , Contaminação de Medicamentos , Desenho de Equipamento , Limite de Detecção , Luminescência , Neonicotinoides , Fitas Reagentes/análise
18.
J Agric Food Chem ; 64(24): 5117-27, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27177195

RESUMO

In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (ß-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Gossypium/química , Plantas Geneticamente Modificadas/química , Proteínas Recombinantes/análise , Fluorescência , Gossypium/genética , Plantas Geneticamente Modificadas/genética
19.
Anal Chim Acta ; 917: 79-84, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27026603

RESUMO

A novel multiplexed immunochromatographic assay (ICA) based on a time-resolved chemiluminescence (CL) strategy was developed for quantitative detection of ß-agonists, by utilizing ractopamine (RAC) and clenbuterol (CLE) as the models. Different from conventional multiplexed ICA methods which usually require two or more test lines, this strategy was developed for detection of two ß-agonists by using only one test line on the nitrocellulose membrane. In this study, horseradish peroxidase and alkaline phosphatase were used as the signal probes to label RAC antibody and CLE antibody, respectively. The two CL reactions with flash type and glow type kinetics characteristics were triggered simultaneously by injecting the coreactants, then the signals for RAC and CLE detections were recorded at 3 s and 300 s after coreactants injection, respectively. Owing to the utilization of CL detection, this protocol showed ideal sensitivity for quantitation. Under the optimal conditions, the detection limits for RAC and CLE were 0.17 ng mL(-1) and 0.067 ng mL(-1) (S/N = 3), respectively. The whole assay process can be accomplished within 20 min without complicated sample pretreatment. The proposed method was successfully applied for the detection of RAC and CLE in spiked swine urine. It opens up a new pathway for designing a low cost, time-efficiency and multiplexed strategy for rapid screening and field assay.


Assuntos
Agonistas Adrenérgicos beta/análise , Cromatografia de Afinidade/métodos , Clembuterol/análise , Fenetilaminas/análise , Fosfatase Alcalina/química , Peroxidase do Rábano Silvestre/química , Cinética , Medições Luminescentes
20.
ACS Sens ; 1(7): 941-948, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27478873

RESUMO

Immunomodulatory drugs-agents regulating the immune response-are commonly used for treating immune system disorders and minimizing graft versus host disease in persons receiving organ transplants. At the cellular level, immunosuppressant drugs are used to inhibit pro-inflammatory or tissue-damaging responses of cells. However, few studies have so far precisely characterized the cellular-level effect of immunomodulatory treatment. The primary challenge arises due to the rapid and transient nature of T-cell immune responses to such treatment. T-cell responses involve a highly interactive network of different types of cytokines, which makes precise monitoring of drug-modulated T-cell response difficult. Here, we present a nanoplasmonic biosensing approach to quantitatively characterize cytokine secretion behaviors of T cells with a fine time-resolution (every 10 min) that are altered by an immunosuppressive drug used in the treatment of T-cell-mediated diseases. With a microfluidic platform integrating antibody-conjugated gold nanorod (AuNR) arrays, the technique enables simultaneous multi-time-point measurements of pro-inflammatory (IL-2, IFN-γ, and TNF-α) and anti-inflammatory (IL-10) cytokines secreted by T cells. The integrated nanoplasmonic biosensors achieve precise measurements with low operating sample volume (1 µL), short assay time (∼30 min), heightened sensitivity (∼20-30 pg/mL), and negligible sensor crosstalk. Data obtained from the multicytokine secretion profiles with high practicality resulting from all of these sensing capabilities provide a comprehensive picture of the time-varying cellular functional state during pharmacologic immunosuppression. The capability to monitor cellular functional response demonstrated in this study has great potential to ultimately permit personalized immunomodulatory treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA