Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915704

RESUMO

Methodological advances in neuroscience have enabled the collection of massive datasets which demand innovative approaches for scientific communication. Existing platforms for data storage lack intuitive tools for data exploration, limiting our ability to interact effectively with these brain-wide datasets. We introduce two public websites: (Data and Atlas) developed for the International Brain Laboratory which provide access to millions of behavioral trials and hundreds of thousands of individual neurons. These interfaces allow users to discover both the raw and processed brain-wide data released by the IBL at the scale of the whole brain, individual sessions, trials, and neurons. By hosting these data interfaces as websites they are available cross-platform with no installation. By releasing each site's code as a modular open-source framework, other researchers can easily develop their own web interfaces and explore their own data. As neuroscience datasets continue to expand, customizable web interfaces offer a glimpse into a future of streamlined data exploration and act as blueprints for future tools.

2.
STAR Protoc ; 4(4): 102618, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756154

RESUMO

The mammalian suprachiasmatic nucleus (SCN) is the principal circadian clock that synchronizes daily behavioral and physiological responses in response to environmental cues. Here, we present a protocol for harvesting mouse SCN by vibrating microtome for diurnal transcriptome analysis. We describe steps for mouse entrainment, isolation of the SCN, tissue preparation, slicing with a vibratome, and handling of the harvested SCN for RNA extraction. This protocol can also be used for harvesting other mammalian brain regions for genomic studies.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos , Animais , Ritmo Circadiano/genética , Núcleo Supraquiasmático/fisiologia , Perfilação da Expressão Gênica , Técnicas Histológicas , Mamíferos
3.
Sci Adv ; 6(33): eabb3567, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851175

RESUMO

Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an Ile102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants. Our data show that global shifts in the synaptic efficiency across brain-wide networks leads to an altered probability of vigilance state transitions, possibly as a result of an altered excitability balance within local circuits controlling sleep-wake architecture.


Assuntos
Sono REM , Sono , Animais , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Camundongos , Sono/genética , Sono REM/genética , Vigília/genética
4.
Curr Opin Neurobiol ; 54: 20-27, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30195105

RESUMO

Formation of a cell assembly, a group of cortical neurons that function co-operatively to sustain an active memory trace, arises from changes in the connections between neurons. Establishment of memory traces is thought to rely on long-term plasticity in excitatory glutamatergic synapses interconnecting principal cells. In addition, recent studies in the hippocampus in vivo indicate that reconfiguration of GABAergic inhibitory interneuron activity also occurs during long-term memory encoding. Recent experiments in anesthetized, as well as in freely moving animals, demonstrate that learning-related hippocampal activities are associated with persistent changes in GABAergic interneuron firing rates and alterations in protein expression levels regulating GABA release.


Assuntos
Hipocampo/citologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Animais , Hipocampo/fisiologia , Ácido gama-Aminobutírico/metabolismo
5.
Dis Model Mech ; 12(2)2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30692144

RESUMO

Loss-of-function mutations in a human AMPA receptor-associated protein, ferric chelate reductase 1-like (FRRS1L), are associated with a devastating neurological condition incorporating choreoathetosis, cognitive deficits and epileptic encephalopathies. Furthermore, evidence from overexpression and ex vivo studies has implicated FRRS1L in AMPA receptor biogenesis, suggesting that changes in glutamatergic signalling might underlie the disorder. Here, we investigated the neurological and neurobehavioural correlates of the disorder using a mouse Frrs1l null mutant. The study revealed several neurological defects that mirrored those seen in human patients. We established that mice lacking Frrs1l suffered from a broad spectrum of early-onset motor deficits with no progressive, age-related deterioration. Moreover, Frrs1l-/- mice were hyperactive, irrespective of test environment, exhibited working memory deficits and displayed significant sleep fragmentation. Longitudinal electroencephalographic (EEG) recordings also revealed abnormal EEG results in Frrs1l-/- mice. Parallel investigations into disease aetiology identified a specific deficiency in AMPA receptor levels in the brain of Frrs1l-/- mice, while the general levels of several other synaptic components remained unchanged, with no obvious alterations in the number of synapses. Furthermore, we established that Frrsl1 deletion results in an increased proportion of immature AMPA receptors, indicated by incomplete glycosylation of GLUA2 (also known as GRIA2) and GLUA4 (also known as GRIA4) AMPA receptor proteins. This incomplete maturation leads to cytoplasmic retention and a reduction of those specific AMPA receptor levels in the postsynaptic membrane. Overall, this study determines, for the first time in vivo, how loss of FRRS1L function can affect glutamatergic signalling, and provides mechanistic insight into the development and progression of a human hyperkinetic disorder.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cognição , Fenômenos Eletrofisiológicos , Proteínas de Membrana/metabolismo , Atividade Motora , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/patologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Tamanho Corporal , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/patologia , Citoplasma/metabolismo , Glicosilação , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/fisiopatologia , Sono , Análise de Sobrevida
6.
Brain Struct Funct ; 222(4): 1809-1827, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27783219

RESUMO

Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.


Assuntos
Região CA1 Hipocampal/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Estimulação Elétrica , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA