Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Biol Pharm Bull ; 47(2): 469-477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38383000

RESUMO

Polyethylene glycol (PEG)-modified (PEGylated) cationic liposomes are frequently used as delivery vehicles for small interfering RNA (siRNA)-based drugs because of their ability to encapsulate/complex with siRNA and prolong the circulation half-life in vivo. Nevertheless, we have reported that subsequent intravenous (IV) injections of siRNA complexed with PEGylated cationic liposomes (PLpx) induces the production of anti-PEG immunoglobulin M (IgM), which accelerates the blood clearance of subsequent doses of PLpx and other PEGylated products. In this study, it is interesting that splenectomy (removal of spleen) did not prevent anti-PEG IgM induction by IV injection of PLpx. This indicates that B cells other than the splenic version are involved in anti-PEG IgM production under these conditions. In vitro and in vivo studies have shown that peritoneal cells also secrete anti-PEG IgM in response to the administration of PLpx. Interleukin-6 (IL-6) is a glycoprotein that is secreted by peritoneal immune cells and has been detected in response to the in vivo administration of PLpx. These observations indicate that IV injection of PLpx stimulates the proliferation/differentiation of peritoneal PEG-specific B cells into plasma cells via IL-6 induction, which results in the production of anti-PEG IgM from the peritoneal cavity of mice. Our results suggest the mutual contribution of peritoneal B cells as a potent anti-PEG immune response against PLpx.


Assuntos
Lipossomos , Polietilenoglicóis , Camundongos , Animais , RNA Interferente Pequeno , Imunoglobulina M , Interleucina-6
2.
Xenobiotica ; : 1-23, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607350

RESUMO

RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterize the ADME properties of an AOC during development to optimize distribution to target tissues, to minimize the impact of biotransformation on exposure, and to characterize the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterization of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterization of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000202

RESUMO

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Assuntos
Cisplatino , Células Ciliadas Auditivas , Microbolhas , Muramidase , NADPH Oxidase 4 , Ototoxicidade , Espécies Reativas de Oxigênio , Cisplatino/farmacologia , Animais , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Camundongos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/genética , Muramidase/genética , RNA Interferente Pequeno/genética , Ondas Ultrassônicas , Técnicas de Silenciamento de Genes , Linhagem Celular
4.
Mol Biol Rep ; 50(7): 5837-5848, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231214

RESUMO

BACKGROUND: Rift Valley Fever Virus (RVFV) is an arbovirus, a zoonotic disease that resurfaces as a potential hazard beyond geographic boundaries. Fever that can proceed to encephalitis, retinitis, hemorrhagic fever, and death is the main manifestation observed in human infections. RVFV has no authorized medication. The RNA interference (RNAi) gene silencing pathway is extremely well conserved. By targeting specific genes, small interfering RNA (siRNA) can be used to suppress viral replication. The aim of this study was to design specific siRNAs against RVFV and evaluate their prophylactic and antiviral effects on the Vero cells. METHODS AND RESULTS: Various siRNAs were designed using different bioinformatics tools. Three unique candidates were tested against an Egyptian sheep cell culture-adapted strain BSL-2 that suppressed RVFV N mRNA expression. SiRNAs were transfected a day before RVFV infection (pre-transfection), and 1 h after the viral infection (post-transfection), and were evaluated to detect the silencing activity and gene expression decrease using real-time PCR and a TCID50 endpoint test. The degree of N protein expression was determined by western blot 48 h after viral infection. D2 which targets the (488-506 nucleotides), the middle region of RVFV N mRNA was the most effective siRNA at 30 nM concentration, it almost eliminates N mRNA expression when utilized as antiviral or preventive therapy. siRNAs had a stronger antiviral silencing impact when they were post-transfected into Vero cells. CONCLUSION: Pre and post-transfection of siRNAs significantly reduced RVFV titer in cell lines, offering novel and potentially effective anti-RVFV epidemics and epizootics therapy.


Assuntos
Antivirais , Vírus da Febre do Vale do Rift , Chlorocebus aethiops , Humanos , Animais , Ovinos , RNA Interferente Pequeno/genética , Antivirais/farmacologia , Vírus da Febre do Vale do Rift/genética , Células Vero , Interferência de RNA
5.
Chem Pharm Bull (Tokyo) ; 71(3): 250-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858531

RESUMO

Amphipathic peptides composed of cationic amino acids and hydrophobic amino acids have cell-penetrating ability and are often used as a delivery tool for membrane-impermeable compounds. Small interfering RNA (siRNAs) are one of the delivery targets for such cell-penetrating peptides (CPPs). Cationic CPPs can associate with anionic siRNAs by electrostatic interactions resulting in the formation of nano-sized complexes, which can deliver siRNAs intracellularly. CPPs containing unnatural amino acids offer promising tools to siRNA delivery. However, the detailed structure-activity relationship in siRNA delivery has been rarely studied. In the current study, we designed peptides containing dipropylglycine (Dpg) and explored the cellular uptake and cytotoxicity of peptide/siRNA complexes. The amphipathic structure of the peptides played a key role in complexation with siRNAs and intracellular siRNA delivery. In the amphipathic peptides, cellular uptake of siRNA increased with increasing peptide length, but cytotoxicity was reduced. A peptide containing four Dpg exhibited an effective gene-silencing effect with small amounts of peptides without cytotoxicity in medium containing serum. These findings will be helpful for the design of novel CPPs for siRNA delivery.


Assuntos
Peptídeos Penetradores de Células , Valina , RNA Interferente Pequeno , Aminoácidos
6.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203317

RESUMO

In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy. Their compatibility with chemical modifications enhances their binding affinity and resistance to degradation, elevating their effectiveness in targeted applications. Additionally, nucleic acids have found utility as self-assembling building blocks, leading to the creation of nanostructures whose high order underpins their enhanced biological stability and affects the cellular uptake efficiency. Furthermore, this review delves into the significant role of oligonucleotides (ODNs) as indispensable tools for biological studies and biomarker discovery. ODNs, short sequences of nucleic acids, have been instrumental in unraveling complex biological mechanisms. They serve as probes for studying gene expression, protein interactions, and cellular pathways, providing invaluable insights into fundamental biological processes. By examining the synergistic interplay between nucleic acids as powerful biomaterials and ODNs as indispensable tools for biological studies and biomarkers, this review highlights the transformative impact of these molecules on biomedical research. Their versatile applications not only deepen our understanding of biological systems but also are the driving force for innovation in diagnostics and therapeutics, ultimately advancing the field of biomedicine.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/uso terapêutico , Oligonucleotídeos/uso terapêutico , RNA , Materiais Biocompatíveis/uso terapêutico , Transporte Biológico
7.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838605

RESUMO

Therapeutic oligonucleotides, such as antisense oligonucleotide (ASO) and small interfering RNA (siRNA), are a new class of therapeutics rapidly growing in drug discovery and development. A sensitive and reliable method to quantify oligonucleotides in biological samples is critical to study their pharmacokinetic and pharmacodynamic properties. Hybridization LC-MS/MS was recently established as a highly sensitive and specific methodology for the quantification of single-stranded oligonucleotides, e.g., ASOs, in various biological matrices. However, there is no report of this methodology for the bioanalysis of double-stranded oligonucleotides (e.g., siRNA). In this work, we investigated hybridization LC-MS/MS methodology for the quantification of double-stranded oligonucleotides in biological samples using an siRNA compound, siRNA-01, as the test compound. The commonly used DNA capture probe and a new peptide nucleic acid (PNA) probe were compared for the hybridization extraction of siRNA-01 under different conditions. The PNA probe achieved better extraction recovery than the DNA probe, especially for high concentration samples, which may be due to its stronger hybridization affinity. The optimized hybridization method using the PNA probe was successfully qualified for the quantitation of siRNA-01 in monkey plasma, cerebrospinal fluid (CSF), and tissue homogenates over the range of 2.00-1000 ng/mL. This work is the first report of the hybridization LC-MS/MS methodology for the quantification of double-stranded oligonucleotides. The developed methodology will be applied to pharmacokinetic and toxicokinetic studies of siRNA-01. This novel methodology can also be used for the quantitative bioanalysis of other double-stranded oligonucleotides.


Assuntos
Ácidos Nucleicos Peptídicos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , RNA Interferente Pequeno , Espectrometria de Massas em Tandem/métodos , Hibridização de Ácido Nucleico/métodos , Oligonucleotídeos/química , Ácidos Nucleicos Peptídicos/química , Sondas de DNA
8.
J Intern Med ; 291(5): 593-610, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35067977

RESUMO

Acute hepatic porphyria (AHP) is a group of inherited metabolic disorders that affect hepatic heme biosynthesis. They are associated with attacks of neurovisceral manifestations that can be life threatening and constitute what is considered an acute porphyria attack. Until recently, the sole specific treatment for acute porphyria attacks consisted of the intravenous administration of hemin. Although attacks are often sporadic, some patients develop recurrent acute attacks, with devastating effects on quality of life. Liver transplantation has historically been the sole curative treatment option. The clinical manifestations of AHP are attributed to the accumulation of the heme precursor 5-aminolevulinic acid (ALA) and porphobilinogen (PBG). Advances in molecular engineering have provided new therapeutic possibilities for modifying the heme synthetic pathway. We reviewed the background and current status of AHP treatment using liver-directed small interfering RNA targeting ALAS1. The therapeutic aim was to normalize the levels of ALAS1, which is highly upregulated during acute porphyria attacks. Givosiran is now an approved drug for use in adults and adolescents aged 12 years and older. The results of clinical trials have shown that givosiran treatment leads to a rapid and sustained reduction of ALAS1 mRNA, decreased heme precursor levels, and a decreased rate of acute attacks compared with placebo. The clinical trials (phases I, II, and III) were all randomized and placebo controlled. Many patients enrolled in the initial clinical trials have continued treatment in open label extension and extended/compassionate-use programs in countries where givosiran is not yet commercially available.


Assuntos
Porfiria Aguda Intermitente , Acetilgalactosamina/análogos & derivados , Adolescente , Adulto , Heme/uso terapêutico , Humanos , Incidência , Sintase do Porfobilinogênio/deficiência , Porfiria Aguda Intermitente/terapia , Porfirias Hepáticas , Pirrolidinas , Qualidade de Vida , Terapêutica com RNAi
9.
Biol Pharm Bull ; 45(4): 497-507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370275

RESUMO

Genetic drugs have the potential to treat a variety of diseases. Recently, lipid nanoparticles (LNPs) have attracted much attention among drug delivery systems for genetic drugs. LNPs have been practically used in small interfering RNA (siRNA) drugs and mRNA vaccines. Although LNPs are generally prepared by mixing nucleic acids in acidic aqueous buffer and lipid excipients in alcohol (i.e., ethanol), it is not well understood which process parameters in the LNPs formation affect the physicochemical properties and the functionality of LNPs. In this study, we used siRNA-containing LNPs as a model, and evaluated the effect that aqueous solution parameters (buffering agent type, salt concentration, and pH) and mixing parameters (ratio, speed, and temperature) exert on the physicochemical properties and in vitro gene-knockdown activity of LNPs. Among such parameters, the type of buffering agent, salt concentration (ionic strength), pH in acidic aqueous buffer, as well as the mixing ratio and speed significantly affected the mean particle diameter and in vitro gene-knockdown activity of LNPs. A strong correlation between the mean particle diameters and their in vitro gene-knockdown activities was observed. These observations suggest that the process parameters influencing the mean LNPs diameter are likely to be important in the formation of LNPs and also that these correlate with in vitro gene-knockdown activity. Because LNP systems are being further developed for future clinical applications of genetic drugs, information regarding the LNPs manufacturing process is of utmost importance. The results observed in this study will be useful for the manufacturing of optimal LNPs.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Lipossomos , Nanopartículas/química , RNA Interferente Pequeno/genética
10.
Biol Pharm Bull ; 45(8): 972-977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908905

RESUMO

Nucleic acid drugs can control gene expression and function in a manner different from that of conventional compounds. On the other hand, nucleic acids can be easily degraded in the in vivo circumstances. In addition, nucleic acids cannot penetrate cell membranes. Therefore, a drug delivery system (DDS) is essential to protect nucleic acid molecules until they reach the target cell and to release them efficiently inside the cell. In order to apply nucleic acid drugs to new cancer therapeutic strategies, the author has been developing a DDS that enables functional control of vascular endothelial cells that consist of the tumor microenvironment. The aim of my study is to develop lipid nanoparticles (LNPs) were modified with functional molecules that control their pharmacokinetics in vivo and intracellular fate to delivered small interfering RNA (siRNA) to tumor vasculature. By imparting pH-responsive membrane fusion properties to lipid nanoparticles, I have developed a system that responds to acidification in endosomes within cells and subsequently efficiently releases siRNA into the cytoplasm via membrane fusion, where siRNA molecules exhibit their function. In addition, by developing a method for presenting functional molecules, such as peptides, saccharides and so on, that recognize target cells on the surface of LNPs, I succeeded in establishing LNPs which internalize more efficiently into specific cells than off-target cells. Finally, by integrating these technologies, I developed an in vivo siRNA DDS that enables in vivo control of genes of interest in tumor vascular endothelial cells and succeeded in cancer therapy by regulating vascular function.


Assuntos
Lipídeos , Nanopartículas , Neoplasias , RNA Interferente Pequeno/administração & dosagem , Células Endoteliais/metabolismo , Lipídeos/química , Lipossomos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
11.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054873

RESUMO

Gene structure alterations, such as chromosomal rearrangements that develop fusion genes, often contribute to tumorigenesis. It has been shown that the fusion genes identified in public RNA-sequencing datasets are mainly derived from intrachromosomal rearrangements. In this study, we explored fusion transcripts in clinical ovarian cancer specimens based on our RNA-sequencing data. We successfully identified an in-frame fusion transcript SPON1-TRIM29 in chromosome 11 from a recurrent tumor specimen of high-grade serous carcinoma (HGSC), which was not detected in the corresponding primary carcinoma, and validated the expression of the identical fusion transcript in another tumor from a distinct HGSC patient. Ovarian cancer A2780 cells stably expressing SPON1-TRIM29 exhibited an increase in cell growth, whereas a decrease in apoptosis was observed, even in the presence of anticancer drugs. The siRNA-mediated silencing of SPON1-TRIM29 fusion transcript substantially impaired the enhanced growth of A2780 cells expressing the chimeric gene treated with anticancer drugs. Moreover, a subcutaneous xenograft model using athymic mice indicated that SPON1-TRIM29-expressing A2780 cells rapidly generated tumors in vivo compared to control cells, whose growth was significantly repressed by the fusion-specific siRNA administration. Overall, the SPON1-TRIM29 fusion gene could be involved in carcinogenesis and chemotherapy resistance in ovarian cancer, and offers potential use as a diagnostic and therapeutic target for the disease with the fusion transcript.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão Oncogênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Animais , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293521

RESUMO

Angiogenesis inhibitor drugs have been explored as important pharmacological agents for cancer therapy, including hepatocellular carcinoma. These agents have several drawbacks, such as drug resistance, nonspecific toxicity, and systemic side effects. Therefore, combination therapy of the drug and small interfering RNA could be a promising option to achieve high therapeutic efficacy while allowing a lower systemic dose. Therefore, we studied adding an alpha-fetoprotein siRNA (AFP-siRNA) incorporated on polymeric nanoparticles (NPs) along with angiogenesis inhibitor drugs. The AFP siRNA-loaded NPs were successfully synthesized at an average size of 242.00 ± 2.54 nm. Combination treatment of AFP-siRNA NPs and a low dose of sunitinib produced a synergistic effect in decreasing cell viability in an in vitro hepatocellular carcinoma (HCC) model. AFP-siRNA NPs together with sorafenib or sunitinib greatly inhibited cell proliferation, showing only 39.29 ± 2.72 and 44.04 ± 3.05% cell viability, respectively. Moreover, quantitative reverse transcription PCR (qRT-PCR) demonstrated that AFP-siRNA incorporated with NPs could significantly silence AFP-mRNA expression compared to unloaded NPs. Interestingly, the expression level of AFP-mRNA was further decreased to 28.53 ± 5.10% when sunitinib was added. Therefore, this finding was considered a new promising candidate for HCC treatment in reducing cell proliferation and enhancing therapeutic outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , RNA Interferente Pequeno/uso terapêutico , alfa-Fetoproteínas/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Sunitinibe/uso terapêutico , Linhagem Celular Tumoral , Polímeros/uso terapêutico , RNA Mensageiro
13.
Exp Eye Res ; 202: 108329, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33198953

RESUMO

Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.


Assuntos
Olho/irrigação sanguínea , Terapia Genética/métodos , Neovascularização Patológica/terapia , RNA Interferente Pequeno/genética , Retinopatia Diabética/genética , Humanos , Interferência de RNA , Fator A de Crescimento do Endotélio Vascular/genética
14.
Mol Pharm ; 18(3): 986-1002, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33496597

RESUMO

RNAi is a biological process that utilizes small interfering RNA (siRNA) to prevent the translation of mRNA to protein. This mechanism could be beneficial in preventing the overexpression of proteins in cancer. However, the cellular delivery of siRNA has proven to be challenging due to its inherent negative charge and relative instability. Here, we designed a multicomponent delivery system composed of a specifically designed peptide (linear or cyclic fatty acyl peptide conjugates and hybrid cyclic/linear peptides) and several lipids (DOTAP, DOPE, cholesterol, and phosphatidylcholine) to form a nanoparticle, which we have termed as peptide lipid-associated nucleic acids (PLANAs). Five formulations were prepared (a formulation with no peptide, which was named lipid-associated nucleic acid or LANA, and PLANA formulations A-D) using a mini extruder to form uniform nanoparticles around 100 nm in size with a slightly positive charge (less than +10 mv). Formulations were evaluated for peptide incorporation, siRNA encapsulation efficiency, release profile, toxicity, cellular uptake, and protein silencing. Our experiments showed effective encapsulation of siRNA (>95%), a controlled release profile, and negligible toxicity in formulations that did not contain a positively charged lipid. The results also revealed that PLANAs C and D exhibited optimum cellular uptake (with 80-90% siRNA-positive cells for most of the formulations). PLANA D formulation was selected to silence two model proteins (Src and RPS6KA5) in the triple-negative human breast cancer cell line MDA-MB-231, with promising silencing efficiency, which diminished the expression of RPS6KA5 and Src to approximately 29 and 38% compared to naïve cells, respectively. Many approaches have been investigated for safe and efficient delivery of nucleic acids in the last 20 years; however, many have failed due to the multifaceted challenges to overcome. Our results show a promising potential for a multicomponent design that incorporates different components for a variety of delivery tasks, which warrants further investigation of PLANAs in vivo.


Assuntos
Lipídeos/genética , Ácidos Nucleicos Peptídicos/genética , Peptídeos/genética , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Inativação Gênica/fisiologia , Técnicas de Transferência de Genes , Humanos , Lipídeos/química , Nanopartículas/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Interferência de RNA/fisiologia
15.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681900

RESUMO

Patients with advanced ovarian cancer usually exhibit high mortality rates, thus more efficient therapeutic strategies are expected to be developed. Recent transcriptomic studies revealed that long intergenic noncoding RNAs (lincRNAs) can be a new class of molecular targets for cancer management, because lincRNAs likely exert tissue-specific activities compared with protein-coding genes or other noncoding RNAs. We here show that an unannotated lincRNA originated from chromosome 10q21 and designated as ovarian cancer long intergenic noncoding RNA 1 (OIN1), is often overexpressed in ovarian cancer tissues compared with normal ovaries as analyzed by RNA sequencing. OIN1 silencing by specific siRNAs significantly exerted proliferation inhibition and enhanced apoptosis in ovarian cancer cells. Notably, RNA sequencing showed that OIN1 expression was negatively correlated with the expression of apoptosis-related genes ras association domain family member 5 (RASSF5) and adenosine A1 receptor (ADORA1), which were upregulated by OIN1 knockdown in ovarian cancer cells. OIN1-specifc siRNA injection was effective to suppress in vivo tumor growth of ovarian cancer cells inoculated in immunodeficient mice. Taken together, OIN1 could function as a tumor-promoting lincRNA in ovarian cancer through modulating apoptosis and will be a potential molecular target for ovarian cancer management.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , Análise de Sequência de RNA , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500849

RESUMO

Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.


Assuntos
Peptídeos Penetradores de Células/química , Preparações de Ação Retardada/química , Oligonucleotídeos/química , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/metabolismo , Química Click , Liberação Controlada de Fármacos , Humanos , Ácidos Nucleicos , Oligonucleotídeos/metabolismo , RNA Interferente Pequeno/química , Técnicas de Síntese em Fase Sólida
17.
J Biol Chem ; 294(40): 14562-14573, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31371451

RESUMO

Oxidative phosphorylation generates most of the ATP in respiring cells. ATP is an essential energy source, especially in cardiomyocytes because of their continuous contraction and relaxation. Previously, we reported that G0/G1 switch gene 2 (G0S2) positively regulates mitochondrial ATP production by interacting with FOF1-ATP synthase. G0S2 overexpression mitigates ATP decline in cardiomyocytes and strongly increases their hypoxic tolerance during ischemia. Here, we show that G0S2 protein undergoes proteasomal degradation via a cytosolic molecular triage system and that inhibiting this process increases mitochondrial ATP production in hypoxia. First, we performed screening with a library of siRNAs targeting ubiquitin-related genes and identified RING finger protein 126 (RNF126) as an E3 ligase involved in G0S2 degradation. RNF126-deficient cells exhibited prolonged G0S2 protein turnover and reduced G0S2 ubiquitination. BCL2-associated athanogene 6 (BAG6), involved in the molecular triage of nascent membrane proteins, enhanced RNF126-mediated G0S2 ubiquitination both in vitro and in vivo Next, we found that Glu-44 in the hydrophobic region of G0S2 acts as a degron necessary for G0S2 polyubiquitination and proteasomal degradation. Because this degron was required for an interaction of G0S2 with BAG6, an alanine-replaced G0S2 mutant (E44A) escaped degradation. In primary cultured cardiomyocytes, both overexpression of the G0S2 E44A mutant and RNF126 knockdown effectively attenuated ATP decline under hypoxic conditions. We conclude that the RNF126/BAG6 complex contributes to G0S2 degradation and that interventions to prevent G0S2 degradation may offer a therapeutic strategy for managing ischemic diseases.


Assuntos
Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Isquemia Miocárdica/genética , Fosforilação Oxidativa , Ubiquitina-Proteína Ligases/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Alanina/genética , Proteínas de Ciclo Celular/química , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
18.
Am J Transplant ; 20(4): 931-941, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31680428

RESUMO

RNA interference (RNAi) is a natural process through which double-stranded RNA molecules can silence the gene carrying the same code as the particular RNA of interest. In 2006, the discovery of RNAi was awarded the Nobel Prize in Medicine and its success has accumulated since. Gene silencing through RNAi has been used successfully in a broad range of diseases, and, more recently, this technique has gained interest in the field of organ transplantation. Here, genes related to ischemia-reperfusion injury (IRI) or graft rejection may be silenced to improve organ quality after transplantation. Several strategies have been used to deliver siRNA, and pretransplant machine perfusion presents a unique opportunity to deliver siRNA to the target organ during ex situ preservation. In this review, the potential of RNAi in the field of organ transplantation will be discussed. A brief overview on the discovery of RNAi, its mechanism, and limitations are included. In addition, studies using RNAi to target genes related to IRI in liver, kidney, lung, and heart transplantation are discussed.


Assuntos
Transplante de Órgãos , Traumatismo por Reperfusão , Humanos , Perfusão , Interferência de RNA , RNA Interferente Pequeno/genética
19.
Chem Pharm Bull (Tokyo) ; 68(2): 129-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009079

RESUMO

Efficient methods for delivery of antisense DNA or small interfering RNA (siRNA) are highly needed. Cationic materials, which are conventionally used for anionic oligonucleotide delivery, have several drawbacks, including aggregate formation, cytotoxicity and a low endosome escape efficiency. In this report a bio-reactive mask (i.e., disulfide unit) for cationic amino groups was introduced, and the mask was designed such that it was removed at the target cell surface. Insolubility and severe cellular toxicity caused by exposed cationic groups are avoided when using the mask. Moreover, the disulfide unit used to mask the cationic group enabled direct delivery of oligonucleotides to the cell cytosol. The molecular design reported is a promising approach for therapeutic applications.


Assuntos
DNA Antissenso/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Aminas/química , Animais , Cátions/química , DNA Antissenso/química , DNA Antissenso/genética , DNA Antissenso/farmacocinética , Dissulfetos/química , Inativação Gênica , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos ICR , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , Transfecção/métodos
20.
J Biol Chem ; 293(6): 2091-2101, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29263093

RESUMO

We previously found that 17ß-estradiol (E2) stimulates apolipoprotein A-IV (apoA-IV) gene expression in the nucleus of the solitary tract (NTS) of lean ovariectomized (OVX) rodents. Here we report that in the NTS of high-fat diet-induced obese (DIO) rats, the apoA-IV mRNA level is significantly reduced and that the estrogenic effects on apoA-IV gene expression and food intake are impaired. E2 regulates apoA-IV gene expression through its nuclear receptor α (ERα), which requires co-activators, such as steroid receptor coactivator-1 (SRC-1), to facilitate the transcription of targeted genes. Interestingly, SRC-1 gene expression is significantly reduced in DIO OVX rats. SRC-1 is colocalized with apoA-IV in the cells of the NTS and E2 treatment enhances the recruitment of ERα and SRC-1 to the estrogen response element at the apoA-V promoter, implying the participation of SRC-1 in E2's stimulatory effect on apoA-IV gene expression. Using small hairpin RNA (shRNA), which was validated in cultured neuronal cells, we found that SRC-1 gene knockdown specifically in the NTS significantly diminished E2's anorectic action, leading to increased food intake and body weight. More importantly, the stimulatory effect of E2 on apoA-IV gene expression in the NTS was significantly attenuated in SRC-1 knockdown rats. These results collectively demonstrate the critical roles of NTS SRC-1 in mediating E2's actions on food intake and apoA-IV gene expression and suggest that reduced levels of endogenous SRC-1 and apoA-IV expression are responsible for the impaired E2's anorectic action in obese females.


Assuntos
Apolipoproteínas A/genética , Estradiol/metabolismo , Estrogênios/metabolismo , Coativador 1 de Receptor Nuclear/genética , Obesidade/genética , Núcleo Solitário/metabolismo , Animais , Apolipoproteínas A/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Feminino , Inativação Gênica , Humanos , Coativador 1 de Receptor Nuclear/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Ovariectomia , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA