Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 213: 113722, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35728638

RESUMO

Employing dyes in different industrial sectors has produced a serious threat to the environment and living organisms of water bodies and land. For the decontamination of such toxic dyes, efforts have been made to develop an efficient, feasible, and low maintenance processes. In this context, chitosan-zinc selenide (CS-ZnSe) nanoparticles were prepared through chemical reduction method as the efficient photocatalysts for the decontamination of toxic dyes through photocatalysis. Photocatalyst's synthesis was confirmed with the help of FTIR spectroscopy. XRD indicated the hexagonal crystal structure of the CS-ZnSe with a crystallite size of 12 nm. SEM micrographs showed the average nano photocatalyst size as 25 nm. EDX analysis was employed to determine the elemental composition of the CS-ZnSe. An excellent photocatalytic degradation efficiency for tartrazine and sunset yellow dyes was obtained using CS-ZnSe. The results showed a 98% and 97% degradation efficiency for tartrazine dye and sunset yellow (SY) dye at optimized conditions of time (3 h), pH (5), dye concentration (30 ppm), catalyst dosage (0.09 g and 0.01 g) , and at a temperature of 35 °C. Findings of the photocatalytic degradation process fitted well with first-order kinetics for both the dyes. Rate constant, 'K' value was found to be 0.001362 min-1 and 0.001257 min-1 for tartrazine and SY dyes, respectively. While value for (correlation coefficient, R2) was 0.99307 and 0.99277 for tartrazine and sunset yellow dyes, respectively. Recyclability of the photocatalyst was confirmed using it for consecutive cycles to degrade organic dyes. Results showed that the CH-ZnS possesses excellent efficiency in decontaminating organic dyes from industrial wastewater.


Assuntos
Quitosana , Nanopartículas , Compostos Azo/química , Corantes/química , Compostos de Selênio , Tartrazina/análise , Tartrazina/química , Compostos de Zinco
2.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684711

RESUMO

The paper describes the development of an electrochemical sensor to be used for the determination of synthetic food colorants such as Sunset Yellow FCF (SY) and Tartrazine (TZ). The sensor is a carbon paper (CP) electrode, manufactured by using hot lamination technology and volume modified with fine-grained graphite powder (GrP). The sensor (GrP/CP) was characterized by scanning electron microscopy, energy dispersive spectrometry, electrochemical impedance analysis, cyclic, linear sweep and differential pulse voltammetry. The mechanism of SY and TZ electrochemical oxidation on GrP/CP was studied. The developed sensor has good electron transfer characteristics and low electron resistance, high sensitivity and selectivity. Applying the differential pulse mode, linear dynamic ranges of 0.005-1.0 µM and 0.02-7.5 µM with limits of detection of 0.78 nM and 8.2 nM for SY and TZ, respectively, were obtained. The sensor was used to detect SY and TZ in non-alcoholic and alcoholic drinks. The results obtained from drink analysis prove good reproducibility (RSD ≤ 0.072) and accuracy (recovery 96-104%).


Assuntos
Grafite , Tartrazina , Compostos Azo , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Limite de Detecção , Pós , Reprodutibilidade dos Testes , Tartrazina/análise , Tartrazina/química
3.
J Fluoresc ; 31(1): 185-193, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33196957

RESUMO

This article has introduced and examined a novel and green approach for the very first time, which had been developed for the synthesis of carbon dots (CDs) and performed through the utilization of Elaeagnus angustifolia (E. A) as a natural carbon source. This straightforward procedure has been based upon a hydrothermal treatment with a quantum yield of 16.8% that had been designed to synthesize water-soluble CDs in one step and result in a satisfying fluorescence. Additionally, we have attempted to assess the sensing system that had been exerted through the usage of CDs for the detection of food colorant tartrazine, since they can function as a fluorescent sensor due to the interplay that occurs among tartrazine and CDs leading to the quenching of their fluorescence. The detection limit has been measured to be equaled to 0.086 µM (86 nM) and the linear range has been observed to be 0.47-234 µM. The proposed highly sensitive and simple method has exhibited an excellent selectivity and proved to be effectively applicable for distinguishing the tartrazine of real samples.


Assuntos
Elaeagnaceae/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Tartrazina/análise , Química Verde , Espectrometria de Fluorescência , Tartrazina/química
4.
Anal Bioanal Chem ; 413(5): 1485-1492, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33462660

RESUMO

In this work, an ultrasensitive sensing system based on fluorescent carbon dots (CDs) was developed for the tartrazine (Tar) determination. The CDs were prepared via a simple one-pot hydrothermal method with m-phenylenediamine as the only precursor. The physical and chemical properties were in detail characterized by transmission electron microscopy (TEM), MALDI-TOF MS, UV-vis absorption and photoluminescence (PL) spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy (FTIR). Upon exposure to Tar, the fluorescence of CDs was efficiently quenched via the dynamic interaction between CDs and Tar as well as the inner filter effect (IFE). With this information, the CDs were proposed as a fluorescence probe for Tar detection. It was found that CDs had high sensitivity and selectivity for Tar sensing, and the linear relationship was observed in the range of 0.01-25.0 µM with the corresponding detection limit (3σ/k) of 12.4 nM, which is much more sensitive than any of the existed CD-based sensing platform. The investigated sensing system was finally utilized for Tar sensing in various food matrices with a high degree of accuracy. The spiked recoveries were in a range of 96.4-105.2%, and the relative standard deviations (RSDs) were lower than 4.13%. This work highlights the great application prospects of CDs for Tar sensing in a rapid, simple, and sensitive way.


Assuntos
Carbono/química , Análise de Alimentos/métodos , Corantes de Alimentos/análise , Nanopartículas/química , Tartrazina/análise , Corantes Fluorescentes/química , Limite de Detecção , Nanopartículas/ultraestrutura , Espectrometria de Fluorescência/métodos
5.
Drug Chem Toxicol ; 44(5): 447-457, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31020858

RESUMO

A novel nanocomposite film of chitosan/graphene oxide (CHIT/GO)/multi-walled carbon nanotubes (MWCNTs)/gold nanoparticles (AuNPs) was applied to fabricate glassy carbon electrode (CHIT/GO/MWCNTs/AuNPs/GCE) for the determination of Tartrazine (TZ), synthetic dyes in food products. The electrochemical sensors found it to be highly sensitive by combining the signal amplification properties of GO and the excellent electronic and antifouling properties of MWCNTs. The CHIT/GO/MWCNTs/AuNPs/GCE exhibited as superior electron transfer materials and possesses intercalation properties which provide synergistic influence on the increment of the current signals. The optimum conditions were found at pH 7, 30 s, and 0.3 Vs-1. The modified GCE obtained with a linear response ranging from 10 to 100 mg mL-1 (r2 = 0.99037) with a sensitivity of 0.018 µA µM-1. The limit of detection (LOD) and quantification obtained were 1.45 and 4.83 mg mL-1, respectively. The determination of TZ in spiked samples was reliable with recovery percentage from 94.52 to 109.0%. The developed sensor successfully tested in the determination of TZ analyte in commercial candy, jelly, and soft drinks with acceptable results.


Assuntos
Técnicas Eletroquímicas/métodos , Corantes de Alimentos/análise , Nanocompostos/química , Tartrazina/análise , Quitosana/química , Eletrodos , Ouro/química , Grafite/química , Limite de Detecção , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Reprodutibilidade dos Testes
6.
Artigo em Inglês | MEDLINE | ID: mdl-32163004

RESUMO

This study aimed to synthesize Bi2Fe4O9 and apply it to the degradation of tartrazine yellow dye. Bi2Fe4O9 was synthesized using the solid-state reaction and the Pechini method. The materials obtained were characterized using X-ray diffraction (XRD), visible ultraviolet spectroscopy (UV-Vis) and field emission scanning electron microscopy (FEG). The microscopic images revealed a morphological difference between the two materials in which the material obtained by the Pechini method is the most porous and have the largest surface area. The pellet obtained by the Pechini method was seen to have a lower bandgap value when compared with the sample solid state reaction. In the photocatalysis tests, the best performance was also that of the material obtained by the Pechini method, with 99.34% degradation, while the material obtained by solid state reaction showed 85.86% in 120 minutes. The solution degraded with the material obtained by the Pechini method presented 81.66% of mineralization while the solution with the material obtained by solid state reaction showed 60.97% of mineralization. The results confirmed that the material obtained by both syntheses is able to maintain its effectiveness after 10 repetitions of the photocatalytic process, proving to be promising for waste treatment in the industrial field.


Assuntos
Bismuto/química , Corantes/análise , Compostos Férricos/química , Tartrazina/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Compostos Férricos/síntese química , Microscopia Eletrônica de Varredura , Difração de Raios X
7.
J Environ Sci Health B ; 54(3): 176-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30430906

RESUMO

The use of pesticides in horticultural sector in Niger has become an integral part of modern agriculture. Nevertheless, their inappropriate use can generate negative health effects to operators. A study was carried out among Kongou farmers in order to assess their potential dermal exposure (PDE). The UK-POEM model was used to quantify the PDE during mixing/loading and application according to the local practices. In order to determine which parts of the operator body are subject to most contamination during spraying and to validate the theoretical model used, a patch method was used with a tartrazine dye. The deposits of the tartrazine on patches were measured by colorimetry thanks to the absorbance value determined after their extraction in water and a calibration curve. A total of ten spraying trials (five trials with the hand-held sprayer and five others with the backpack sprayer) were performed by different producers at 0.5 and 1 m height for each trial. The survey shows that 92% of the farmers are illiterate and the most common active substances identified are organophosphate or pyrethroids insecticides. Seventy percent of operators do not use any personal protective equipment (PPE) during mixing/loading or spraying. The predictive systemic exposure levels vary from 0.0027 mg kg-1 bw per day to 0.7692 mg kg-1 bw per day for backpack sprayer and from 0.0261 mg kg-1 bw per day to 0.9788 mg kg-1 bw per day for hand-held sprayer, several times higher the Acceptable Operator Exposure Level (AOEL) for some actives substances. Theoretical modeling indicates more exposure of operator by a hand-held sprayer than a backpack sprayer. The patch method results show that the deposits of dye increase when the position of sprayer nozzle increases from 0.5 to 1 m for the two sprayers. All parts of the operator body are contaminated but lower body parts and chest are the most exposed. The patch method results also show that hand spraying contaminates operator more than backpack spraying, confirming the results of the theoretical model.


Assuntos
Agricultura/métodos , Fazendeiros , Exposição Ocupacional/análise , Praguicidas/análise , Adulto , Agricultura/instrumentação , Corantes/análise , Fazendas , Feminino , Humanos , Masculino , Níger , Equipamento de Proteção Individual , Pele/efeitos dos fármacos , Tartrazina/análise
8.
Luminescence ; 33(2): 349-355, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29094465

RESUMO

In this work, a simple, rapid, sensitive, selective spectrofluorimetric method was applied to detect tartrazine. The fluorescence of acriflavine could be efficiently quenched by tartrazine. The method manifested real time response as well as presented satisfied linear relationship to tartrazine. The linear response range of tartrazine (R2 = 0.9995) was from 0.056 to 5 µmol L-1 . The detection limit (3σ/k) was 0.017 µmol L-1 , indicating that this method could be applied to detect traces of tartrazine. The accuracy and precision of the method was further assured by recovery studies via a standard addition method, with percentage recoveries in the range of 96.0% to 103.0%. Moreover, a quenching mechanism was investigated systematically by the linear plots at varying temperatures based on the Stern-Volmer equation, fluorescence lifetime and UV-visible absorption spectra, all of which proved to be static quenching. This sensitive, selective assay possessed a great application prospect for the food industry owing to its simplicity and rapidity for the detection of tartrazine.


Assuntos
Acriflavina/química , Bebidas Gaseificadas/análise , Corantes de Alimentos/análise , Espectrofotometria Ultravioleta/métodos , Tartrazina/análise , Fluorescência , Limite de Detecção
9.
Ecotoxicol Environ Saf ; 135: 123-129, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27723464

RESUMO

In this study, a new absorbent based on cellulose nanosponges modified with methyltrioctylammonium chloride (aliquat 336) was prepared and used for pre-concentration, removal and determination of tartrazine dye, using UV-vis spectrophotometry. This adsorbent was fully characterized using various instrumental techniques such as SEM, FTIR and XRD spectra. The pre-concentration and removal procedures were studied in column and batch modes, respectively. The effects of parameters such as pH of the aqueous medium, methyltrioctylammounium chloride dose, adsorbent amount, desorbing conditions and interfering ions on the adsorption of tartrazine were investigated and optimized. The fitting experimental data with conventional isotherm models revealed that the adsorption followed the Brunauer-Emmett-Teller (BET) model and the maximum adsorption capacity for tartrazine was 180mg/g with modified nanosponges. Under the optimized conditions, the calibration curve was linear over the range of 2-300ng/mL and the limit of detection was 0.15ng/mL. The relative standard deviation (RSD) for 20 and 100ng/mL of tartrazine were 3.1% and 1.5%, respectively. The proposed method was applied for pre-concentration and determination of tartrazine dye in different water samples.


Assuntos
Celulose/química , Corantes/análise , Compostos de Amônio Quaternário/química , Tartrazina/análise , Poluentes Químicos da Água/análise , Adsorção , Corantes/química , Cinética , Nanoestruturas/química , Soluções , Poluentes Químicos da Água/química , Purificação da Água/métodos
10.
J Sep Sci ; 39(13): 2642-51, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27197058

RESUMO

In the present study, for the first time electromembrane extraction followed by high-performance liquid chromatography coupled with ultraviolet detection was developed and validated for the determination of tartrazine in some food samples. The parameters influencing electromembrane extraction were evaluated and optimized. The membrane consists of 1-octanol immobilized in the pores of a hollow fiber. As a driving force, a 30 V electrical field was applied to make the analyte migrate from sample solution with pH 3, through the supported liquid membrane into an acceptor solution with pH 10. Best preconcentration (enrichment factor >21) was obtained in extraction duration of 15 min. Effects of some solid nano-sorbents like carbon nanotubes and molecularly imprinted polymers on membrane performance and electromembrane extraction efficiency were evaluated. The method provided the linearity in the range 25-1000 ng/mL for tartrazine (R(2) > 0.9996) with repeatability range (RSD) between 3.8 and 8.5% (n = 3). The limits of detection and quantitation were 7.5 and 25 ng/mL, respectively. Finally, the method was applied to the determination and quantification of tartrazine from some food samples with relative recoveries in the range between 90 and 98%.


Assuntos
Técnicas Eletroquímicas , Análise de Alimentos , Contaminação de Alimentos/análise , Nanoestruturas/química , Tartrazina/análise , 1-Octanol/química , Adsorção , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Propriedades de Superfície , Raios Ultravioleta
11.
J Sep Sci ; 38(12): 2167-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864558

RESUMO

A facile adsorbent, a nanocomposite of Fe3 O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid-phase dispersion extraction. The nanocomposite was synthesized in a one-step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and Brunauer-Emmett-Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong π-π interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05-10 µg/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95-95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3 O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment.


Assuntos
Bebidas/análise , Compostos Férricos/química , Corantes de Alimentos/análise , Grafite/química , Nanocompostos/química , Óxidos/química , Adsorção , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Magnetismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície , Tartrazina/análise , Difração de Raios X
12.
J AOAC Int ; 98(3): 817-821, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086261

RESUMO

A sensitive electrochemical method was developed for the simultaneous determination of Brilliant Blue (BB) and tartrazine (Tz) using an ionic liquid-modified expanded graphite paste electrode (IL-EGPE). The IL-EGPE was prepared by mixing ionic liquid-expanded graphite composite (IL-EG) with solid paraffin. Compared with the EGPE, the IL-EGPE remarkably enhanced the electrocatalytic oxidation signals of BB and Tz. Under optimal experimental conditions, the designed IL-EGPE exhibited wide linear responses to BB and Tz ranging from 5.0×10(-9) to 4.0×10(-6) M and 1.0×10(-8) to 1.0×10(-6) M, respectively. The detection limits for BB and Tz were 2.0×10(-9) M (1.6 ng/mL) and 3.3×10(-9) M (1.8 ng/mL) at an S/N of 3, respectively. This electrode showed good reproducibility, stability, and reusability. The proposed method was successfully applied in the simultaneous determination of BB and Tz in a soft drink with satisfactory results.


Assuntos
Benzenossulfonatos/análise , Técnicas Eletroquímicas/instrumentação , Corantes de Alimentos/análise , Tartrazina/análise , Bebidas/análise , Eletrodos , Reutilização de Equipamento , Análise de Alimentos , Grafite , Indicadores e Reagentes , Líquidos Iônicos , Limite de Detecção , Reprodutibilidade dos Testes
13.
Food Chem ; 453: 139634, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761732

RESUMO

A facile hydrothermal route was employed for the synthesis of iron-nickel bimetal organic frameworks (Fe-Ni bi-MOFs) and composite with an acid functionalized multi-walled carbon nanotubes (Fe-Ni MOF/f-MWCNTs) for electrochemical detection of tartrazine. The as-prepared Fe-Ni MOF/f-MWCNTs was confirmed by the several physicochemical studies. A micro spindle shaped, highly porous, and crystalline Fe-Ni MOF/f-MWCNTs was noticed. The high sensitivity and stability of Fe-Ni MOF/f-MWCNTs/GCE modified electrode was analyzed. Due to its high porosity nature, the analyte molecule effectively gets adsorbed on the modified electrode and undergo electrochemical oxidation effectively. The modified electrode exhibits low limit of detection (LOD) and limit of quantification (LOQ) as 0.04 × 10-6 mol/L and 0.13 × 10-6 mol/L towards tartrazine. These results reveal the potential applications of Fe-Ni MOF/f-MWCNTs/GCE as modified electrode material for sensitive detection of tartrazine along with its robust reproducibility, stability, and effective sensing properties.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Ferro , Limite de Detecção , Estruturas Metalorgânicas , Nanotubos de Carbono , Níquel , Tartrazina , Nanotubos de Carbono/química , Estruturas Metalorgânicas/química , Tartrazina/análise , Tartrazina/química , Ferro/química , Ferro/análise , Níquel/química
14.
J Hazard Mater ; 470: 134154, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581871

RESUMO

In this work, a multiplexed colorimetric strategy was initiated for simultaneous and fast visualization of dyes using low-cost and easy-to-prepare indicator papers as sorbents. Response surface methodology (RSM) was employed to model statistically and optimize the process variables for dyes extraction and colorimetric assays. Multiplexed colorimetry was realized by virtue of synchronous color alignments from different dimensions of multiple dyes co-stained colorimetric cards under RSM-optimized conditions, and smartphone-based image analysis was subsequently performed from different modes to double-check the credibility of colorimetric assays. As concept-to-proof trials, simultaneous visualization of dyes in both beverages and simulated dye effluents was experimentally proved with results highly matched to HPLC or spiked amounts at RSM-predicted staining time as short as 50 s ∼3 min, giving LODs as low as 0.97 ± 0.22/0.18 ± 0.08 µg/mL (tartrazine/brilliant blue) for multiplexed colorimetry, which much lower than those obtained by single colorimetry. Since this is the first case to propose such a RSM-guided multiplexed colorimetric concept, it will provide a reference for engineering of other all-in-one devices which can realize synchronous visualization applications within limited experimental steps.


Assuntos
Colorimetria , Corantes , Smartphone , Colorimetria/métodos , Corantes/química , Corantes/análise , Contaminação de Alimentos/análise , Tartrazina/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Processamento de Imagem Assistida por Computador/métodos , Benzenossulfonatos/química , Bebidas/análise
15.
Sensors (Basel) ; 13(7): 8155-69, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23799494

RESUMO

We have developed an ultrasensitive indirect competitive enzyme-linked immunosorbent assay for the determination of tartrazine. Two carboxylated analogues of tartrazine with different spacer lengths, and one derivative from commercial tartrazine after a little chemical modification, were synthesized as haptens in order to produce antibodies specific to tartrazine. The effect of sulfonic acid groups on the hapten structure of tartrazine was also studied carefully for the first time. A most specific monoclonal antibody against tartrazine was created and exhibited an IC50 value of 0.105 ng/mL and a limit of detection of 0.014 ng/mL, with no cross-reactivity to other structurally-related pigments. The established immunoassay was applied to the determination of tartrazine in fortified samples of orange juice and in real positive samples of carbonated beverages.


Assuntos
Bebidas/análise , Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática/instrumentação , Análise de Alimentos/instrumentação , Corantes de Alimentos/análise , Microquímica/instrumentação , Tartrazina/análise , Desenho de Equipamento , Análise de Falha de Equipamento
16.
Food Chem ; 426: 136604, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348402

RESUMO

A ternary deep eutectic solvent (DES) consisting of choline chloride, lactic acid, and urea in a molar ratio of 1:2:2 was used to pretreat chamomile residue, followed by carbon dots (CDs) preparation using a one-pot solvothermal method. The CDs prepared under the suitable conditions had a high quantum yield of 47.34% and could be used as a bifunctional fluorescent probe for the detection of tartrazine and Fe(III). The concentration of tartrazine or Fe(III) had a good linear relationship with the fluorescence intensity of CDs that the determination coefficient (R2) was 0.9957 and 0.9943, and the limit of detection (LOD) was 40 nM and 119 nM, respectively. After verifying the different fluorescence quenching mechanisms of CDs by these two substances, a quantitative analysis was performed on real samples with recoveries of 90.70%∼104.29%. Overall, this study provided a promising technology for chemical conversion from low-cost chamomile residue to attractive bifunctional fluorescent probe.


Assuntos
Pontos Quânticos , Tartrazina , Tartrazina/análise , Compostos Férricos , Pontos Quânticos/química , Carbono/química , Corantes Fluorescentes/química , Camomila , Espectrometria de Fluorescência/métodos
17.
Food Chem Toxicol ; 178: 113935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429408

RESUMO

Azo dyes, including Tartrazine, Sunset Yellow, and Carmoisine, are added to foods to provide color, but they have no value with regard to nutrition, food preservation, or health benefits. Because of their availability, affordability, stability, and low cost, and because they provide intense coloration to the product without contributing unwanted flavors, the food industry often prefers to use synthetic azo dyes rather than natural colorants. Food dyes have been tested by regulatory agencies responsible for guaranteeing consumer safety. Nevertheless, the safety of these colorants remains controversial; they have been associated with adverse effects, particularly due to the reduction and cleavage of the azo bond. Here, we review the features, classification, regulation, toxicity, and alternatives to the use of azo dyes in food.


Assuntos
Compostos Azo , Corantes de Alimentos , Compostos Azo/toxicidade , Compostos Azo/análise , Tartrazina/toxicidade , Tartrazina/análise , Corantes/toxicidade , Alimentos , Indústria Alimentícia , Corantes de Alimentos/toxicidade
18.
Food Chem ; 402: 134501, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303391

RESUMO

An electrochemical sensor was designed to identify food colorants in juices. A green polymeric nanocomposite (beta-cyclodextrin/arginine) decorated with gold nanoparticles-capped cysteamine was fabricated on the surface of gold electrodes. Field emission-SEM and energy-dispersive X-ray spectroscopy showed the morphology and the presence of all elements related to all stages of the electrode modification. For three azo dyes (carmoisine, sunset yellow, and tartrazine), the analytical linear range was 10-8 to 10-4 M, with a low limit of quantification of about 1 nM. The engineered chemosensor showed suitable selectivity for analyzing candidate dyes in the presence of interfering agents. According to the scan rate results, the mass transport was controlled by diffusion, and the reaction on the chemosensor was electrochemically quasi-reversible. The results for different fruit juices confirmed this method's high potential application in detecting artificial color adulteration in food products.


Assuntos
Nanopartículas Metálicas , Tartrazina , Tartrazina/análise , Ouro/química , Sucos de Frutas e Vegetais , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Compostos Azo/análise , Eletrodos
19.
Nutrients ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447272

RESUMO

In recent years, artificial additives, especially synthetic food colorants, were found to demonstrate wider properties compared to their natural equivalents; however, their health impact is still not totally mapped. Our study aimed to determine the long-term (30 and 90 days) exposure effect of one of the commonly used artificial food colorants, tartrazine, on NMRI mice. The applied dose of tartrazine referred to the human equivalent dose for acceptable daily intake (ADI). Further, we evaluated its impact on the transcription of a range of epigenetic effectors, members of the DNA methyltransferase (DNMT) as well as histone deacetylase (HDAC) families. Following the exposure, organ biopsies were collected from the lungs, kidneys, liver, and spleen, and the gene expression levels were determined by real-time quantitative reverse transcription PCR (RT-qPCR). Our results demonstrated significant upregulation of genes in the tested organs in various patterns followed by the intake of tartrazine on ADI. Since DNMT and HDAC genes are involved in different steps of carcinogenesis, have roles in the development of neurological disorders and the effect of dose of everyday exposure is rarely studied, further investigation is warranted to study these possible associations.


Assuntos
Corantes de Alimentos , Neoplasias , Doenças do Sistema Nervoso , Humanos , Camundongos , Animais , Tartrazina/análise , Corantes de Alimentos/efeitos adversos , Corantes de Alimentos/análise , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Camundongos Endogâmicos , Neoplasias/genética
20.
Anal Methods ; 14(41): 4127-4132, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36222124

RESUMO

Colorant tartrazine is widely used in the food industry, but its long-term and excessive consumption is harmful to human health. Therefore, it is necessary to establish a sensitive detection method for tartrazine. Blue fluorescent carbon dots with L-arginine and o-phenylenediamine as precursors, namely L-Arg/oPD-CDs, were prepared via the hydrothermal method. Then, L-Arg/oPD-CDs were further purified by dialysis, thin layer chromatography and column chromatography. A dual-mode nanosensor based on fluorescent and UV absorption was successfully developed. Excellent linear ranges of 0-5 µM and 10-50 µM were obtained with a low detection limit of 42.3 nM based on fluorescence. A good linear range of 0-50 µM was obtained with a low detection limit of 130.15 nM based on UV absorption. The quenching mechanism of tartrazine towards L-Arg/oPD-CDs fluorescence was the inner filter effect. In addition, a dual-mode nanosensor was used for tartrazine determination in millet, maize flour, carbonated drink, and sugar samples. This study provides new insight into the detection of tartrazine by applying a dual-mode nanosensor.


Assuntos
Corantes de Alimentos , Pontos Quânticos , Humanos , Tartrazina/análise , Carbono/química , Corantes de Alimentos/análise , Pontos Quânticos/química , Diálise Renal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA