Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 634
Filtrar
1.
IEEE J Transl Eng Health Med ; 12: 314-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486844

RESUMO

The longevity of current joint replacements is limited by aseptic loosening, which is the primary cause of non-infectious failure for hip, knee, and ankle arthroplasty. Aseptic loosening is typically caused either by osteolysis from particulate wear, or by high shear stresses at the bone-implant interface from over-constraint. Our objective was to demonstrate feasibility of a compliant intramedullary stem that eliminates over-constraint without generating particulate wear. The compliant stem is built around a compliant mechanism that permits rotation about a single axis. We first established several models to understand the relationship between mechanism geometry and implant performance under a given angular displacement and compressive load. We then used a neural network to identify a design space of geometries that would support an expected 100-year fatigue life inside the body. We additively manufactured one representative mechanism for each of three anatomic locations, and evaluated these prototypes on a KR-210 robot. The neural network predicts maximum stress and torsional stiffness with 2.69% and 4.08% error respectively, relative to finite element analysis data. We identified feasible design spaces for all three of the anatomic locations. Simulated peak stresses for the three stem prototypes were below the fatigue limit. Benchtop performance of all three prototypes was within design specifications. Our results demonstrate the feasibility of designing patient- and joint-specific compliant stems that address the root causes of aseptic loosening. Guided by these results, we expect the use of compliant intramedullary stems in joint reconstruction technology to increase implant lifetime.


Assuntos
Artroplastia de Substituição , Humanos , Interface Osso-Implante
2.
Clin Oral Investig ; 28(3): 161, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381269

RESUMO

OBJECTIVE: To assess the impact of enhancement filters on the formation of halo artifacts in radiographs of dental implants obtained with a complementary metal oxide semiconductor (CMOS) system. METHODS: Digital radiographs of dental implants placed in dry human mandibles were processed with the Noise Reduction smoothing filter, as well as the Sharpen 1, Sharpen 4, and Sharpen UM high-pass filters available in the CLINIVIEW™ software (Instrumentarium Dental, Tuusula, Finland). Subjective analysis involved evaluating the left, right, and apical surfaces of each implant for the presence of much, few, or no halo. The objective analysis involved measurement of the halo area using the Trainable Weka Segmentation plugin (ImageJ, National Institutes of Health, Bethesda, MD, USA). Data were analyzed using Friedman's test (subjective analysis) and ANOVA (objective analysis) (α = 5%). RESULTS: In the subjective evaluation, the Sharpen 4 filter produced more radiographs with much halo present, and in the objective evaluation, a bigger halo area when compared to the original images and the Noise Reduction filter for all surfaces (p < 0.05). CONCLUSIONS: When evaluating dental implants, priority should be given to original images and those enhanced with smoothing filters since they exhibit fewer halo artifacts. CLINICAL RELEVANCE: Post-processing tools, such as enhancement filters, may improve the image quality and assist some diagnostic tasks. However, little is known regarding the impact of enhancement filters in halo formation on CMOS systems, which have been increasingly used in dental offices.


Assuntos
Artefatos , Implantes Dentários , Estados Unidos , Humanos , Interface Osso-Implante , Óxidos , Semicondutores
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396933

RESUMO

Bioinert materials such as the zirconium dioxide and aluminum oxide are widely used in surgery and dentistry due to the absence of cytotoxicity of the materials in relation to the surrounding cells of the body. However, little attention has been paid to the study of metabolic processes occurring at the implant-cell interface. The metabolic activity of mouse 3T3 fibroblasts incubated on yttrium-stabilized zirconium ceramics cured with aluminum oxide (ATZ) and stabilized zirconium ceramics (Y-TZP) was analyzed based on the ratio of the free/bound forms of cofactors NAD(P)H and FAD obtained using two-photon microscopy. The results show that fibroblasts incubated on ceramics demonstrate a shift towards the free form of NAD(P)H, which is observed during the glycolysis process, which, according to our assumptions, is related to the porosity of the surface of ceramic structures. Consequently, despite the high viability and good proliferation of fibroblasts assessed using an MTT test and a scanning electron microscope, the cells are in a state of hypoxia during incubation on ceramic structures. The FLIM results obtained in this work can be used as additional information for scientists who are interested in manufacturing osteoimplants.


Assuntos
Interface Osso-Implante , NAD , Zircônio , Animais , Camundongos , Óxido de Alumínio , Cerâmica/química , Fibroblastos/metabolismo , Teste de Materiais , NAD/metabolismo , Propriedades de Superfície , Ítrio , Zircônio/química
4.
J Mech Behav Biomed Mater ; 151: 106347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181568

RESUMO

Primary stability, the mechanical fixation between implant and bone prior to osseointegration, is crucial for the long-term success of cementless tibial trays. However, little is known about the mechanical interplay between the implant and bone internally, as experimental studies quantifying internal strain are limited. This study employed digital volume correlation (DVC) to quantify the immediate post-implantation strain field of five cadaveric tibiae implanted with a commercially available cementless titanium tibial tray (Attune, DePuy Synthes). The tibiae were subjected to a five-step loading sequence (0-2.5 bodyweight, BW) replicating stair descent, with concomitant time-elapsed micro-CT imaging. With progressive loads, increased compression of trabecular bone was quantified, with the highest strains directly under the posterior region of the tibial tray implant, dissipating with increasing distance from the bone-implant interface. After load removal of the last load step (2.5BW), residual strains were observed in all of the five tibiae, with residual strains confined within 3.14 mm from the bone-implant interface. The residual strain is reflective of the observed initial migration of cementless tibial trays reported in clinical studies. The presence of strains above the yield strain of bone accepted in literature suggests that inelastic properties should be included within finite element models of the initial mechanical environment. This study provides a means to experimentally quantify the internal strain distribution of human tibia with cementless trays, increasing the understanding of the mechanical interaction between bone and implant.


Assuntos
Artroplastia do Joelho , Tíbia , Humanos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Microtomografia por Raio-X , Interface Osso-Implante , Cadáver
5.
J Biomech ; 163: 111949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38281459

RESUMO

Successful osseointegration of press-fit implants depends on the initial stability, often measured by the micromotions between the implant and bone. A good primary stability can be achieved by optimizing the compressive and frictional forces acting at the bone-implant interface. The frictional properties of the implant-bone interface, which depend on the roughness and porosity of the implant surface coating, can affect the primary stability. Several reversible (elastic) and non-reversible (permanent) deformation processes take place during frictional loading of the implant-bone interface. In case of a rough coating, the asperities of the implant surface are compressed into the bone leading to mechanical interlocking. To optimize fixation of orthopaedic implants it is crucial to understand these complex interactions between coating and bone. The objective of the current study was to gain more insight into the reversible and non-reversible processes acting at the implant-bone interface. Tribological experiments were performed with two types of porous coatings against human cadaveric bone. The results indicated that the coefficient of friction depended on the coating roughness (0.86, 0.95, and 0.45 for an Ra roughness of 41.2, 53.0, and a polished surface, respectively). Larger elastic and permanent displacements were found for the rougher coating, resulting in a lower interface stiffness. The experiments furthermore revealed that relative displacements of up to 35 µm can occur without sliding at the interface. These findings have implications for micromotion thresholds that currently are assumed for osseointegration, and suggest that bone ingrowth actually occurs in the absence of relative sliding at the implant-bone interface.


Assuntos
Osseointegração , Próteses e Implantes , Humanos , Osso e Ossos , Interface Osso-Implante
6.
Artigo em Inglês | MEDLINE | ID: mdl-37771233

RESUMO

A dental implant with three distinct layers, of titanium alloy at core, porous titanium alloy at the intermediate layer and titanium alloy hydroxyapatite composite at the outer layer, is designed to achieve low elastic modulus and adequate strength with bioactive surface. Artificial Neural Network (ANN) along with Rule of Mixture (ROM) is used to generate the objective functions for the Genetic Algorithm (GA) based multi-objective optimization for achieving the optimal designs, which are validated using Finite Element Analysis (FEA) simulations. The composition and processing parameters are correlated with the yield strength and elastic modulus of titanium alloy using ANN. The ANN models are generated to express the strength and effective modulus of the implant using ROM. To determine the optimal composition of titanium alloys, porous layers, and composite layers for a three-layer dental implant, multi-objective genetic algorithm is employed. The Pareto optimal solutions provide the guidelines for designing the implant. A few selected non-dominated solutions are used for studying the actual stress distribution at the bone-implant interface using FEA, and showed significant improvements compared to conventional implants.


Assuntos
Implantes Dentários , Titânio , Ligas , Interface Osso-Implante , Informática , Análise de Elementos Finitos , Estresse Mecânico
7.
J Orthop Surg Res ; 18(1): 828, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924130

RESUMO

BACKGROUND: Prosthesis subsidence and mechanical failure were considered significant threats after vertebral body replacement during the long-term follow-up. Therefore, improving and optimizing the structure of vertebral substitutes for exceptional performance has become a pivotal challenge in spinal reconstruction. METHODS: The study aimed to develop a novel artificial vertebral implant (AVI) with triply periodic minimal surface Gyroid porous structures to enhance the safety and stability of prostheses. The biomechanical performance of AVIs under different loading conditions was analyzed using the finite element method. These implants were fabricated using selective laser melting technology and evaluated through static compression and subsidence experiments. RESULTS: The results demonstrated that the peak stress in the Gyroid porous AVI was consistently lower than that in the traditional porous AVI under all loading conditions, with a maximum reduction of 73.4%. Additionally, it effectively reduced peak stress at the bone-implant interface of the vertebrae. Static compression experiments demonstrated that the Gyroid porous AVI was about 1.63 times to traditional porous AVI in terms of the maximum compression load, indicating that Gyroid porous AVI could meet the safety requirement. Furthermore, static subsidence experiments revealed that the subsidence tendency of Gyroid porous AVI in polyurethane foam (simulated cancellous bone) was approximately 15.7% lower than that of traditional porous AVI. CONCLUSIONS: The Gyroid porous AVI exhibited higher compressive strength and lower subsidence tendency than the strut-based traditional porous AVI, indicating it may be a promising substitute for spinal reconstruction.


Assuntos
Coluna Vertebral , Corpo Vertebral , Porosidade , Próteses e Implantes , Interface Osso-Implante , Estresse Mecânico
8.
J Clin Periodontol ; 50(12): 1670-1684, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37667415

RESUMO

AIM: Antimicrobial-induced shifts in commensal oral microbiota can dysregulate helper T-cell oral immunity to affect osteoclast-osteoblast actions in alveolar bone. Antibiotic prophylaxis is commonly performed with dental implant placement surgery to prevent post-surgical complications. However, antibiotic prophylaxis effects on osteoimmune processes supporting dental implant osseointegration are unknown. The aim of the study was to discern the impact of antibiotic prophylaxis on dental implant placement surgery-induced osteoimmune wound healing and osseointegration. MATERIALS AND METHODS: We performed SHAM or dental implant placement surgery in mice. Groups were administered prophylactic antibiotics (amoxicillin or clindamycin) or vehicle. Gingival bacteriome was assessed via 16S sequencing. Helper T-cell oral immunity was evaluated by flow cytometry. Osteoclasts and osteoblasts were assessed via histomorphometry. Implant osseointegration was evaluated by micro-computed tomography. RESULTS: Dental implant placement surgery up-regulated TH 1, TH 2 and TREG cells in cervical lymph nodes (CLNs), which infers helper T-cell oral immunity contributes to dental implant placement osseous wound healing. Prophylactic antibiotics with dental implant placement surgery caused a bacterial dysbiosis, suppressed TH 1, TH 2 and TREG cells in CLNs, reduced osteoclasts and osteoblasts lining peri-implant alveolar bone, and attenuated the alveolar bone-implant interface. CONCLUSIONS: Antibiotic prophylaxis dysregulates dental implant placement surgery-induced osteoimmune wound healing and attenuates the alveolar bone-implant interface in mice.


Assuntos
Implantes Dentários , Animais , Camundongos , Antibioticoprofilaxia , Interface Osso-Implante , Microtomografia por Raio-X , Implantação Dentária Endóssea/métodos , Osseointegração/fisiologia , Cicatrização/fisiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
9.
PLoS One ; 18(9): e0291599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708193

RESUMO

BACKGROUND: Despite the success of primary total hip arthroplasty, the number of revisions remains high. Infection, aseptic loosening, periprosthetic fractures and dislocations are the leading causes of hip revision. Current revision stem designs feature a tapered body with circumferential placed longitudinal thin metal splines that cut into the femoral cortex of the diaphysis to provide axial and rotational stability. Modifications to the spline design may help improve primary stability in various bone qualities. The purpose of this study was to evaluate whether the rotational stability of a revision hip stem can be improved by an additional set of less prominent, wider splines in addition to the existing set of splines. It is hypothesized that the additional splines will result in greater cortical contact, thereby improving torsional strength. METHODS AND FINDINGS: The ultimate torsional strength of an established modular revision stem (Reclaim®, DePuy Synthes) was compared to a Prototype stem design with two sets of splines, differing in prominence by 0.25 mm. Five pairs of fresh-frozen human femurs (n = 10) were harvested and an extended trochanteric osteotomy was performed to obtain common bone defects in revision. Stems were implanted using successive droptower impacts to omit variability caused by mallet blows. The applied energy was increased from 2 J in 1 J increments until the planned implantation depth was reached or seating was less than 0.5 mm at 5 J impact. The ultimate torsional strength of the bone-to-implant interface was determined immediately after implantation. Image superposition was used to analyze and quantify the contact situation between bone and implant within the femoral canal. Cortical contact was larger for the Prototype design with the additional set of splines compared to the Reclaim stem (p = 0.046), associated with a higher torsional stability (35.2 ± 6.0 Nm vs. 28.2 ± 3.5 Nm, p = 0.039). CONCLUSIONS: A second set of splines with reduced prominence could be shown to improve primary stability of a revision stem in the femoral diaphysis in the presence of significant proximal bone loss. The beneficial effect of varying spline size and number has the potential to further improve the longevity of revision hip stems.


Assuntos
Artroplastia de Quadril , Doenças Ósseas Metabólicas , Humanos , Fêmur/cirurgia , Interface Osso-Implante , Confiabilidade dos Dados
10.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 970-977, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37586797

RESUMO

Objective: To explore the design points of a three-dimensional (3D) printed customized cementless intercalary endoprosthesis with an intra-neck curved stem and to evaluate the key points and mid-term effectiveness of its application in the reconstruction of ultrashort bone segments in the proximal femur. Methods: Between October 2015 and January 2021, 17 patients underwent reconstruction with a 3D printed-customized cementless intercalary endoprosthesis with an intra-neck curved stem. There were 11 males and 6 females, the age ranged from 10 to 76 years, with an average of 30.1 years. There were 9 cases of osteosarcoma, 4 cases of Ewing sarcoma, 2 cases of chondrosarcoma, 1 case of liposarcoma, and 1 case of myofibroblastoma. The disease duration was 5-14 months, with an average of 9.5 months. Enneking staging included 16 cases of stage ⅡB and 1 case of stage ⅢB. The distances from the center of the femoral head to the body midline and the acetabular apex were measured preoperatively on X-ray images. Additionally, the distances from the tip of the intra-neck curved stem to the body midline and the acetabular apex were measured at immediate postoperatively and last follow-up. The neck-shaft angle was also measured preoperatively, at immediate postoperatively, and at last follow-up. The status of osseointegration at the bone-prosthesis interface and bone growth into the prosthesis surface were assessed by X-ray films, CT, and Tomosynthesis-Shimadzu metal artefact reduction technology (T-SMART). The survival status of the patients, presence of local recurrence or distant metastasis, and occurrence of postoperative complications were assessed. The recovery of lower limb function was evaluated pre- and post-operatively using the Musculoskeletal Tumor Society (MSTS) scoring system, and pain relief was evaluated using the visual analogue scale (VAS) scores. Results: The patient's femoral resection length was (163.1±57.5) mm, the remaining proximal femoral length was (69.6±9.3) mm, and the percentage of femoral resection length/total femoral length was 38.7%±14.6%. All 17 patients were followed up 25-86 months with an average of 58.1 months. During the follow-up, 1 patient died of lung metastasis at 46 months postoperatively, and the remaining 16 patients survived tumor-free. There was no complication such as periprosthetic infection, delayed incision healing, aseptic loosening, prosthesis fracture, or periprosthetic fracture. No evidence of micromotion or wear around the implanted stem of the prosthesis was detected in X-ray and T-SMART evaluations. There was no significant radiolucent lines, and radiographic evidence of bone ingrowth into the bone-prosthesis interface was observed in all stems. There was no significant difference in the distance from the tip of the curved stem to the body midline and the apex of the acetabulum at immediate postoperatively and last follow-up compared with the distance from the center of the femoral head to the body midline and the apex of the acetabulum before operation, respectively (P>0.05), and there was no significant difference in the above indexes between immediate postoperatively and last follow-up (P>0.05). The differences in the neck-shaft angle at various time points before and after operation were also not significant (P>0.05). At last follow-up, the MSTS score was 26.1±1.2 and the VAS score was 0.1±0.5, which were significantly improved when compared with those before operation [19.4±2.1 and 5.7±1.0, respectively] (t=14.735, P<0.001; t=21.301, P<0.001). At last follow-up, none of the patients walked with the aid of crutches or other walkers. Conclusion: The 3D printed customized cementless intercalary endoprosthesis with an intra-neck curved stem is an effective method for reconstructing ultrashort bone segments in the proximal femur following malignant tumor resection. The operation is reliable, the postoperative lower limb function is satisfactory, and the incidence of complications is low.


Assuntos
Membros Artificiais , Fêmur , Feminino , Masculino , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Fêmur/cirurgia , Extremidade Inferior , Interface Osso-Implante , Cabeça do Fêmur
11.
J Mech Behav Biomed Mater ; 146: 106046, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562162

RESUMO

This computational study investigates the effect of the Von Misses stresses and deformations distribution generated by coupling a customized cranial implant with its fixation system for anchoring in the cranial bone of a specific patient. Three simulations were carried out under static loads, in different areas of the implant and during the rest-activity; and another three simulations were considered preset maximum intracranial pressures. Anatomical models were obtained by computed tomography. The design of the device to be implanted was carried out by applying reverse engineering processes, from the corresponding computer-aided design (CAD) model of the bone structure of interest. Likewise, the anchoring system was modeled in detail. Loads were applied at three points on the custom implant. The stress distribution on the artificial plate and the implant-natural bone interface was analyzed. The distribution of the stresses caused by the internal load states on the plate and the anchoring system was also studied. The neurocranial reconstruction with the customized polymethylmethacrylate (PMMA)-based implant and the finite element analysis demonstrated that the fixation and coupling system of the bone-implant interface guarantees adequate protection for the internal structures of the restored area. In addition, the custom-designed and placed implant will not cause non-physiological harm to the patient. Nor will failures occur in the anchoring system.


Assuntos
Implantes Dentários , Polimetil Metacrilato , Humanos , Análise de Elementos Finitos , Crânio , Próteses e Implantes , Interface Osso-Implante , Estresse Mecânico , Análise do Estresse Dentário , Fenômenos Biomecânicos
12.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447790

RESUMO

The loosening of an artificial joint is a frequent and critical complication in orthopedics and trauma surgery. Due to a lack of accuracy, conventional diagnostic methods such as projection radiography cannot reliably diagnose loosening in its early stages or detect whether it is associated with the formation of a biofilm at the bone-implant interface. In this work, we present a non-invasive ultrasound-based interferometric measurement procedure for quantifying the thickness of the layer between bone and prosthesis as a correlate to loosening. In principle, it also allows for the material characterization of the interface. A well-known analytical model for the superposition of sound waves reflected in a three-layer system was combined with a new method in data processing to be suitable for medical application at the bone-implant interface. By non-linear fitting of the theoretical prediction of the model to the actual shape of the reflected sound waves in the frequency domain, the thickness of the interlayer can be determined and predictions about its physical properties are possible. With respect to determining the layer's thickness, the presented approach was successfully applied to idealized test systems and a bone-implant system in the range of approx. 200 µm to 2 mm. After further optimization and adaptation, as well as further experimental tests, the procedure offers great potential to significantly improve the diagnosis of prosthesis loosening at an early stage and may also be applicable to detecting the formation of a biofilm.


Assuntos
Membros Artificiais , Interface Osso-Implante , Ultrassom , Implantação de Prótese , Som
13.
Sci Rep ; 13(1): 11142, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429939

RESUMO

The aim of this study was to investigate the surface characteristics and evaluate the bone-implant interfaces of injection molded zirconia implants with or without surface treatment and compare them with those of conventional titanium implants. Four different zirconia and titanium implant groups (n = 14 for each group) were prepared: injection-molded zirconia implants without surface treatment (IM ZrO2); injection-molded zirconia implants with surface treatment via sandblasting (IM ZrO2-S); turned titanium implants (Ti-turned); and titanium implants with surface treatments via sandblasting with large-grit particles and acid-etching (Ti-SLA). Scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy were used to assess the surface characteristics of the implant specimens. Eight rabbits were used, and four implants from each group were placed into the tibiae of each rabbit. Bone-to-implant contact (BIC) and bone area (BA) were measured to evaluate the bone response after 10-day and 28-day healing periods. One-way analysis of variance with Tukey's pairwise comparison was used to find any significant differences. The significance level was set at α = 0.05. Surface physical analysis showed that Ti-SLA had the highest surface roughness, followed by IM ZrO2-S, IM ZrO2, and Ti-turned. There were no statistically significant differences (p > 0.05) in BIC and BA among the different groups according to the histomorphometric analysis. This study suggests that injection-molded zirconia implants are reliable and predictable alternatives to titanium implants for future clinical applications.


Assuntos
Interface Osso-Implante , Lagomorpha , Animais , Humanos , Coelhos , Titânio , Próteses e Implantes , Assistência Odontológica
14.
Eur Radiol Exp ; 7(1): 19, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121937

RESUMO

BACKGROUND: Successful osseointegration of joint replacement implants is required for long-term implant survival. Accurate assessment of osseointegration could enable clinical discrimination of failed implants from other sources of pain avoiding unnecessary surgeries. Photon-counting detector computed tomography (PCD-CT) provides improvements in image resolution compared to conventional energy-integrating detector CT (EID-CT), possibly allowing better visualization of bone-implant-interfaces and osseointegration. The aim of this study was to assess the quality of visualization of bone-implant-interfaces and osseointegration in acetabular cup implants, using PCD-CT compared with EID-CT. METHODS: Two acetabular implants (one cemented, one uncemented) retrieved during revision surgery were scanned using PCD-CT and EID-CT at equal radiation dose. Images were reconstructed using different reconstruction kernels and iterative strengths. Delineation of the bone-implant and bone-cement-interface as an indicator of osseointegration was scored subjectively for image quality by four radiologists on a Likert scale and assessed quantitatively. RESULTS: Delineation of bone-implant and bone-cement-interfaces was better with PCD-CT compared with EID-CT (p ≤ 0.030). The highest ratings were given for PCD-CT at sharper kernels for the cemented cup (PCD-CT, median 5, interquartile range 4.25-5.00 versus EID-CT, 3, 2.00-3.75, p < 0.001) and the uncemented cup (5, 4.00-5.00 versus 2, 2-2, respectively, p < 0.001). The bone-implant-interface was 35-42% sharper and the bone-cement-interface was 28-43% sharper with PCD-CT compared with EID-CT, depending on the reconstruction kernel. CONCLUSIONS: PCD-CT might enable a more accurate assessment of osseointegration of orthopedic joint replacement implants. KEY POINTS: • The bone-implant interface ex vivo showed superior visualization using photon-counting detector computed tomography (PCD-CT) compared to energy-integrating detector computed tomography. • Harder reconstruction kernels in PCD-CT provide sharper images with lower noise levels. • These improvements in imaging might make it possible to visualize osseointegration in vivo.


Assuntos
Interface Osso-Implante , Osseointegração , Interface Osso-Implante/diagnóstico por imagem , Fótons , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
15.
Mol Med ; 29(1): 35, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927352

RESUMO

BACKGROUND: This study aimed to delineate the cell heterogeneity in the bone-implant interface and investigate the fibroblast responses to implant-associated S. aureus infection. METHODS: Single-cell RNA sequencing of human periprosthetic tissues from patients with periprosthetic joint infection (PJI, n = 3) and patients with aseptic loosening (AL, n = 2) was performed. Cell type identities and gene expression profiles were analyzed to depict the single-cell landscape in the periprosthetic environment. In addition, 11 publicly available human scRNA-seq datasets were downloaded from GSE datasets and integrated with the in-house sequencing data to identify disease-specific fibroblast subtypes. Furthermore, fibroblast pseudotime trajectory analysis and Single-cell regulatory network inference and clustering (SCENIC) analysis were combined to identify transcription regulators responsible for fibroblast differentiation. Immunofluorescence was performed on the sequenced samples to validate the protein expression of the differentially expressed transcription regulators. RESULTS: Eight major cell types were identified in the human bone-implant interface by analyzing 36,466 cells. Meta-analysis of fibroblasts scRNA-seq data found fibroblasts in the bone-implant interface express a high level of CTHRC1. We also found fibroblasts could differentiate into pro-inflammatory and matrix-producing phenotypes, each primarily presented in the PJI and AL groups, respectively. Furthermore, NPAS2 and TFEC which are activated in PJI samples were suggested to induce pro-inflammatory polarization in fibroblasts, whereas HMX1, SOX5, SOX9, ZIC1, ETS2, and FOXO1 are matrix-producing regulators. Meanwhile, we conducted a CMap analysis and identified forskolin as a potential regulator for fibroblast differentiation toward matrix-producing phenotypes. CONCLUSIONS: In this study, we discovered the existence of CTHRC1+ fibroblast in the bone-implant interface. Moreover, we revealed a bipolar mode of fibroblast differentiation and put forward the hypothesis that infection could modulate fibroblast toward a pro-inflammatory phenotype through NPAS2 and TFEC.


Assuntos
Staphylococcus aureus , Transcriptoma , Humanos , Interface Osso-Implante , Fibroblastos/metabolismo , Diferenciação Celular/genética , Proteínas da Matriz Extracelular/metabolismo
16.
J Mech Behav Biomed Mater ; 141: 105787, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36989873

RESUMO

While cementless implants are now widely used clinically, implant debonding still occur and is difficult to anticipate. Assessing the biomechanical strength of the bone-implant interface can help improving the understanding of osseointegration phenomena and thus preventing surgical failures. A dedicated and standardized implant model was considered. The samples were tested using a mode III cleavage device to assess the mechanical strength of the bone-implant interface by combining experimental and numerical approaches. Four rough (Sa = 24.5 µm) osseointegrated coin-shaped implants were left in sheep cortical bone during 15 weeks of healing time. Each sample was experimentally rotated at 0.03°/sec until complete rupture of the interface. The maximum values of the torque were comprised between 0.48 and 0.72 N m, while a significant increase of the normal force from 7-12 N to 31-43 N was observed during the bone-implant interface debonding, suggesting the generation of bone debris at the bone-implant interface. The experimental results were compared to an isogeometric finite element model describing the adhesion and debonding phenomena through a modified Coulomb's law, based on a varying friction coefficient to represent the transition from an unbroken to a broken bone-implant interface. A good agreement was found between numerical and experimental torques, with numerical friction coefficients decreasing from 8.93 to 1.23 during the bone-implant interface rupture, which constitutes a validation of this model to simulate the debonding of an osseointegrated bone-implant interface subjected to torsion.


Assuntos
Prótese Ancorada no Osso , Implantes Dentários , Animais , Ovinos , Osseointegração , Fenômenos Mecânicos , Interface Osso-Implante , Próteses e Implantes , Análise de Elementos Finitos , Fenômenos Biomecânicos
17.
Med Eng Phys ; 111: 103931, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36792245

RESUMO

BACKGROUND/PURPOSE: Dental implant fails due to mechanical failure of the implant contribute to about 10-15 % of implant failures. It is necessary to prevent the design failure of the implant since it leads to bone loss which further leads to complications in reimplantation. This makes it important to test the design of a dental implant using FEM and in vitro testing before its application. The purpose of this article is to test the design of a dental implant using in vitro testing by using an artificial bone model and validation of the data using Finite Element Method (FEM). METHODS: A dental implant was selected for in vitro testing and 3D FE analysis was conducted to observe the stress values. The in vitro study was done on a custom designed testing rig where the implant was drilled into a ABS and sawbone (polyurethane) bone model. Vertical and lateral loads of 100 N and 40 N respectively, were applied to evaluate the micro-strains using strain gauge technique. 3D FEA technique was used to evaluate stress concentrations and micro-strains in the bone-implant interface. RESULTS: The strain values were found to be higher in the case of lateral loading than vertical loading with in vitro testing. The von-mises stresses on the cortical bone were greater at the bone-implant interface near the neck region of the implant. CONCLUSIONS: The results obtained from the in vitro analysis and FEA were found to have a good agreement with an error percentage of 2-5 %.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Estresse Mecânico , Osso Cortical , Interface Osso-Implante , Análise do Estresse Dentário , Fenômenos Biomecânicos , Planejamento de Prótese Dentária , Simulação por Computador
18.
Biomater Adv ; 147: 213342, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841109

RESUMO

Many studies have found that the threshold of occlusal force tolerated by titanium-based implants is significantly lower than that of natural teeth due to differences in biomechanical mechanisms. Therefore, implants are considered to be susceptible to occlusal trauma. In clinical practice, many implants have shown satisfactory biocompatibility, but the balance between biomechanics and biofunction remains a huge clinical challenge. This paper comprehensively analyzes and summarizes various stress distribution optimization methods to explore strategies for improving the resistance of the implants to adverse stress. Improving stress resistance reduces occlusal trauma and shortens the gap between implants and natural teeth in occlusal function. The study found that: 1) specific implant-abutment connection design can change the force transfer efficiency and force conduction direction of the load at the BII; 2) reasonable implant surface structure and morphological character design can promote osseointegration, maintain alveolar bone height, and reduce the maximum effective stress at the BII; and 3) the elastic modulus of implants matched to surrounding bone tissue can reduce the stress shielding, resulting in a more uniform stress distribution at the BII. This study concluded that the core BII stress distribution optimization lies in increasing the stress distribution area and reducing the local stress peak value at the BII. This improves the biomechanical adaptability of the implants, increasing their long-term survival rate.


Assuntos
Interface Osso-Implante , Oclusão Dentária Traumática , Humanos , Estresse Mecânico , Osseointegração , Osso e Ossos
19.
Biomech Model Mechanobiol ; 22(1): 133-158, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36284076

RESUMO

Cementless implants have become widely used for total hip replacement surgery. The long-term stability of these implants is achieved by bone growing around and into the rough surface of the implant, a process called osseointegration. However, debonding of the bone-implant interface can still occur due to aseptic implant loosening and insufficient osseointegration, which may have dramatic consequences. The aim of this work is to describe a new 3D finite element frictional contact formulation for the debonding of partially osseointegrated implants. The contact model is based on a modified Coulomb friction law by Immel et al. (2020), that takes into account the tangential debonding of the bone-implant interface. This model is extended in the direction normal to the bone-implant interface by considering a cohesive zone model, to account for adhesion phenomena in the normal direction and for adhesive friction of partially bonded interfaces. The model is applied to simulate the debonding of an acetabular cup implant. The influence of partial osseointegration and adhesive effects on the long-term stability of the implant is assessed. The influence of different patient- and implant-specific parameters such as the friction coefficient [Formula: see text], the trabecular Young's modulus [Formula: see text], and the interference fit [Formula: see text] is also analyzed, in order to determine the optimal stability for different configurations. Furthermore, this work provides guidelines for future experimental and computational studies that are necessary for further parameter calibration.


Assuntos
Prótese Ancorada no Osso , Humanos , Fricção , Osseointegração , Interface Osso-Implante , Próteses e Implantes , Análise de Elementos Finitos
20.
Biomolecules ; 14(1)2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38254652

RESUMO

Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.


Assuntos
Interface Osso-Implante , Longevidade , Humanos , Idoso , Desenvolvimento Ósseo , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...