Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(8): e23037, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392372

RESUMO

The striatum is a brain structure involved in the control of voluntary movement. Striatum contains high amounts of retinoic acid, the active metabolite of vitamin A, as well as retinoid receptors, RARß and RXRγ. Previous studies revealed that disruption of retinoid signaling initiated during development is deleterious for striatal physiology and related motor functions. However, the alteration of retinoid signaling, and the importance of vitamin A supply during adulthood on striatal physiology and function has never been established. In the present study, we investigated the impact of vitamin A supply on striatal function. Adult Sprague-Dawley rats were fed with three specific diets, either sub-deficient, sufficient, or enriched in vitamin A (0.4, 5, and 20 international units [IU] of retinol per g of diet, respectively) for 6 months. We first validated that vitamin A sub-deficient diet in adult rats constitutes a physiological model of retinoid signaling reduction in the striatum. We then revealed subtle alterations of fine motor skills in sub-deficient rats using a new behavioral apparatus specifically designed to test forepaw reach-and-grasp skills relying on striatal function. Finally, we showed using qPCR analysis and immunofluorescence that the striatal dopaminergic system per se was not affected by vitamin A sub-deficiency at adult age. Rather, cholinergic synthesis in the striatum and µ-opioid receptor expression in striosomes sub-territories were the most affected by vitamin A sub-deficiency starting at adulthood. Taken together these results revealed that retinoid signaling alteration at adulthood is associated with motor learning deficits together with discrete neurobiological alterations in the striatum.


Assuntos
Corpo Estriado , Vitamina A , Ratos , Animais , Ratos Sprague-Dawley , Retinoides , Dieta
2.
J Equine Sci ; 35(1): 9-14, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524755

RESUMO

A horse's body condition impacts every aspect of its life, including reproduction, performance, and health. Obesity and equine metabolic syndrome (EMS) are common in Nigeria; hence, early identification of a horse's obesity status by the owner is key to avoiding associated health issues such as EMS. Our study aimed to determine whether horse owners could effectively estimate their horses' body condition scores (BCSs) and cresty neck scores (CNSs). A total of 50 adult sedentary West African Barb horses owned by 50 different people were enrolled in the study. Body condition scores (BCSs) and cresty neck scores (CNSs) were assessed on scales of 1-9 and 0-5, respectively, by an experienced veterinarian and owners. The latter had no veterinary background, received no prior education, and assessed their horses based on provided visual aids and descriptions. The BCS estimates of the experienced veterinarian and owners were slightly in agreement (k=0.209), while there was moderate agreement (k=0.547) between the CNS estimates of the experienced veterinarian and the owners. The proportion of obesity based on the experienced veterinarian's estimation (32%) was higher than that of the owners (18%). The proportion of nuchal crest adiposity based on the experienced veterinarian's (38%) estimation was slightly lower than that of the owners (42%). A larger proportion of the owners underestimated their horses' BCSs and CNSs. We conclude that owners cannot effectively estimate their horses' BCSs and CNSs. It is imperative that they are informed about the health issues associated with obesity and are taught how to effectively estimate BCS and CNS.

3.
Blood ; 136(21): 2457-2468, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32678895

RESUMO

Congenital erythropoietic porphyria (CEP) is an inborn error of heme synthesis resulting from uroporphyrinogen III synthase (UROS) deficiency and the accumulation of nonphysiological porphyrin isomer I metabolites. Clinical features are heterogeneous among patients with CEP but usually combine skin photosensitivity and chronic hemolytic anemia, the severity of which is related to porphyrin overload. Therapeutic options include symptomatic strategies only and are unsatisfactory. One promising approach to treating CEP is to reduce the erythroid production of porphyrins through substrate reduction therapy by inhibiting 5-aminolevulinate synthase 2 (ALAS2), the first and rate-limiting enzyme in the heme biosynthetic pathway. We efficiently reduced porphyrin accumulation after RNA interference-mediated downregulation of ALAS2 in human erythroid cellular models of CEP disease. Taking advantage of the physiological iron-dependent posttranscriptional regulation of ALAS2, we evaluated whether iron chelation with deferiprone could decrease ALAS2 expression and subsequent porphyrin production in vitro and in vivo in a CEP murine model. Treatment with deferiprone of UROS-deficient erythroid cell lines and peripheral blood CD34+-derived erythroid cultures from a patient with CEP inhibited iron-dependent protein ALAS2 and iron-responsive element-binding protein 2 expression and reduced porphyrin production. Furthermore, porphyrin accumulation progressively decreased in red blood cells and urine, and skin photosensitivity in CEP mice treated with deferiprone (1 or 3 mg/mL in drinking water) for 26 weeks was reversed. Hemolysis and iron overload improved upon iron chelation with full correction of anemia in CEP mice treated at the highest dose of deferiprone. Our findings highlight, in both mouse and human models, the therapeutic potential of iron restriction to modulate the phenotype in CEP.


Assuntos
Anemia Hemolítica/tratamento farmacológico , Deferiprona/uso terapêutico , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Transtornos de Fotossensibilidade/tratamento farmacológico , Porfiria Eritropoética/tratamento farmacológico , 5-Aminolevulinato Sintetase/antagonistas & inibidores , 5-Aminolevulinato Sintetase/biossíntese , 5-Aminolevulinato Sintetase/genética , Adulto , Anemia Hemolítica/etiologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Feminino , Técnicas de Introdução de Genes , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/etiologia , Leucemia Eritroblástica Aguda/patologia , Camundongos , Células-Tronco de Sangue Periférico/efeitos dos fármacos , Células-Tronco de Sangue Periférico/metabolismo , Transtornos de Fotossensibilidade/etiologia , Porfiria Aguda Intermitente/metabolismo , Porfiria Eritropoética/complicações , Porfirinas/biossíntese , Interferência de RNA , RNA Interferente Pequeno/farmacologia
4.
BJU Int ; 129(2): 234-242, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34133814

RESUMO

OBJECTIVE: To assess automatic computer-aided in situ recognition of the morphological features of pure and mixed urinary stones using intra-operative digital endoscopic images acquired in a clinical setting. MATERIALS AND METHODS: In this single-centre study, a urologist with 20 years' experience intra-operatively and prospectively examined the surface and section of all kidney stones encountered. Calcium oxalate monohydrate (COM) or Ia, calcium oxalate dihydrate (COD) or IIb, and uric acid (UA) or IIIb morphological criteria were collected and classified to generate annotated datasets. A deep convolutional neural network (CNN) was trained to predict the composition of both pure and mixed stones. To explain the predictions of the deep neural network model, coarse localization heat-maps were plotted to pinpoint key areas identified by the network. RESULTS: This study included 347 and 236 observations of stone surface and stone section, respectively; approximately 80% of all stones exhibited only one morphological type and approximately 20% displayed two. A highest sensitivity of 98% was obtained for the type 'pure IIIb/UA' using surface images. The most frequently encountered morphology was that of the type 'pure Ia/COM'; it was correctly predicted in 91% and 94% of cases using surface and section images, respectively. Of the mixed type 'Ia/COM + IIb/COD', Ia/COM was predicted in 84% of cases using surface images, IIb/COD in 70% of cases, and both in 65% of cases. With regard to mixed Ia/COM + IIIb/UA stones, Ia/COM was predicted in 91% of cases using section images, IIIb/UA in 69% of cases, and both in 74% of cases. CONCLUSIONS: This preliminary study demonstrates that deep CNNs are a promising method by which to identify kidney stone composition from endoscopic images acquired intra-operatively. Both pure and mixed stone composition could be discriminated. Collected in a clinical setting, surface and section images analysed by a deep CNN provide valuable information about stone morphology for computer-aided diagnosis.


Assuntos
Cálculos Renais , Cálculos Urinários , Oxalato de Cálcio , Endoscopia , Humanos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/cirurgia , Ácido Úrico , Cálculos Urinários/diagnóstico por imagem , Cálculos Urinários/cirurgia
5.
Int J Obes (Lond) ; 45(3): 588-598, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33223517

RESUMO

BACKGROUND: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS: As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION: Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.


Assuntos
Cognição/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina A , Animais , Eixo Encéfalo-Intestino/efeitos dos fármacos , Hipocampo/química , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Vitamina A/administração & dosagem , Vitamina A/farmacologia
6.
Chimia (Aarau) ; 75(12): 1054-1057, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34920780

RESUMO

Two experimental methods, the Nile Red dye extraction and the Williamson ether synthesis in biphasic conditions, were used to characterize the mixing performance of a new cheap impinging jet colliding mixer from Gjosa and to compare it to other commercial micromixers (Caterpillar CPMM-R300, T-mixer, LTF MR-MX and LTF MR-MS). The Nile Red method shows that the Caterpillar mixer is the best one. Excellent results are also achieved with two Gjosa mixers in series. These results are not reflected in the Williamson ether synthesis, where the best mixer is the Gjosa one.


Assuntos
Projetos de Pesquisa
7.
Hum Mol Genet ; 26(8): 1565-1576, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334762

RESUMO

Congenital erythropoietic porphyria (CEP) is an inborn error of heme biosynthesis characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in deleterious porphyrin accumulation in blood cells responsible for hemolytic anemia and cutaneous photosensitivity. We analyzed here the molecular basis of UROS impairment associated with twenty nine UROS missense mutations actually described in CEP patients. Using a computational and biophysical joint approach we predicted that most disease-causing mutations would affect UROS folding and stability. Through the analysis of enhanced green fluorescent protein-tagged versions of UROS enzyme we experimentally confirmed these data and showed that thermodynamic instability and premature protein degradation is a major mechanism accounting for the enzymatic deficiency associated with twenty UROS mutants in human cells. Since the intracellular loss in protein homeostasis is in excellent agreement with the in vitro destabilization, we used molecular dynamic simulation to rely structural 3D modification with UROS disability. We found that destabilizing mutations could be clustered within three types of mechanism according to side chain rearrangements or contact alterations within the pathogenic UROS enzyme so that the severity degree correlated with cellular protein instability. Furthermore, proteasome inhibition using bortezomib, a clinically available drug, significantly enhanced proteostasis of each unstable UROS mutant. Finally, we show evidence that abnormal protein homeostasis is a prevalent mechanism responsible for UROS deficiency and that modulators of UROS proteolysis such as proteasome inhibitors or chemical chaperones may represent an attractive therapeutic option to reduce porphyrin accumulation and prevent skin photosensitivity in CEP patients when the genotype includes a missense variant.


Assuntos
Mutação de Sentido Incorreto/genética , Porfiria Eritropoética/genética , Relação Estrutura-Atividade , Uroporfirinogênio III Sintetase/genética , Biologia Computacional , Homeostase , Humanos , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Dobramento de Proteína , Uroporfirinogênio III Sintetase/química
8.
Biochem Biophys Res Commun ; 517(4): 677-683, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402115

RESUMO

Primary hyperoxaluria type 1 (PH1) is an inherited metabolic disorder caused by a deficiency of the peroxisomal enzyme alanine-glyoxylate aminotransferase (AGT), which leads to overproduction of oxalate by the liver and results in urolithiasis, nephrocalcinosis and renal failure. The only curative treatment for PH1 is combined liver and kidney transplantation, which is limited by the lack of suitable organs, significant complications, and the life-long requirement for immunosuppressive agents to maintain organ tolerance. Hepatocyte-like cells (HLCs) generated from CRISPR/Cas9 genome-edited human-induced pluripotent stem cells would offer an attractive unlimited source of autologous gene-corrected liver cells as an alternative to orthotopic liver transplantation (OLT). Here we report the CRISPR/Cas9 nuclease-mediated gene targeting of a single-copy AGXT therapeutic minigene into the safe harbour AAVS1 locus in PH1-induced pluripotent stem cells (PH1-iPSCs) without off-target inserts. We obtained a robust expression of a codon-optimized AGT in HLCs derived from AAVS1 locus-edited PH1-iPSCs. Our study provides the proof of concept that CRISPR/Cas9-mediated integration of an AGXT minigene into the AAVS1 safe harbour locus in patient-specific iPSCs is an efficient strategy to generate functionally corrected hepatocytes, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of PH1.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Terapia Genética , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Células-Tronco Pluripotentes Induzidas/patologia , Animais , Sequência de Bases , Loci Gênicos , Vetores Genéticos/metabolismo , Hepatócitos/citologia , Humanos , Camundongos
9.
Biochem Biophys Res Commun ; 520(2): 297-303, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31601421

RESUMO

Clinical severity is heterogeneous among patients suffering from congenital erythropoietic porphyria (CEP) suggesting a modulation of the disease (UROS deficiency) by environmental factors and modifier genes. A KI model of CEP due to a missense mutation of UROS gene present in human has been developed on 3 congenic mouse strains (BALB/c, C57BL/6, and 129/Sv) in order to study the impact of genetic background on disease severity. To detect putative modifiers of disease expression in congenic mice, hematologic data, iron parameters, porphyrin content and tissue samples were collected. Regenerative hemolytic anemia, a consequence of porphyrin excess in RBCs, had various expressions: 129/Sv mice were more hemolytic, BALB/c had more regenerative response to anemia, C57BL/6 were less affected. Iron status and hemolysis level were directly related: C57BL/6 and BALB/c had moderate hemolysis and active erythropoiesis able to reduce iron overload in the liver, while, 129/Sv showed an imbalance between iron release due to hemolysis and erythroid use. The negative control of hepcidin on the ferroportin iron exporter appeared strain specific in the CEP mice models tested. Full repression of hepcidin was observed in BALB/c and 129/Sv mice, favoring parenchymal iron overload in the liver. Unchanged hepcidin levels in C57BL/6 resulted in retention of iron predominantly in reticuloendothelial tissues. These findings open the field for potential therapeutic applications in the human disease, of hepcidin agonists and iron depletion in chronic hemolytic anemia.


Assuntos
Hepcidinas/metabolismo , Ferro/metabolismo , Porfiria Eritropoética/genética , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Feminino , Hemólise , Hepcidinas/genética , Sobrecarga de Ferro/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Porfiria Eritropoética/etiologia , Porfiria Eritropoética/metabolismo , Porfirinas/metabolismo , Uroporfirinogênio III Sintetase/genética
12.
Proc Natl Acad Sci U S A ; 110(45): 18238-43, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145442

RESUMO

Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.


Assuntos
Modelos Moleculares , Porfiria Eritropoética/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo , Animais , Western Blotting , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Dicroísmo Circular , Primers do DNA/genética , Células Eritroides/metabolismo , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Porfiria Eritropoética/genética , Porfirinas/sangue , Porfirinas/urina , Dobramento de Proteína , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Fluorescência , Uroporfirinogênio III Sintetase/química
13.
Am J Hum Genet ; 91(1): 109-21, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22795135

RESUMO

Congenital erythropoietic porphyria (CEP) is due to a deficiency in the enzymatic activity of uroporphyrinogen III synthase (UROS); such a deficiency leads to porphyrin accumulation and results in skin lesions and hemolytic anemia. CEP is a candidate for retrolentivirus-mediated gene therapy, but recent reports of insertional leukemogenesis underscore the need for safer methods. The discovery of induced pluripotent stem cells (iPSCs) has opened up new horizons in gene therapy because it might overcome the difficulty of obtaining sufficient amounts of autologous hematopoietic stem cells for transplantation and the risk of genotoxicity. In this study, we isolated keratinocytes from a CEP-affected individual and generated iPSCs with two excisable lentiviral vectors. Gene correction of CEP-derived iPSCs was obtained by lentiviral transduction of a therapeutic vector containing UROS cDNA under the control of an erythroid-specific promoter shielded by insulators. One iPSC clone, free of reprogramming genes, was obtained with a single proviral integration of the therapeutic vector in a genomic safe region. Metabolic correction of erythroblasts derived from iPSC clones was demonstrated by the disappearance of fluorocytes. This study reports the feasibility of porphyria gene therapy with the use of iPSCs.


Assuntos
Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/transplante , Porfiria Eritropoética/terapia , Uroporfirinogênio III Sintetase/genética , Diferenciação Celular , Estudos de Viabilidade , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Humanos , Queratinócitos/citologia , Lentivirus/genética , Porfiria Eritropoética/genética , Transdução Genética
14.
Life (Basel) ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792603

RESUMO

Porphyria denotes a heterogeneous group of metabolic disorders caused by anomalies in the biosynthesis of heme, a crucial component of hemoglobin and other vital hemoproteins [...].

15.
Life (Basel) ; 14(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255745

RESUMO

(1) Background: Congenital erythropoietic porphyria (CEP), named Günther's disease, is a rare recessive type of porphyria, resulting from deficient uroporphyrinogen III synthase (UROS), the fourth enzyme of heme biosynthesis. The phenotype ranges from extremely severe perinatal onset, with life-threatening hemolytic anaemia, to mild or moderate cutaneous involvement in late-onset forms. This work reviewed the perinatal CEP cases recorded in France in order to analyse their various presentations and evolution. (2) Methods: Clinical and biological data were retrospectively collected through medical and published records. (3) Results: Twenty CEP cases, who presented with severe manifestations during perinatal period, were classified according to the main course of the disease: antenatal features, acute neonatal distress and postnatal diagnosis. Antenatal symptoms (seven patients) were mainly hydrops fetalis, hepatosplenomegaly, anemia, and malformations. Six of them died prematurely. Five babies showed acute neonatal distress, associated with severe anemia, thrombocytopenia, hepatosplenomegaly, liver dysfunction, and marked photosensitivity leading to diagnosis. The only two neonates who survived underwent hematopoietic stem cell transplantation (HSCT). Common features in post-natal diagnosis (eight patients) included hemolytic anemia, splenomegaly, skin sensitivity, and discoloured teeth and urine. All patients underwent HSCT, with success for six of them, but with fatal complications in two patients. The frequency of the missense variant named C73R is striking in antenatal and neonatal presentations, with 9/12 and 7/8 independent alleles, respectively. (4) Conclusions: The most recent cases in this series are remarkable, as they had a less fatal outcome than expected. Regular transfusions from the intrauterine period and early access to HSCT are the main objectives.

16.
Mol Ther Oncol ; 32(1): 200772, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596305

RESUMO

Thanks to its very high genome-editing efficiency, CRISPR-Cas9 technology could be a promising anticancer weapon. Clinical trials using CRISPR-Cas9 nuclease to ex vivo edit and alter immune cells are ongoing. However, to date, this strategy still has not been applied in clinical practice to directly target cancer cells. Targeting a canonical metabolic pathway essential to good functioning of cells without potential escape would represent an attractive strategy. We propose to mimic a genetic metabolic disorder in cancer cells to weaken cancer cells, independent of their genomic abnormalities. Mutations affecting the heme biosynthesis pathway are responsible for porphyria, and most of them are characterized by an accumulation of toxic photoreactive porphyrins. This study aimed to mimic porphyria by using CRISPR-Cas9 to inactivate UROS, leading to porphyrin accumulation in a prostate cancer model. Prostate cancer is the leading cancer in men and has a high mortality rate despite therapeutic progress, with a primary tumor accessible to light. By combining light with gene therapy, we obtained high efficiency in vitro and in vivo, with considerable improvement in the survival of mice. Finally, we achieved the preclinical proof-of-principle of performing cancer CRISPR gene therapy.

17.
Mol Genet Metab Rep ; 39: 101076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38601120

RESUMO

Acute hepatic porphyrias are inherited metabolic disorders of heme biosynthesis characterized by the accumulation of toxic intermediate metabolites responsible for disabling acute neurovisceral attacks. Givosiran is a newly approved siRNA-based treatment of acute hepatic porphyria targeting the first and rate-limiting δ-aminolevulinic acid synthase 1 (ALAS1) enzyme of heme biosynthetic pathway. We described a 72-year old patient who presented with severe inaugural neurological form of acute intermittent porphyria evolving for several years which made her eligible for givosiran administration. On initiation of treatment, the patient developed a major hyperhomocysteinemia (>400 µmol/L) which necessitated to discontinue the siRNA-based therapy. A thorough metabolic analysis in the patient suggests that hyperhomocysteinemia could be attributed to a functional deficiency of cystathionine ß-synthase (CBS) enzyme induced by givosiran. Long-term treatment with vitamin B6, a cofactor of CBS, allowed to normalize homocysteinemia while givosiran treatment was maintained. We review the recently published cases of hyperhomocysteinemia in acute hepatic porphyria and its exacerbation under givosiran therapy. We also discuss the benefits of vitamin B6 supplementation in the light of hypothetic pathophysiological mechanisms responsible for hyperhomocysteinemia in these patients. Our results confirmed the importance of monitoring homocysteine metabolism and vitamin status in patients with acute intermittent porphyria in order to improve management by appropriate vitamin supplementation during givosiran treatment.

18.
Hum Mol Genet ; 19(4): 684-96, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19959526

RESUMO

Glycogen storage disease type II (GSDII) or Pompe disease is an autosomal recessive disorder caused by acid alpha-glucosidase (GAA) deficiency, leading to lysosomal glycogen accumulation. Affected individuals store glycogen mainly in cardiac and skeletal muscle tissues resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severe infantile form. Enzyme replacement therapy has already proved some efficacy, but results remain variable especially in skeletal muscle. Substrate reduction therapy was successfully used to improve the phenotype in several lysosomal storage disorders. We have recently demonstrated that shRNA-mediated reduction of glycogen synthesis led to a significant reduction of glycogen accumulation in skeletal muscle of GSDII mice. In this paper, we analyzed the effect of a complete genetic elimination of glycogen synthesis in the same GSDII model. GAA and glycogen synthase 1 (GYS1) KO mice were inter-crossed to generate a new double-KO model. GAA/GYS1-KO mice exhibited a profound reduction of the amount of glycogen in the heart and skeletal muscles, a significant decrease in lysosomal swelling and autophagic build-up as well as a complete correction of cardiomegaly. In addition, the abnormalities in glucose metabolism and insulin tolerance observed in the GSDII model were corrected in double-KO mice. Muscle atrophy observed in 11-month-old GSDII mice was less pronounced in GAA/GYS1-KO mice, resulting in improved exercise capacity. These data demonstrate that long-term elimination of muscle glycogen synthesis leads to a significant improvement of structural, metabolic and functional defects in GSDII mice and offers a new perspective for the treatment of Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Glicogênio/biossíntese , Músculo Esquelético/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/terapia , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
19.
Front Nutr ; 9: 811843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178422

RESUMO

BACKGROUND: The mechanisms leading to a loss of dopaminergic (DA) neurons from the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) have multifactorial origins. In this context, nutrition is currently investigated as a modifiable environmental factor for the prevention of PD. In particular, initial studies revealed the deleterious consequences of vitamin A signaling failure on dopamine-related motor behaviors. However, the potential of vitamin A supplementation itself to prevent neurodegeneration has not been established yet. OBJECTIVE: The hypothesis tested in this study is that preventive vitamin A supplementation can protect DA neurons in a rat model of PD. METHODS: The impact of a 5-week preventive supplementation with vitamin A (20 IU/g of diet) was measured on motor and neurobiological alterations induced by 6-hydroxydopamine (6-OHDA) unilateral injections in the striatum of rats. Rotarod, step test and cylinder tests were performed up to 3 weeks after the lesion. Post-mortem analyses (retinol and monoamines dosages, western blots, immunofluorescence) were performed to investigate neurobiological processes. RESULTS: Vitamin A supplementation improved voluntary movements in the cylinder test. In 6-OHDA lesioned rats, a marked decrease of dopamine levels in striatum homogenates was measured. Tyrosine hydroxylase labeling in the SNc and in the striatum was significantly decreased by 6-OHDA injection, without effect of vitamin A. By contrast, vitamin A supplementation increased striatal expression of D2 and RXR receptors in the striatum of 6-OHDA lesioned rats. CONCLUSIONS: Vitamin A supplementation partially alleviates motor alterations and improved striatal function, revealing a possible beneficial preventive approach for PD.

20.
Phys Med Biol ; 67(16)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35905728

RESUMO

Objective.To assess the performance and added value of processing complete digital endoscopic video sequences for the automatic recognition of stone morphological features during a standard-of-care intra-operative session.Approach.A computer-aided video classifier was developed to predictin-situthe morphology of stone using an intra-operative digital endoscopic video acquired in a clinical setting. Using dedicated artificial intelligence (AI) networks, the proposed pipeline selects adequate frames in steady sequences of the video, ensures the presence of (potentially fragmented) stones and predicts the stone morphologies on a frame-by-frame basis. The automatic endoscopic stone recognition (A-ESR) is subsequently carried out by mixing all collected morphological observations.Main results.The proposed technique was evaluated on pure (i.e. include one morphology) and mixed (i.e. include at least two morphologies) stones involving 'Ia/Calcium Oxalate Monohydrate' (COM), 'IIb/Calcium Oxalate Dihydrate' (COD) and 'IIIb/Uric Acid' (UA) morphologies. The gold standard ESR was provided by a trained endo-urologist and confirmed by microscopy and infra-red spectroscopy. For the AI-training, 585 static images were collected (349 and 236 observations of stone surface and section, respectively) and used. Using the proposed video classifier, 71 digital endoscopic videos were analyzed: 50 exhibited only one morphological type and 21 displayed two. Taken together, both pure and mixed stone types yielded a mean diagnostic performances as follows: balanced accuracy = [88 ± 6] (min = 81)%, sensitivity = [80 ± 13] (min = 69)%, specificity = [95 ± 2] (min = 92)%, precision = [78 ± 12] (min = 62)% and F1-score = [78 ± 7] (min = 69)%.Significance.These results demonstrate that AI applied on digital endoscopic video sequences is a promising tool for collecting morphological information during the time-course of the stone fragmentation process without resorting to any human intervention for stone delineation or the selection of adequate steady frames.


Assuntos
Inteligência Artificial , Cálculos Renais , Oxalato de Cálcio/química , Endoscopia , Humanos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA