Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757831

RESUMO

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Assuntos
Distonia , Distúrbios Distônicos , Malformações do Sistema Nervoso , Masculino , Humanos , Estudos Transversais , Mutação/genética , Fenótipo , Distonia/genética , Distúrbios Distônicos/genética , Chaperonas Moleculares/genética
2.
Clin Genet ; 103(3): 288-300, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36353900

RESUMO

We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.


Assuntos
Testes Genéticos , Humanos , Testes Genéticos/métodos , Ontário/epidemiologia , Sequenciamento do Exoma
3.
Am J Hum Genet ; 104(4): 685-700, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929737

RESUMO

Conventional genetic testing of individuals with neurodevelopmental presentations and congenital anomalies (ND/CAs), i.e., the analysis of sequence and copy number variants, leaves a substantial proportion of them unexplained. Some of these cases have been shown to result from DNA methylation defects at a single locus (epi-variants), while others can exhibit syndrome-specific DNA methylation changes across multiple loci (epi-signatures). Here, we investigate the clinical diagnostic utility of genome-wide DNA methylation analysis of peripheral blood in unresolved ND/CAs. We generate a computational model enabling concurrent detection of 14 syndromes using DNA methylation data with full accuracy. We demonstrate the ability of this model in resolving 67 individuals with uncertain clinical diagnoses, some of whom had variants of unknown clinical significance (VUS) in the related genes. We show that the provisional diagnoses can be ruled out in many of the case subjects, some of whom are shown by our model to have other diseases initially not considered. By applying this model to a cohort of 965 ND/CA-affected subjects without a previous diagnostic assumption and a separate assessment of rare epi-variants in this cohort, we identify 15 case subjects with syndromic Mendelian disorders, 12 case subjects with imprinting and trinucleotide repeat expansion disorders, as well as 106 case subjects with rare epi-variants, a portion of which involved genes clinically or functionally linked to the subjects' phenotypes. This study demonstrates that genomic DNA methylation analysis can facilitate the molecular diagnosis of unresolved clinical cases and highlights the potential value of epigenomic testing in the routine clinical assessment of ND/CAs.


Assuntos
Anormalidades Congênitas/genética , Metilação de DNA , Doenças Genéticas Inatas/diagnóstico , Estudo de Associação Genômica Ampla , Estudos de Coortes , Simulação por Computador , Anormalidades Congênitas/diagnóstico , Variações do Número de Cópias de DNA , Epigenômica , Dosagem de Genes , Doenças Genéticas Inatas/genética , Variação Genética , Impressão Genômica , Humanos , Fenótipo , Análise de Sequência de DNA , Síndrome , Expansão das Repetições de Trinucleotídeos
4.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34042254

RESUMO

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Assuntos
Anodontia/diagnóstico , Anodontia/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Variação Genética , Fenótipo , Proteínas/genética , Alelos , Substituição de Aminoácidos , Estudos de Coortes , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Mutação , Linhagem , Radiografia
5.
Brain ; 143(1): 55-68, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834374

RESUMO

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Malformações do Sistema Nervoso/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/diagnóstico por imagem , Adolescente , Artéria Basilar/anormalidades , Artéria Basilar/diagnóstico por imagem , Artérias Carótidas/anormalidades , Artérias Carótidas/diagnóstico por imagem , Vermis Cerebelar/anormalidades , Vermis Cerebelar/diagnóstico por imagem , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Anormalidades Craniofaciais/diagnóstico por imagem , Feminino , Fibroblastos/metabolismo , Humanos , Imageamento Tridimensional , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Degradação do RNAm Mediada por Códon sem Sentido , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Síndrome , Tomografia Computadorizada por Raios X , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
6.
Genet Med ; 21(8): 1797-1807, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30679821

RESUMO

PURPOSE: Haploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling. METHODS: We report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency. RESULTS: The clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination. CONCLUSION: The consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.


Assuntos
Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Neurodesenvolvimento/genética , Comportamento Problema , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Deleção Cromossômica , Proteínas de Ligação a DNA/genética , Genoma Humano/genética , Haploinsuficiência/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteínas Nucleares/genética , Fenótipo , Proteínas/genética , Sequenciamento do Exoma
7.
Am J Med Genet A ; 191(8): 2252-2253, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37219025
8.
Am J Med Genet A ; 176(4): 925-935, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436146

RESUMO

SATB2-associated syndrome (SAS) is an autosomal dominant disorder characterized by significant neurodevelopmental disabilities with limited to absent speech, behavioral issues, and craniofacial anomalies. Previous studies have largely been restricted to case reports and small series without in-depth phenotypic characterization or genotype-phenotype correlations. Seventy two study participants were identified as part of the SAS clinical registry. Individuals with a molecularly confirmed diagnosis of SAS were referred after clinical diagnostic testing. In this series we present the most comprehensive phenotypic and genotypic characterization of SAS to date, including prevalence of each clinical feature, neurodevelopmental milestones, and when available, patient management. We confirm that the most distinctive features are neurodevelopmental delay with invariably severely limited speech, abnormalities of the palate (cleft or high-arched), dental anomalies (crowding, macrodontia, abnormal shape), and behavioral issues with or without bone or brain anomalies. This comprehensive clinical characterization will help clinicians with the diagnosis, counseling and management of SAS and help provide families with anticipatory guidance.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fenótipo , Fatores de Transcrição/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Fácies , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Padrões de Herança , Masculino , Polimorfismo de Nucleotídeo Único , Síndrome , Adulto Jovem
10.
Genet Med ; 19(1): 53-61, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27195815

RESUMO

PURPOSE: The purpose of the current study was to assess the penetrance of NRXN1 deletions. METHODS: We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant copy-number variations (CNVs) was used as a proxy to estimate the relative penetrance of NRXN1 deletions. RESULTS: We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability that were significantly greater than in controls (odds ratio (OR) = 8.14; 95% confidence interval (CI): 2.91-22.72; P < 0.0001). Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3' end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5' NRXN1 deletion (OR = 7.47; 95% CI: 2.36-23.61; P = 0.0006). The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (P = 0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV at a prevalence twice as high as that for exonic NRXN1 deletion cases (P = 0.0035). CONCLUSIONS: The results support the importance of exons near the 5' end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.Genet Med 19 1, 53-61.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação ao Cálcio , Criança , Variações do Número de Cópias de DNA , Éxons/genética , Feminino , Genótipo , Humanos , Íntrons/genética , Masculino , Análise em Microsséries , Moléculas de Adesão de Célula Nervosa , Transtornos do Neurodesenvolvimento/fisiopatologia , Penetrância , Fenótipo , Deleção de Sequência
11.
Am J Med Genet A ; 173(8): 2097-2100, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28349652

RESUMO

Children with Smith-Lemli-Opitz syndrome (SLOS) are typically reported to have moderate to severe intellectual disability. This study aims to determine whether normal cognitive function is possible in this population and to describe clinical, biochemical and molecular characteristics of children with SLOS and normal intelligent quotient (IQ). The study included children with SLOS who underwent cognitive testing in four centers. All children with at least one IQ composite score above 80 were included in the study. Six girls, three boys with SLOS were found to have normal or low-normal IQ in a cohort of 145 children with SLOS. Major/multiple organ anomalies and low serum cholesterol levels were uncommon. No correlation with IQ and genotype was evident and no specific developmental profile were observed. Thus, normal or low-normal cognitive function is possible in SLOS. Further studies are needed to elucidate factors contributing to normal or low-normal cognitive function in children with SLOS.


Assuntos
Anormalidades Múltiplas/fisiopatologia , Cognição/fisiologia , Síndrome de Smith-Lemli-Opitz/fisiopatologia , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Testes de Inteligência , Masculino , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Síndrome de Smith-Lemli-Opitz/genética
12.
Am J Hum Genet ; 92(4): 632-6, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23561849

RESUMO

Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic mosaics, suggesting that a wild-type SLC35A2 allele may be required for survival. In infancy, the commonly used biomarker transferrin showed abnormal glycosylation, but its appearance became normal later in childhood, without any corresponding clinical improvement. This may indicate selection against cells carrying the mutant allele. To detect other individuals with such mutations, we suggest transferrin testing in infancy. Here, we report somatic mosaicism in CDG, and our work stresses the importance of combining both genetic and biochemical diagnoses.


Assuntos
Defeitos Congênitos da Glicosilação/etiologia , Proteínas de Transporte de Monossacarídeos/genética , Mosaicismo , Mutação/genética , Uridina Difosfato Galactose/metabolismo , Transporte Biológico , Estudos de Casos e Controles , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Exoma/genética , Feminino , Glicosilação , Humanos , Masculino , Espectrometria de Massas por Ionização por Electrospray , Transferrina/análise , Transferrina/metabolismo
13.
Genet Med ; 18(11): 1143-1150, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26986877

RESUMO

PURPOSE: Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is an autosomal-dominant disorder characterized by optic atrophy and intellectual disability caused by loss-of-function mutations in NR2F1. We report 20 new individuals with BBSOAS, exploring the spectrum of clinical phenotypes and assessing potential genotype-phenotype correlations. METHODS: Clinical features of individuals with pathogenic NR2F1 variants were evaluated by review of medical records. The functional relevance of coding nonsynonymous NR2F1 variants was assessed with a luciferase assay measuring the impact on transcriptional activity. The effects of two start codon variants on protein expression were evaluated by western blot analysis. RESULTS: We recruited 20 individuals with novel pathogenic NR2F1 variants (seven missense variants, five translation initiation variants, two frameshifting insertions/deletions, one nonframeshifting insertion/deletion, and five whole-gene deletions). All the missense variants were found to impair transcriptional activity. In addition to visual and cognitive deficits, individuals with BBSOAS manifested hypotonia (75%), seizures (40%), autism spectrum disorder (35%), oromotor dysfunction (60%), thinning of the corpus callosum (53%), and hearing defects (20%). CONCLUSION: BBSOAS encompasses a broad range of clinical phenotypes. Functional studies help determine the severity of novel NR2F1 variants. Some genotype-phenotype correlations seem to exist, with missense mutations in the DNA-binding domain causing the most severe phenotypes.Genet Med 18 11, 1143-1150.


Assuntos
Transtorno do Espectro Autista/genética , Fator I de Transcrição COUP/genética , Estudos de Associação Genética , Atrofia Óptica/genética , Adolescente , Adulto , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Masculino , Mutação de Sentido Incorreto , Atrofia Óptica/complicações , Atrofia Óptica/fisiopatologia , Linhagem
14.
Am J Med Genet A ; 161A(5): 1126-31, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23529842

RESUMO

Mosaic trisomy 22 is known to be compatible with life. However, there are fewer than 20 reports in the literature of live born children and even fewer reports describing their neurodevelopmental outcome. We report on two girls with mosaic trisomy 22 and normal development at ages 7 and 5 years. Both girls had characteristic dysmorphic features including flat nasal bridge, preauricular pits, epicanthic folds, and 5th finger clinodactyly. They also had left-sided hemihyperplasia and short stature. In addition, one of them also had ventricular non-compaction and probable asplenia, two unique features not previously reported. In review of the literature, prenatal and postnatal growth failures were the most common complications of mosaic trisomy 22. Skeletal abnormalities including body asymmetry and 5th finger clinodactyly were also common. While the majority of patients with mosaic trisomy 22 had abnormal cognitive development, normal development has also been documented. It is conceivable that children with trisomy 22 mosaicism, with minimal physical findings and normal development are under diagnosed. Our patients further highlight this potential for normal cognitive outcome and draw attention to possible skewing of unfavorable prognosis for the final developmental outcome in this population. Appropriate information regarding developmental outcome is critical for genetic counseling, especially in prenatal situations.


Assuntos
Anormalidades Múltiplas/genética , Transtornos Cromossômicos/diagnóstico , Cromossomos Humanos Par 22/genética , Trissomia/diagnóstico , Dissomia Uniparental/diagnóstico , Amniocentese , Criança , Pré-Escolar , Análise Citogenética , Diagnóstico Diferencial , Feminino , Humanos , Mosaicismo , Diagnóstico Pré-Natal
15.
Am J Med Genet A ; 161A(8): 1833-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23813913

RESUMO

Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Proteínas 14-3-3/genética , Encéfalo/anormalidades , Transtornos do Comportamento Infantil/patologia , Transtornos Globais do Desenvolvimento Infantil/patologia , Cromossomos Humanos Par 17/genética , Duplicação Gênica , Proteínas Associadas aos Microtúbulos/genética , Adolescente , Adulto , Encéfalo/patologia , Criança , Transtornos do Comportamento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fenótipo
16.
Mol Genet Genomic Med ; 11(3): e2116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461789

RESUMO

BACKGROUND: Loss of function variants and whole gene deletions of ZNF462 has been associated with a novel phenotype of developmental delay/intellectual disability and distinctive facial features. Over two dozen cases have been reported to date and the condition is now known as Weiss-Kruszka syndrome (OMIM# 618619). There are several older reports in the literature and DECIPER detailing individuals with interstitial deletions of 9q31 involving the ZNF462 gene. Many of the characteristic facial features described in these microdeletion cases are similar to those who have been diagnosed with Weiss-Kruszka syndrome. METHODS: We describe three additional patients with overlapping 9q31 deletions and compare the phenotypes of the microdeletion cases reported in the literature to Weiss-Kruszka syndrome. RESULTS: Phenotypic overlap was observed between patients with 9q31 deletions and Weiss-Kruszka syndrome. Several additional features were noted in 9q31 deletion patients, including hearing loss, small head circumference, palate abnormalities and short stature. CONCLUSIONS: The common region of overlap of microdeletion cases implicates ZNF462 as the main driver of the recognizable 9q31 microdeletion phenotype. The observation of additional features in patients with 9q31 microdeletions that are not reported in Weiss-Kruszka syndrome further suggests that other genes from the 9q31 region likely act synergistically with ZNF462 to affect phenotypic expression.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Humanos , Síndrome , Fenótipo , Estruturas Cromossômicas , Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética
17.
Sci Adv ; 9(17): eade0631, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126546

RESUMO

We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.


Assuntos
Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Proteínas Serina-Treonina Quinases , Peptídeos e Proteínas de Sinalização Intracelular
19.
Circ Res ; 106(9): 1549-52, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20378854

RESUMO

RATIONALE: The myosin-binding protein C isoform 3 (MYBPC3) variant Arg502Trp has been identified in multiple hypertrophic cardiomyopathy (HCM) cases, but compelling evidence to support or refute the pathogenicity of this variant is lacking. OBJECTIVE: To determine the prevalence, origin and clinical significance of the MYBPC3 Arg502Trp variant. METHODS AND RESULTS: The prevalence of MYBPC3 Arg502Trp was ascertained in 1414 sequential HCM patients of primarily European descent. MYBPC3 Arg502Trp was identified in 34 of these 1414 unrelated HCM patients. Segregation of MYBPC3 Arg502Trp with clinical status was assessed in family members. Disease haplotypes were examined in 17 families using two loci flanking MYBPC3. Family studies identified an additional 43 variant carriers, many with manifest disease, yielding a calculated odds ratio of 11 000:1 for segregation of MYBPC3 Arg502Trp with HCM. Analyses in 17 families showed at least 4 independent haplotypes flanked MYBPC3 Arg502Trp. Eight individuals (4 probands and 4 family members) also had another sarcomere protein gene mutation. Major adverse clinical events occurred in approximately 30% of MYBPC3 Arg502Trp carriers by age 50; these were significantly more likely (P<0.0001) when another sarcomere mutation was present. CONCLUSIONS: MYBPC3 Arg502Trp is the most common and recurrent pathogenic mutation in a diverse primarily European descent HCM cohort, occurring in 2.4% of patients. MYBPC3 Arg502Trp conveys a 340-fold increased risk for HCM by 45 years of age, when more than 50% of carriers have overt disease. HCM prognosis worsens when MYBPC3 Arg502Trp occurs in the setting of another sarcomere protein gene mutation.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação Puntual , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cardiomiopatia Hipertrófica/diagnóstico , Criança , Pré-Escolar , Humanos , Lactente , Pessoa de Meia-Idade , Adulto Jovem
20.
J Med Genet ; 48(6): 375-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21507892

RESUMO

BACKGROUND: Manitoba-oculo-tricho-anal (MOTA) syndrome is a rare condition defined by eyelid colobomas, cryptophthalmos and anophthalmia/microphthalmia, an aberrant hairline, a bifid or broad nasal tip, and gastrointestinal anomalies such as omphalocele and anal stenosis. Autosomal recessive inheritance had been assumed because of consanguinity in the Oji-Cre population of Manitoba and reports of affected siblings, but no locus or cytogenetic aberration had previously been described. METHODS AND RESULTS: This study shows that MOTA syndrome is caused by mutations in FREM1, a gene previously mutated in bifid nose, renal agenesis, and anorectal malformations (BNAR) syndrome. MOTA syndrome and BNAR syndrome can therefore be considered as part of a phenotypic spectrum that is similar to, but distinct from and less severe than, Fraser syndrome. Re-examination of Frem1(bat/bat) mutant mice found new evidence that Frem1 is involved in anal and craniofacial development, with anal prolapse, eyelid colobomas, telecanthus, a shortened snout and reduced philtral height present in the mutant mice, similar to the human phenotype in MOTA syndrome. CONCLUSIONS: The milder phenotypes associated with FREM1 deficiency in humans (MOTA syndrome and BNAR syndrome) compared to that resulting from FRAS1 and FREM2 loss of function (Fraser syndrome) are also consistent with the less severe phenotypes resulting from Frem1 loss of function in mice. Together, Fraser, BNAR and MOTA syndromes constitute a clinically overlapping group of FRAS-FREM complex diseases.


Assuntos
Anormalidades Múltiplas/genética , Anus Imperfurado/genética , Coloboma/genética , Proteínas da Matriz Extracelular/genética , Síndrome de Fraser/genética , Hipertelorismo/genética , Receptores de Interleucina/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Canal Anal/anormalidades , Canal Anal/patologia , Animais , Malformações Anorretais , Anus Imperfurado/patologia , Sequência de Bases , Criança , Pré-Escolar , Coloboma/patologia , Pálpebras/anormalidades , Feminino , Síndrome de Fraser/patologia , Dosagem de Genes , Hérnia Umbilical/genética , Hérnia Umbilical/patologia , Humanos , Hipertelorismo/patologia , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Nariz/anormalidades , Doenças Nasais/genética , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA